kamau1 commited on
Commit
1c08fbd
1 Parent(s): b20ae17

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +170 -2
main.py CHANGED
@@ -1,3 +1,171 @@
1
- import subprocess
 
 
 
 
 
2
 
3
- subprocess.run("uvicorn modules.app:app --host 0.0.0.0 --port 7860", shell=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Created By Lewis Kamau Kimaru
3
+ Sema translator api backend
4
+ January 2024
5
+ Docker deployment
6
+ '''
7
 
8
+ from fastapi import FastAPI, HTTPException, Request
9
+ from fastapi.middleware.cors import CORSMiddleware
10
+ from fastapi.responses import HTMLResponse
11
+ import gradio as gr
12
+ import ctranslate2
13
+ import sentencepiece as spm
14
+ import fasttext
15
+ import uvicorn
16
+ import pytz
17
+ from datetime import datetime
18
+ import os
19
+
20
+ app = FastAPI()
21
+
22
+ fasttext.FastText.eprint = lambda x: None
23
+
24
+ # Get time of request
25
+
26
+ def get_time():
27
+ nairobi_timezone = pytz.timezone('Africa/Nairobi')
28
+ current_time_nairobi = datetime.now(nairobi_timezone)
29
+
30
+ curr_day = current_time_nairobi.strftime('%A')
31
+ curr_date = current_time_nairobi.strftime('%Y-%m-%d')
32
+ curr_time = current_time_nairobi.strftime('%H:%M:%S')
33
+
34
+ full_date = f"{curr_day} | {curr_date} | {curr_time}"
35
+ return full_date, curr_time
36
+
37
+ # Load the model and tokenizer ..... only once!
38
+ beam_size = 1 # change to a smaller value for faster inference
39
+ device = "cpu" # or "cuda"
40
+
41
+ # Language Prediction model
42
+ print("\nimporting Language Prediction model")
43
+ lang_model_file = "lid218e.bin"
44
+ lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file)
45
+ lang_model = fasttext.load_model(lang_model_full_path)
46
+
47
+
48
+ # Load the source SentencePiece model
49
+ print("\nimporting SentencePiece model")
50
+ sp_model_file = "spm.model"
51
+ sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file)
52
+ sp = spm.SentencePieceProcessor()
53
+ sp.load(sp_model_full_path)
54
+
55
+ # Import The Translator model
56
+ print("\nimporting Translator model")
57
+ ct_model_file = "sematrans-3.3B"
58
+ ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file)
59
+ translator = ctranslate2.Translator(ct_model_full_path, device)
60
+
61
+ print('\nDone importing models\n')
62
+
63
+
64
+ def translate_detect(userinput: str, target_lang: str):
65
+ source_sents = [userinput]
66
+ source_sents = [sent.strip() for sent in source_sents]
67
+ target_prefix = [[target_lang]] * len(source_sents)
68
+
69
+ # Predict the source language
70
+ predictions = lang_model.predict(source_sents[0], k=1)
71
+ source_lang = predictions[0][0].replace('__label__', '')
72
+
73
+ # Subword the source sentences
74
+ source_sents_subworded = sp.encode(source_sents, out_type=str)
75
+ source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
76
+
77
+ # Translate the source sentences
78
+ translations = translator.translate_batch(
79
+ source_sents_subworded,
80
+ batch_type="tokens",
81
+ max_batch_size=2024,
82
+ beam_size=beam_size,
83
+ target_prefix=target_prefix,
84
+ )
85
+ translations = [translation[0]['tokens'] for translation in translations]
86
+
87
+ # Desubword the target sentences
88
+ translations_desubword = sp.decode(translations)
89
+ translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
90
+
91
+ # Return the source language and the translated text
92
+ return source_lang, translations_desubword
93
+
94
+ def translate_enter(userinput: str, source_lang: str, target_lang: str):
95
+ source_sents = [userinput]
96
+ source_sents = [sent.strip() for sent in source_sents]
97
+ target_prefix = [[target_lang]] * len(source_sents)
98
+
99
+ # Subword the source sentences
100
+ source_sents_subworded = sp.encode(source_sents, out_type=str)
101
+ source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
102
+
103
+ # Translate the source sentences
104
+ translations = translator.translate_batch(source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix)
105
+ translations = [translation[0]['tokens'] for translation in translations]
106
+
107
+ # Desubword the target sentences
108
+ translations_desubword = sp.decode(translations)
109
+ translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
110
+
111
+ # Return the source language and the translated text
112
+ return translations_desubword[0]
113
+
114
+
115
+ @app.get("/")
116
+ async def read_root():
117
+ gradio_interface = """
118
+ <html>
119
+ <meta name="viewport" content="width=device-width, height=device-height, initial-scale=1.0">
120
+ <head>
121
+ <title>Sema</title>
122
+ </head>
123
+ <frameset>
124
+ <frame src=https://kamau1-semaapi-frontend.hf.space/?embedded=true'>
125
+ </frameset>
126
+ </html>
127
+ """
128
+ return HTMLResponse(content=gradio_interface)
129
+
130
+
131
+ @app.post("/translate_detect/")
132
+ async def translate_detect_endpoint(request: Request):
133
+ datad = await request.json()
134
+ userinputd = datad.get("userinput")
135
+ target_langd = datad.get("target_lang")
136
+ dfull_date = get_time()[0]
137
+ print(f"\nrequest: {dfull_date}\nTarget Language; {target_langd}, User Input: {userinputd}\n")
138
+
139
+ if not userinputd or not target_langd:
140
+ raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.")
141
+
142
+ source_langd, translated_text_d = translate_detect(userinputd, target_langd)
143
+ dcurrent_time = get_time()[1]
144
+ print(f"\nresponse: {dcurrent_time}; ... Source_language: {source_langd}, Translated Text: {translated_text_d}\n\n")
145
+ return {
146
+ "source_language": source_langd,
147
+ "translated_text": translated_text_d[0],
148
+ }
149
+
150
+
151
+ @app.post("/translate_enter/")
152
+ async def translate_enter_endpoint(request: Request):
153
+ datae = await request.json()
154
+ userinpute = datae.get("userinput")
155
+ source_lange = datae.get("source_lang")
156
+ target_lange = datae.get("target_lang")
157
+ efull_date = get_time()[0]
158
+ print(f"\nrequest: {efull_date}\nSource_language; {source_lange}, Target Language; {target_lange}, User Input: {userinpute}\n")
159
+
160
+ if not userinpute or not target_lange:
161
+ raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.")
162
+
163
+ translated_text_e = translate_enter(userinpute, source_lange, target_lange)
164
+ ecurrent_time = get_time()[1]
165
+ print(f"\nresponse: {ecurrent_time}; ... Translated Text: {translated_text_e}\n\n")
166
+ return {
167
+ "translated_text": translated_text_e,
168
+ }
169
+
170
+
171
+ print("\nAPI starting .......\n")