File size: 1,938 Bytes
c1786f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from torchyolo import YoloHub
import gradio as gr

""" 
Paper Implementation
#"kadirnar/OcSort"
#"kadirnar/SORT"
"""

def object_tracker(
    source: str,
    model_type: str,
    model_path: str,
    tracker_type: str,
    tracker_config_path: str,
):
    model = YoloHub(
        config_path="default_config.yaml",
        model_type=model_type,
        model_path=model_path,
    )

    model.predict(
        source=source,
        tracker_type=tracker_type,
        tracker_config_path=tracker_config_path,
    )
    return 'output.mp4'
       

inputs = [
    gr.Video(),
    gr.inputs.Dropdown(
        label="Model Type",
        choices=["yolov5", "yolov6", "yolov8"],
        default="yolov5",
    ),
    gr.inputs.Dropdown(
        label="Model Path",
        choices=[
            "kadirnar/yolov5s6-v6.0",
            "kadirnar/yolov6m-v3.0",
            "kadirnar/yolov8n-v8.0",
        ],
        default="kadirnar/yolov5s6-v6.",
    ),
    gr.inputs.Dropdown(
        label="Tracker Type",
        choices=["NORFAIR", "STRONGSORT", "OCSORT", "BYTETRACK", "SORT"],
        default="NORFAIR",
    ),
    gr.inputs.Dropdown(
        label="Tracker Config Path",
        choices=[
            "tracker/norfair_track.yaml",
            "tracker/strong_sort.yaml",
            "tracker/oc_sort.yaml",
            "tracker/byte_track.yaml",
            "tracker/sort_track.yaml",
        ],
        default="tracker/norfair_track.yaml",
    ),
]
examples = [
    [
        "test.mp4",
        "yolov5",
        "kadirnar/yolov5s6-v6.0",
        "NORFAIR",
        "tracker/norfair_track.yaml"
    ],
]
outputs = gr.Video()
title = "TorchYolo: YOLO Series Object Detection and Track Algorithm Library"

demo_app = gr.Interface(
    fn=object_tracker,
    inputs=inputs,
    examples=examples,
    outputs=outputs,
    title=title,
    cache_examples=False,
    theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)