Spaces:
Running
Running
Upload 5 files
Browse files- app.py +65 -1
- requirements.txt +2 -1
- utils/image2image.py +1 -0
- utils/inpaint.py +53 -0
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
|
|
1 |
from utils.image2image import stable_diffusion_img2img
|
2 |
from utils.text2image import stable_diffusion_text2img
|
3 |
-
|
4 |
import gradio as gr
|
5 |
|
6 |
stable_model_list = [
|
@@ -10,6 +11,12 @@ stable_model_list = [
|
|
10 |
"stabilityai/stable-diffusion-2-1",
|
11 |
"stabilityai/stable-diffusion-2-1-base"
|
12 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
stable_prompt_list = [
|
14 |
"a photo of a man.",
|
15 |
"a photo of a girl."
|
@@ -127,6 +134,50 @@ with app:
|
|
127 |
|
128 |
image2image_predict = gr.Button(value='Generator')
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
with gr.Tab('Generator'):
|
132 |
with gr.Column():
|
@@ -159,4 +210,17 @@ with app:
|
|
159 |
outputs = [output_image],
|
160 |
)
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
app.launch()
|
|
|
1 |
+
|
2 |
from utils.image2image import stable_diffusion_img2img
|
3 |
from utils.text2image import stable_diffusion_text2img
|
4 |
+
from utils.inpaint import stable_diffusion_inpaint
|
5 |
import gradio as gr
|
6 |
|
7 |
stable_model_list = [
|
|
|
11 |
"stabilityai/stable-diffusion-2-1",
|
12 |
"stabilityai/stable-diffusion-2-1-base"
|
13 |
]
|
14 |
+
|
15 |
+
stable_inpiant_model_list = [
|
16 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
17 |
+
"runwayml/stable-diffusion-inpainting"
|
18 |
+
]
|
19 |
+
|
20 |
stable_prompt_list = [
|
21 |
"a photo of a man.",
|
22 |
"a photo of a girl."
|
|
|
134 |
|
135 |
image2image_predict = gr.Button(value='Generator')
|
136 |
|
137 |
+
with gr.Tab('Inpaint'):
|
138 |
+
inpaint_image_file = gr.Image(
|
139 |
+
source="upload",
|
140 |
+
type="numpy",
|
141 |
+
tool="sketch",
|
142 |
+
elem_id="source_container"
|
143 |
+
)
|
144 |
+
|
145 |
+
inpaint_model_id = gr.Dropdown(
|
146 |
+
choices=stable_inpiant_model_list,
|
147 |
+
value=stable_inpiant_model_list[0],
|
148 |
+
label='Inpaint Model Id'
|
149 |
+
)
|
150 |
+
|
151 |
+
inpaint_prompt = gr.Textbox(
|
152 |
+
lines=1,
|
153 |
+
value=stable_prompt_list[0],
|
154 |
+
label='Prompt'
|
155 |
+
)
|
156 |
+
|
157 |
+
inpaint_negative_prompt = gr.Textbox(
|
158 |
+
lines=1,
|
159 |
+
value=stable_negative_prompt_list[0],
|
160 |
+
label='Negative Prompt'
|
161 |
+
)
|
162 |
+
|
163 |
+
with gr.Accordion("Advanced Options", open=False):
|
164 |
+
inpaint_guidance_scale = gr.Slider(
|
165 |
+
minimum=0.1,
|
166 |
+
maximum=15,
|
167 |
+
step=0.1,
|
168 |
+
value=7.5,
|
169 |
+
label='Guidance Scale'
|
170 |
+
)
|
171 |
+
|
172 |
+
inpaint_num_inference_step = gr.Slider(
|
173 |
+
minimum=1,
|
174 |
+
maximum=100,
|
175 |
+
step=1,
|
176 |
+
value=50,
|
177 |
+
label='Num Inference Step'
|
178 |
+
)
|
179 |
+
|
180 |
+
inpaint_predict = gr.Button(value='Generator')
|
181 |
|
182 |
with gr.Tab('Generator'):
|
183 |
with gr.Column():
|
|
|
210 |
outputs = [output_image],
|
211 |
)
|
212 |
|
213 |
+
inpaint_predict.click(
|
214 |
+
fn = stable_diffusion_inpaint,
|
215 |
+
inputs = [
|
216 |
+
inpaint_image_file,
|
217 |
+
inpaint_model_id,
|
218 |
+
inpaint_prompt,
|
219 |
+
inpaint_negative_prompt,
|
220 |
+
inpaint_guidance_scale,
|
221 |
+
inpaint_num_inference_step,
|
222 |
+
],
|
223 |
+
outputs = [output_image],
|
224 |
+
)
|
225 |
+
|
226 |
app.launch()
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ transformers
|
|
2 |
bitsandbytes==0.35.0
|
3 |
xformers
|
4 |
controlnet_aux
|
5 |
-
diffusers
|
|
|
|
2 |
bitsandbytes==0.35.0
|
3 |
xformers
|
4 |
controlnet_aux
|
5 |
+
diffusers
|
6 |
+
imageio
|
utils/image2image.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from diffusers import StableDiffusionImg2ImgPipeline, DDIMScheduler
|
|
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
|
|
|
1 |
from diffusers import StableDiffusionImg2ImgPipeline, DDIMScheduler
|
2 |
+
from IPython.display import display
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
utils/inpaint.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline, DDIMScheduler
|
2 |
+
from PIL import Image
|
3 |
+
import imageio
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# https://huggingface.co/spaces/Manjushri/SD-2.0-Inpainting-CPU/blob/main/app.py
|
7 |
+
|
8 |
+
def resize(height,img):
|
9 |
+
baseheight = height
|
10 |
+
img = Image.open(img)
|
11 |
+
hpercent = (baseheight/float(img.size[1]))
|
12 |
+
wsize = int((float(img.size[0])*float(hpercent)))
|
13 |
+
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
|
14 |
+
return img
|
15 |
+
|
16 |
+
def img_preprocces(source_img, prompt, negative_prompt):
|
17 |
+
imageio.imwrite("data.png", source_img["image"])
|
18 |
+
imageio.imwrite("data_mask.png", source_img["mask"])
|
19 |
+
src = resize(512, "data.png")
|
20 |
+
src.save("src.png")
|
21 |
+
mask = resize(512, "data_mask.png")
|
22 |
+
mask.save("mask.png")
|
23 |
+
return src, mask
|
24 |
+
|
25 |
+
def stable_diffusion_inpaint(
|
26 |
+
image_path:str,
|
27 |
+
model_path:str,
|
28 |
+
prompt:str,
|
29 |
+
negative_prompt:str,
|
30 |
+
guidance_scale:int,
|
31 |
+
num_inference_step:int,
|
32 |
+
):
|
33 |
+
|
34 |
+
image, mask_image = img_preprocces(image_path, prompt, negative_prompt)
|
35 |
+
pipe = DiffusionPipeline.from_pretrained(
|
36 |
+
model_path,
|
37 |
+
revision="fp16",
|
38 |
+
torch_dtype=torch.float16,
|
39 |
+
)
|
40 |
+
pipe.to('cuda')
|
41 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
42 |
+
pipe.enable_xformers_memory_efficient_attention()
|
43 |
+
|
44 |
+
output = pipe(
|
45 |
+
prompt = prompt,
|
46 |
+
image = image,
|
47 |
+
mask_image=mask_image,
|
48 |
+
negative_prompt = negative_prompt,
|
49 |
+
num_inference_steps = num_inference_step,
|
50 |
+
guidance_scale = guidance_scale,
|
51 |
+
).images
|
52 |
+
|
53 |
+
return output
|