Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
from tempfile import NamedTemporaryFile | |
from PyPDF2 import PdfReader | |
from IPython.display import Audio | |
import numpy as np | |
from bark import SAMPLE_RATE, generate_audio, preload_models | |
from scipy.io.wavfile import write as write_wav | |
import torch | |
def summarize_abstract_from_pdf(pdf_file_path): | |
abstract_string = 'abstract' | |
found_abstract = False | |
intro_string ='introduction' | |
extracted_text_string ="" | |
# Read the PDF and extract text from the first page | |
with open(pdf_file_path, 'rb') as pdf_file: | |
reader = PdfReader(pdf_file) | |
text = "" | |
text += reader.pages[0].extract_text() | |
file = text.splitlines() | |
for lines in file: | |
lower_lines = lines.lower() | |
if lower_lines.strip()== abstract_string: | |
found_abstract = True | |
elif "1" in lower_lines.strip() and intro_string in lower_lines.strip(): | |
found_abstract = False | |
if found_abstract == True: | |
extracted_text_string += lines | |
extracted_text_string = extracted_text_string.replace("Abstract", "") | |
summarizer = pipeline("summarization", "pszemraj/led-base-book-summary",device=0 if torch.cuda.is_available() else -1,) | |
# Generate a summarized abstract using the specified model | |
summarized_abstract = summarizer(extracted_text_string, | |
min_length=16, | |
max_length=150, | |
no_repeat_ngram_size=3, | |
encoder_no_repeat_ngram_size=3, | |
repetition_penalty=3.5, | |
num_beams=4, | |
early_stopping=True, | |
) | |
#I run this twice to get summazired text | |
summarized_abstract2 = summarizer(summarized_abstract[0]['summary_text'], | |
min_length=16, | |
max_length=25, | |
no_repeat_ngram_size=3, | |
encoder_no_repeat_ngram_size=3, | |
repetition_penalty=3.5, | |
num_beams=4, | |
early_stopping=True, | |
) | |
# Return the summarized abstract as a string | |
return summarized_abstract2[0]['summary_text'] | |
def generate_audio_func(pdf_file): | |
pdf_file_path = pdf_file.name | |
# Generate audio from text | |
#call the summarize abstract function | |
text_prompt = summarize_abstract_from_pdf(pdf_file_path) | |
audio_array = generate_audio(text_prompt) | |
# Create a temporary WAV file to save the audio | |
with NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav_file: | |
wav_file_path = temp_wav_file.name | |
write_wav(wav_file_path, 22050, (audio_array * 32767).astype(np.int16)) | |
return wav_file_path | |
# Define app name, app description, and examples | |
app_name = "PDF to Audio Converter" | |
app_description = "Convert text from a PDF file to audio. Upload a PDF file. We accept only PDF files" | |
# Create the Gradio app | |
input_component = gr.File(file_types=["pdf"]) | |
output_component = gr.Audio() | |
demo = gr.Interface( | |
fn=generate_audio_func, | |
inputs=input_component, | |
outputs=output_component, | |
title=app_name, | |
description=app_description | |
) | |
demo.launch() |