Spaces:
Running
Running
File size: 6,086 Bytes
bcfd8ed 0fe3450 bcfd8ed 5ecc89c e65910f 5ecc89c bcfd8ed cb50fdb bcfd8ed cb50fdb bd3c7b9 bcfd8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
'''
Created By Lewis Kamau Kimaru
Sema translator api backend
January 2024
Docker deployment
'''
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
import ctranslate2
import sentencepiece as spm
import fasttext
import uvicorn
import pytz
from datetime import datetime
import os
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=False,
allow_methods=["*"],
allow_headers=["*"],
)
fasttext.FastText.eprint = lambda x: None
# User interface
templates_folder = os.path.join(os.path.dirname(__file__), "templates")
# Get time of request
def get_time():
nairobi_timezone = pytz.timezone('Africa/Nairobi')
current_time_nairobi = datetime.now(nairobi_timezone)
curr_day = current_time_nairobi.strftime('%A')
curr_date = current_time_nairobi.strftime('%Y-%m-%d')
curr_time = current_time_nairobi.strftime('%H:%M:%S')
full_date = f"{curr_day} | {curr_date} | {curr_time}"
return full_date, curr_time
# Load the model and tokenizer ..... only once!
beam_size = 1 # change to a smaller value for faster inference
device = "cpu" # or "cuda"
# Language Prediction model
print("\nimporting Language Prediction model")
lang_model_file = "lid218e.bin"
lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file)
lang_model = fasttext.load_model(lang_model_full_path)
# Load the source SentencePiece model
print("\nimporting SentencePiece model")
sp_model_file = "spm.model"
sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file)
sp = spm.SentencePieceProcessor()
sp.load(sp_model_full_path)
# Import The Translator model
print("\nimporting Translator model")
ct_model_file = "sematrans-3.3B"
ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file)
translator = ctranslate2.Translator(ct_model_full_path, device)
print('\nDone importing models\n')
def translate_detect(userinput: str, target_lang: str):
source_sents = [userinput]
source_sents = [sent.strip() for sent in source_sents]
target_prefix = [[target_lang]] * len(source_sents)
# Predict the source language
predictions = lang_model.predict(source_sents[0], k=1)
source_lang = predictions[0][0].replace('__label__', '')
# Subword the source sentences
source_sents_subworded = sp.encode(source_sents, out_type=str)
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
# Translate the source sentences
translations = translator.translate_batch(
source_sents_subworded,
batch_type="tokens",
max_batch_size=2024,
beam_size=beam_size,
target_prefix=target_prefix,
)
translations = [translation[0]['tokens'] for translation in translations]
# Desubword the target sentences
translations_desubword = sp.decode(translations)
translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
# Return the source language and the translated text
return source_lang, translations_desubword
def translate_enter(userinput: str, source_lang: str, target_lang: str):
source_sents = [userinput]
source_sents = [sent.strip() for sent in source_sents]
target_prefix = [[target_lang]] * len(source_sents)
# Subword the source sentences
source_sents_subworded = sp.encode(source_sents, out_type=str)
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
# Translate the source sentences
translations = translator.translate_batch(source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix)
translations = [translation[0]['tokens'] for translation in translations]
# Desubword the target sentences
translations_desubword = sp.decode(translations)
translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
# Return the source language and the translated text
return translations_desubword[0]
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
return HTMLResponse(content=open(os.path.join(templates_folder, "translator.html"), "r").read(), status_code=200)
@app.post("/translate_detect/")
async def translate_detect_endpoint(request: Request):
datad = await request.json()
userinputd = datad.get("userinput")
target_langd = datad.get("target_lang")
dfull_date = get_time()[0]
print(f"\nrequest: {dfull_date}\nTarget Language; {target_langd}, User Input: {userinputd}\n")
if not userinputd or not target_langd:
raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.")
source_langd, translated_text_d = translate_detect(userinputd, target_langd)
dcurrent_time = get_time()[1]
print(f"\nresponse: {dcurrent_time}; ... Source_language: {source_langd}, Translated Text: {translated_text_d}\n\n")
return {
"source_language": source_langd,
"translated_text": translated_text_d[0],
}
@app.post("/translate_enter/")
async def translate_enter_endpoint(request: Request):
datae = await request.json()
userinpute = datae.get("userinput")
source_lange = datae.get("source_lang")
target_lange = datae.get("target_lang")
efull_date = get_time()[0]
print(f"\nrequest: {efull_date}\nSource_language; {source_lange}, Target Language; {target_lange}, User Input: {userinpute}\n")
if not userinpute or not target_lange:
raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.")
translated_text_e = translate_enter(userinpute, source_lange, target_lange)
ecurrent_time = get_time()[1]
print(f"\nresponse: {ecurrent_time}; ... Translated Text: {translated_text_e}\n\n")
return {
"translated_text": translated_text_e,
}
print("\nAPI starting .......\n")
|