|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import lru_cache |
|
|
|
import sherpa_onnx |
|
from huggingface_hub import hf_hub_download |
|
|
|
sample_rate = 16000 |
|
|
|
|
|
def _get_nn_model_filename( |
|
repo_id: str, |
|
filename: str, |
|
subfolder: str = "exp", |
|
) -> str: |
|
nn_model_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return nn_model_filename |
|
|
|
|
|
get_file = _get_nn_model_filename |
|
|
|
|
|
def _get_bpe_model_filename( |
|
repo_id: str, |
|
filename: str = "bpe.model", |
|
subfolder: str = "data/lang_bpe_500", |
|
) -> str: |
|
bpe_model_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return bpe_model_filename |
|
|
|
|
|
def _get_token_filename( |
|
repo_id: str, |
|
filename: str = "tokens.txt", |
|
subfolder: str = "data/lang_char", |
|
) -> str: |
|
token_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return token_filename |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_whisper_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
name = repo_id.split("-")[1] |
|
assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id |
|
full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name |
|
encoder = _get_nn_model_filename( |
|
repo_id=full_repo_id, |
|
filename=f"{name}-encoder.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder = _get_nn_model_filename( |
|
repo_id=full_repo_id, |
|
filename=f"{name}-decoder.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename( |
|
repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt" |
|
) |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper( |
|
encoder=encoder, |
|
decoder=decoder, |
|
tokens=tokens, |
|
num_threads=2, |
|
tail_paddings=2000, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_paraformer_zh_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in [ |
|
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="model.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( |
|
paraformer=nn_model, |
|
tokens=tokens, |
|
num_threads=2, |
|
sample_rate=sample_rate, |
|
feature_dim=80, |
|
decoding_method="greedy_search", |
|
debug=False, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=5) |
|
def _get_chinese_dialect_models(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in [ |
|
"csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="model.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_telespeech_ctc( |
|
model=nn_model, |
|
tokens=tokens, |
|
num_threads=2, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_russian_pre_trained_model_ctc(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ( |
|
"csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24", |
|
), repo_id |
|
|
|
model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="model.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc( |
|
model=model, |
|
tokens=tokens, |
|
num_threads=2, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_russian_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ( |
|
"alphacep/vosk-model-ru", |
|
"alphacep/vosk-model-small-ru", |
|
"csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24", |
|
), repo_id |
|
|
|
if repo_id == "alphacep/vosk-model-ru": |
|
model_dir = "am-onnx" |
|
encoder = "encoder.onnx" |
|
model_type = "transducer" |
|
elif repo_id == "alphacep/vosk-model-small-ru": |
|
model_dir = "am" |
|
encoder = "encoder.onnx" |
|
model_type = "transducer" |
|
elif repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": |
|
model_dir = "." |
|
encoder = "encoder.int8.onnx" |
|
model_type = "nemo_transducer" |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=encoder, |
|
subfolder=model_dir, |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder.onnx", |
|
subfolder=model_dir, |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner.onnx", |
|
subfolder=model_dir, |
|
) |
|
|
|
if repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": |
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
else: |
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="lang") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
model_type=model_type, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=2) |
|
def get_punct_model() -> sherpa_onnx.OfflinePunctuation: |
|
model = _get_nn_model_filename( |
|
repo_id="csukuangfj/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12", |
|
filename="model.onnx", |
|
subfolder=".", |
|
) |
|
config = sherpa_onnx.OfflinePunctuationConfig( |
|
model=sherpa_onnx.OfflinePunctuationModelConfig(ct_transformer=model), |
|
) |
|
|
|
punct = sherpa_onnx.OfflinePunctuation(config) |
|
return punct |
|
|
|
|
|
def get_vad() -> sherpa_onnx.VoiceActivityDetector: |
|
vad_model = _get_nn_model_filename( |
|
repo_id="csukuangfj/vad", |
|
filename="silero_vad_v5.onnx", |
|
subfolder=".", |
|
) |
|
|
|
config = sherpa_onnx.VadModelConfig() |
|
config.silero_vad.model = vad_model |
|
config.silero_vad.min_silence_duration = 0.15 |
|
config.silero_vad.min_speech_duration = 0.25 |
|
config.sample_rate = sample_rate |
|
|
|
vad = sherpa_onnx.VoiceActivityDetector( |
|
config, |
|
buffer_size_in_seconds=180, |
|
) |
|
|
|
return vad |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def get_pretrained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
if repo_id in chinese_models: |
|
return chinese_models[repo_id](repo_id) |
|
elif repo_id in chinese_dialect_models: |
|
return chinese_dialect_models[repo_id](repo_id) |
|
elif repo_id in english_models: |
|
return english_models[repo_id](repo_id) |
|
elif repo_id in chinese_english_mixed_models: |
|
return chinese_english_mixed_models[repo_id](repo_id) |
|
elif repo_id in russian_models: |
|
return russian_models[repo_id](repo_id) |
|
elif repo_id in korean_models: |
|
return korean_models[repo_id](repo_id) |
|
elif repo_id in thai_models: |
|
return thai_models[repo_id](repo_id) |
|
elif repo_id in japanese_models: |
|
return japanese_models[repo_id](repo_id) |
|
elif repo_id in zh_en_ko_ja_yue_models: |
|
return zh_en_ko_ja_yue_models[repo_id](repo_id) |
|
else: |
|
raise ValueError(f"Unsupported repo_id: {repo_id}") |
|
|
|
|
|
def _get_wenetspeech_pre_trained_model(repo_id): |
|
assert repo_id in ( |
|
"csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23", |
|
), repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method="greedy_search", |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
def _get_multi_zh_hans_pre_trained_model(repo_id): |
|
assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-20-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-20-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-20-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method="greedy_search", |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_moonshine_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ("moonshine-tiny", "moonshine-base"), repo_id |
|
|
|
if repo_id == "moonshine-tiny": |
|
full_repo_id = "csukuangfj/sherpa-onnx-moonshine-tiny-en-int8" |
|
elif repo_id == "moonshine-base": |
|
full_repo_id = "csukuangfj/sherpa-onnx-moonshine-base-en-int8" |
|
else: |
|
raise ValueError(f"Unknown repo_id: {repo_id}") |
|
|
|
preprocessor = _get_nn_model_filename( |
|
repo_id=full_repo_id, |
|
filename=f"preprocess.onnx", |
|
subfolder=".", |
|
) |
|
|
|
encoder = _get_nn_model_filename( |
|
repo_id=full_repo_id, |
|
filename=f"encode.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
uncached_decoder = _get_nn_model_filename( |
|
repo_id=full_repo_id, |
|
filename=f"uncached_decode.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
cached_decoder = _get_nn_model_filename( |
|
repo_id=full_repo_id, |
|
filename=f"cached_decode.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename( |
|
repo_id=full_repo_id, |
|
subfolder=".", |
|
filename="tokens.txt", |
|
) |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine( |
|
preprocessor=preprocessor, |
|
encoder=encoder, |
|
uncached_decoder=uncached_decoder, |
|
cached_decoder=cached_decoder, |
|
tokens=tokens, |
|
num_threads=2, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
def _get_english_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert ( |
|
repo_id |
|
== "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04" |
|
), repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-30-avg-4.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-30-avg-4.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-30-avg-4.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="lang_bpe_500") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method="greedy_search", |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_korean_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ("k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24",), repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-99-avg-1.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_japanese_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ("reazon-research/reazonspeech-k2-v2",), repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-99-avg-1.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_yifan_thai_pretrained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ( |
|
"yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20", |
|
), repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-12-avg-5.int8.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-12-avg-5.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-12-avg-5.int8.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_2000") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_sense_voice_pre_trained_model( |
|
repo_id: str, |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in [ |
|
"csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="model.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice( |
|
model=nn_model, |
|
tokens=tokens, |
|
num_threads=2, |
|
sample_rate=sample_rate, |
|
feature_dim=80, |
|
decoding_method="greedy_search", |
|
debug=True, |
|
use_itn=True, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
chinese_dialect_models = { |
|
"csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04": _get_chinese_dialect_models, |
|
} |
|
|
|
zh_en_ko_ja_yue_models = { |
|
"csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17": _get_sense_voice_pre_trained_model, |
|
} |
|
|
|
chinese_models = { |
|
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model, |
|
"csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23": _get_wenetspeech_pre_trained_model, |
|
"zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model, |
|
} |
|
|
|
english_models = { |
|
"whisper-tiny.en": _get_whisper_model, |
|
"moonshine-tiny": _get_moonshine_model, |
|
"moonshine-base": _get_moonshine_model, |
|
"whisper-base.en": _get_whisper_model, |
|
"whisper-small.en": _get_whisper_model, |
|
"whisper-distil-small.en": _get_whisper_model, |
|
"whisper-medium.en": _get_whisper_model, |
|
"whisper-distil-medium.en": _get_whisper_model, |
|
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, |
|
} |
|
|
|
chinese_english_mixed_models = { |
|
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model, |
|
} |
|
|
|
korean_models = { |
|
"k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24": _get_korean_pre_trained_model, |
|
} |
|
|
|
russian_models = { |
|
"csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": _get_russian_pre_trained_model, |
|
"csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24": _get_russian_pre_trained_model_ctc, |
|
"alphacep/vosk-model-ru": _get_russian_pre_trained_model, |
|
"alphacep/vosk-model-small-ru": _get_russian_pre_trained_model, |
|
} |
|
|
|
thai_models = { |
|
"yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20": _get_yifan_thai_pretrained_model, |
|
} |
|
|
|
japanese_models = { |
|
"reazon-research/reazonspeech-k2-v2": _get_japanese_pre_trained_model |
|
} |
|
|
|
language_to_models = { |
|
"超多种中文方言": list(chinese_dialect_models.keys()), |
|
"Chinese+English": list(chinese_english_mixed_models.keys()), |
|
"Chinese+English+Korean+Japanese+Cantoes(中英韩日粤语)": list( |
|
zh_en_ko_ja_yue_models.keys() |
|
), |
|
"Chinese": list(chinese_models.keys()), |
|
"English": list(english_models.keys()), |
|
"Russian": list(russian_models.keys()), |
|
"Korean": list(korean_models.keys()), |
|
"Thai": list(thai_models.keys()), |
|
"Japanese": list(japanese_models.keys()), |
|
} |
|
|