Spaces:
Sleeping
Sleeping
File size: 3,548 Bytes
41d50e3 847ca61 67835a5 847ca61 67835a5 41d50e3 67835a5 847ca61 67835a5 847ca61 1d721d6 847ca61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse
import gradio as gr
from deepface import DeepFace
import os
from gradio.routes import App as GradioApp
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# FastAPI instance
app = FastAPI()
# Gradio Interface Function
def face_verification_uii(img1, img2, dist="cosine", model="Facenet", detector="ssd"):
"""
Gradio function for face verification
"""
try:
result = DeepFace.verify(
img1_path=img1,
img2_path=img2,
distance_metric=dist,
model_name=model,
detector_backend=detector,
enforce_detection=False,
)
return {
"verified": result["verified"],
"distance": result["distance"],
"threshold": result["threshold"],
"model": result["model"],
"detector_backend": result["detector_backend"],
"similarity_metric": result["similarity_metric"],
}
except Exception as e:
return {"error": str(e)}
@app.post("/face_verification")
async def face_verification(
img1: UploadFile = File(...),
img2: UploadFile = File(...),
dist: str = Form("cosine"),
model: str = Form("Facenet"),
detector: str = Form("ssd")
):
"""
Endpoint to verify if two images belong to the same person.
"""
try:
# Ensure uploads directory exists
if not os.path.exists("uploads"):
os.makedirs("uploads")
# Save uploaded images to disk
img1_path = os.path.join("uploads", img1.filename)
img2_path = os.path.join("uploads", img2.filename)
with open(img1_path, "wb") as f:
f.write(await img1.read())
with open(img2_path, "wb") as f:
f.write(await img2.read())
# Run DeepFace verification
result = DeepFace.verify(
img1_path=img1_path,
img2_path=img2_path,
distance_metric=dist,
model_name=model,
detector_backend=detector,
enforce_detection=False,
)
# Delete uploaded images after processing
os.remove(img1_path)
os.remove(img2_path)
# Return verification results
return {
"verified": result["verified"],
"distance": result["distance"],
"threshold": result["threshold"],
"model": result["model"],
"detector_backend": result["detector_backend"],
"similarity_metric": result["similarity_metric"]
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Define Gradio Blocks
with gr.Blocks() as demo:
img1 = gr.Image(label="Image 1",sources=["upload", "webcam", "clipboard"])
img2 = gr.Image(label="Image 2",sources=["upload", "webcam", "clipboard"])
dist = gr.Dropdown(choices=["cosine", "euclidean", "euclidean_l2"], label="Distance Metric", value="cosine")
model = gr.Dropdown(choices=["VGG-Face", "Facenet", "Facenet512", "ArcFace"], label="Model", value="Facenet")
detector = gr.Dropdown(choices=["opencv", "ssd", "mtcnn", "retinaface", "mediapipe"], label="Detector", value="ssd")
btn = gr.Button("Verify")
output = gr.Textbox()
btn.click(face_verification_uii, inputs=[img1, img2, dist, model, detector], outputs=output)
# Running Servers
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860, reload=True) |