Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,240 @@
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
from diffusers import AuraFlowPipeline
|
3 |
import torch
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
"""Initialize and return the AuraFlowPipeline."""
|
8 |
-
pipeline = AuraFlowPipeline.from_pretrained(
|
9 |
-
"fal/AuraFlow-v0.3",
|
10 |
-
torch_dtype=torch.float16,
|
11 |
-
variant="fp16",
|
12 |
-
).to("cuda")
|
13 |
-
return pipeline
|
14 |
|
15 |
-
|
16 |
-
def generate_image(pipeline, prompt, width, height, num_inference_steps, seed, guidance_scale):
|
17 |
-
"""Generate an image using the AuraFlowPipeline."""
|
18 |
-
generator = torch.Generator().manual_seed(seed)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
num_inference_steps=num_inference_steps,
|
25 |
-
generator=generator,
|
26 |
-
guidance_scale=guidance_scale,
|
27 |
-
).images[0]
|
28 |
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
|
72 |
-
|
73 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
import spaces
|
5 |
from diffusers import AuraFlowPipeline
|
6 |
import torch
|
7 |
+
from gradio_imageslider import ImageSlider
|
8 |
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
#torch.set_float32_matmul_precision("high")
|
|
|
|
|
|
|
12 |
|
13 |
+
#torch._inductor.config.conv_1x1_as_mm = True
|
14 |
+
#torch._inductor.config.coordinate_descent_tuning = True
|
15 |
+
#torch._inductor.config.epilogue_fusion = False
|
16 |
+
#torch._inductor.config.coordinate_descent_check_all_directions = True
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
#pipe_v1 = AuraFlowPipeline.from_pretrained(
|
19 |
+
# "fal/AuraFlow",
|
20 |
+
# torch_dtype=torch.float16
|
21 |
+
#).to("cuda")
|
22 |
|
23 |
+
pipe_v2 = AuraFlowPipeline.from_pretrained(
|
24 |
+
"fal/AuraFlow-v0.2",
|
25 |
+
torch_dtype=torch.float16
|
26 |
+
).to("cuda")
|
27 |
|
28 |
+
pipe = AuraFlowPipeline.from_pretrained(
|
29 |
+
"fal/AuraFlow-v0.3",
|
30 |
+
torch_dtype=torch.float16
|
31 |
+
).to("cuda")
|
32 |
+
#pipe.transformer.to(memory_format=torch.channels_last)
|
33 |
+
#pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
34 |
+
#pipe.transformer.to(memory_format=torch.channels_last)
|
35 |
+
#pipe.vae.to(memory_format=torch.channels_last)
|
36 |
|
37 |
+
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
38 |
+
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
|
39 |
+
|
40 |
+
MAX_SEED = np.iinfo(np.int32).max
|
41 |
+
MAX_IMAGE_SIZE = 1024
|
42 |
+
|
43 |
+
@spaces.GPU()
|
44 |
+
def infer_example(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, model_version="0.2", comparison_mode=False, progress=gr.Progress(track_tqdm=True)):
|
45 |
+
generator = torch.Generator().manual_seed(seed)
|
46 |
+
image = pipe(
|
47 |
+
prompt = prompt,
|
48 |
+
negative_prompt = negative_prompt,
|
49 |
+
width = width,
|
50 |
+
height = height,
|
51 |
+
guidance_scale = guidance_scale,
|
52 |
+
num_inference_steps = num_inference_steps,
|
53 |
+
generator = generator
|
54 |
+
).images[0]
|
55 |
+
return image, seed
|
56 |
+
|
57 |
+
@spaces.GPU(duration=95)
|
58 |
+
def infer(prompt,
|
59 |
+
negative_prompt="",
|
60 |
+
seed=42,
|
61 |
+
randomize_seed=False,
|
62 |
+
width=1024,
|
63 |
+
height=1024,
|
64 |
+
guidance_scale=5.0,
|
65 |
+
num_inference_steps=28,
|
66 |
+
model_version="0.3",
|
67 |
+
comparison_mode=False,
|
68 |
+
progress=gr.Progress(track_tqdm=True)
|
69 |
+
):
|
70 |
+
|
71 |
+
if randomize_seed:
|
72 |
+
seed = random.randint(0, MAX_SEED)
|
73 |
|
74 |
+
generator = torch.Generator().manual_seed(seed)
|
75 |
+
if(comparison_mode):
|
76 |
+
image_1 = pipe_v2(
|
77 |
+
prompt = prompt,
|
78 |
+
negative_prompt = negative_prompt,
|
79 |
+
width=width,
|
80 |
+
height=height,
|
81 |
+
guidance_scale = guidance_scale,
|
82 |
+
num_inference_steps = num_inference_steps,
|
83 |
+
generator = generator
|
84 |
+
).images[0]
|
85 |
+
generator = torch.Generator().manual_seed(seed)
|
86 |
+
image_2 = pipe(
|
87 |
+
prompt = prompt,
|
88 |
+
negative_prompt = negative_prompt,
|
89 |
+
width=width,
|
90 |
+
height=height,
|
91 |
+
guidance_scale = guidance_scale,
|
92 |
+
num_inference_steps = num_inference_steps,
|
93 |
+
generator = generator
|
94 |
+
).images[0]
|
95 |
+
return gr.update(visible=False), gr.update(visible=True, value=(image_1, image_2)), seed
|
96 |
+
if(model_version == "0.1"):
|
97 |
+
image = pipe_v1(
|
98 |
+
prompt = prompt,
|
99 |
+
negative_prompt = negative_prompt,
|
100 |
+
width=width,
|
101 |
+
height=height,
|
102 |
+
guidance_scale = guidance_scale,
|
103 |
+
num_inference_steps = num_inference_steps,
|
104 |
+
generator = generator
|
105 |
+
).images[0]
|
106 |
+
elif(model_version == "0.2"):
|
107 |
+
image = pipe_v2(
|
108 |
+
prompt = prompt,
|
109 |
+
negative_prompt = negative_prompt,
|
110 |
+
width=width,
|
111 |
+
height=height,
|
112 |
+
guidance_scale = guidance_scale,
|
113 |
+
num_inference_steps = num_inference_steps,
|
114 |
+
generator = generator
|
115 |
+
).images[0]
|
116 |
+
else:
|
117 |
+
image = pipe(
|
118 |
+
prompt = prompt,
|
119 |
+
negative_prompt = negative_prompt,
|
120 |
+
width=width,
|
121 |
+
height=height,
|
122 |
+
guidance_scale = guidance_scale,
|
123 |
+
num_inference_steps = num_inference_steps,
|
124 |
+
generator = generator
|
125 |
+
).images[0]
|
126 |
+
|
127 |
+
return gr.update(visible=True, value=image), gr.update(visible=False), seed
|
128 |
+
|
129 |
+
examples = [
|
130 |
+
"A photo of a lavender cat",
|
131 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
132 |
+
"An astronaut riding a green horse",
|
133 |
+
"A delicious ceviche cheesecake slice",
|
134 |
+
]
|
135 |
+
|
136 |
+
css="""
|
137 |
+
#col-container {
|
138 |
+
margin: 0 auto;
|
139 |
+
max-width: 520px;
|
140 |
+
}
|
141 |
+
"""
|
142 |
+
|
143 |
+
with gr.Blocks(css=css) as demo:
|
144 |
|
145 |
+
with gr.Column(elem_id="col-container"):
|
146 |
+
gr.Markdown(f"""
|
147 |
+
# AuraFlow 0.3
|
148 |
+
Demo of the [AuraFlow 0.3](https://huggingface.co/fal/AuraFlow-v0.3) 6.8B parameters open source diffusion transformer model
|
149 |
+
[[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co/fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)]
|
150 |
+
""")
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
|
154 |
+
prompt = gr.Text(
|
155 |
+
label="Prompt",
|
156 |
+
show_label=False,
|
157 |
+
max_lines=1,
|
158 |
+
placeholder="Enter your prompt",
|
159 |
+
container=False,
|
160 |
+
)
|
161 |
+
|
162 |
+
run_button = gr.Button("Run", scale=0)
|
163 |
+
|
164 |
+
result = gr.Image(label="Result", show_label=False)
|
165 |
+
result_compare = ImageSlider(visible=False, label="Left 0.2, Right 0.3")
|
166 |
+
comparison_mode = gr.Checkbox(label="Comparison mode", info="Compare v0.2 with v0.3", value=False)
|
167 |
+
with gr.Accordion("Advanced Settings", open=False):
|
168 |
+
|
169 |
+
model_version = gr.Dropdown(
|
170 |
+
["0.2", "0.3"], label="Model version", value="0.3"
|
171 |
+
)
|
172 |
+
|
173 |
+
negative_prompt = gr.Text(
|
174 |
+
label="Negative prompt",
|
175 |
+
max_lines=1,
|
176 |
+
placeholder="Enter a negative prompt",
|
177 |
+
)
|
178 |
+
|
179 |
+
seed = gr.Slider(
|
180 |
+
label="Seed",
|
181 |
+
minimum=0,
|
182 |
+
maximum=MAX_SEED,
|
183 |
+
step=1,
|
184 |
+
value=0,
|
185 |
+
)
|
186 |
+
|
187 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
188 |
+
|
189 |
+
with gr.Row():
|
190 |
+
|
191 |
+
width = gr.Slider(
|
192 |
+
label="Width",
|
193 |
+
minimum=256,
|
194 |
+
maximum=MAX_IMAGE_SIZE,
|
195 |
+
step=32,
|
196 |
+
value=1024,
|
197 |
+
)
|
198 |
+
|
199 |
+
height = gr.Slider(
|
200 |
+
label="Height",
|
201 |
+
minimum=256,
|
202 |
+
maximum=MAX_IMAGE_SIZE,
|
203 |
+
step=32,
|
204 |
+
value=1024,
|
205 |
+
)
|
206 |
+
|
207 |
+
with gr.Row():
|
208 |
+
|
209 |
+
guidance_scale = gr.Slider(
|
210 |
+
label="Guidance scale",
|
211 |
+
minimum=0.0,
|
212 |
+
maximum=10.0,
|
213 |
+
step=0.1,
|
214 |
+
value=5.0,
|
215 |
+
)
|
216 |
+
|
217 |
+
num_inference_steps = gr.Slider(
|
218 |
+
label="Number of inference steps",
|
219 |
+
minimum=1,
|
220 |
+
maximum=50,
|
221 |
+
step=1,
|
222 |
+
value=28,
|
223 |
+
)
|
224 |
+
|
225 |
+
gr.Examples(
|
226 |
+
examples = examples,
|
227 |
+
fn = infer_example,
|
228 |
+
inputs = [prompt],
|
229 |
+
outputs = [result, seed],
|
230 |
+
cache_examples="lazy"
|
231 |
+
)
|
232 |
+
|
233 |
+
gr.on(
|
234 |
+
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
235 |
+
fn = infer,
|
236 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_version, comparison_mode],
|
237 |
+
outputs = [result, result_compare, seed]
|
238 |
)
|
239 |
|
240 |
+
demo.queue().launch()
|
|