''' Created By Lewis Kamau Kimaru Sema translator api backend January 2024 Docker deployment ''' from fastapi import FastAPI, HTTPException, Request from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import HTMLResponse import ctranslate2 import sentencepiece as spm import fasttext import uvicorn import pytz from datetime import datetime import os app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=False, allow_methods=["*"], allow_headers=["*"], ) fasttext.FastText.eprint = lambda x: None # User interface templates_folder = os.path.join(os.path.dirname(__file__), "templates") # Get time of request def get_time(): nairobi_timezone = pytz.timezone('Africa/Nairobi') current_time_nairobi = datetime.now(nairobi_timezone) curr_day = current_time_nairobi.strftime('%A') curr_date = current_time_nairobi.strftime('%Y-%m-%d') curr_time = current_time_nairobi.strftime('%H:%M:%S') full_date = f"{curr_day} | {curr_date} | {curr_time}" return full_date, curr_time # Load the model and tokenizer ..... only once! beam_size = 1 # change to a smaller value for faster inference device = "cpu" # or "cuda" # Language Prediction model print("\nimporting Language Prediction model") lang_model_file = "lid218e.bin" lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file) lang_model = fasttext.load_model(lang_model_full_path) # Load the source SentencePiece model print("\nimporting SentencePiece model") sp_model_file = "spm.model" sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file) sp = spm.SentencePieceProcessor() sp.load(sp_model_full_path) # Import The Translator model print("\nimporting Translator model") ct_model_file = "sematrans-3.3B" ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file) translator = ctranslate2.Translator(ct_model_full_path, device) print('\nDone importing models\n') def translate_detect(userinput: str, target_lang: str): source_sents = [userinput] source_sents = [sent.strip() for sent in source_sents] target_prefix = [[target_lang]] * len(source_sents) # Predict the source language predictions = lang_model.predict(source_sents[0], k=1) source_lang = predictions[0][0].replace('__label__', '') # Subword the source sentences source_sents_subworded = sp.encode(source_sents, out_type=str) source_sents_subworded = [[source_lang] + sent + [""] for sent in source_sents_subworded] # Translate the source sentences translations = translator.translate_batch( source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix, ) translations = [translation[0]['tokens'] for translation in translations] # Desubword the target sentences translations_desubword = sp.decode(translations) translations_desubword = [sent[len(target_lang):] for sent in translations_desubword] # Return the source language and the translated text return source_lang, translations_desubword def translate_enter(userinput: str, source_lang: str, target_lang: str): source_sents = [userinput] source_sents = [sent.strip() for sent in source_sents] target_prefix = [[target_lang]] * len(source_sents) # Subword the source sentences source_sents_subworded = sp.encode(source_sents, out_type=str) source_sents_subworded = [[source_lang] + sent + [""] for sent in source_sents_subworded] # Translate the source sentences translations = translator.translate_batch(source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix) translations = [translation[0]['tokens'] for translation in translations] # Desubword the target sentences translations_desubword = sp.decode(translations) translations_desubword = [sent[len(target_lang):] for sent in translations_desubword] # Return the source language and the translated text return translations_desubword[0] @app.get("/", response_class=HTMLResponse) async def read_root(request: Request): return HTMLResponse(content=open(os.path.join(templates_folder, "translator.html"), "r").read(), status_code=200) @app.post("/translate_detect/") async def translate_detect_endpoint(request: Request): datad = await request.json() userinputd = datad.get("userinput") target_langd = datad.get("target_lang") dfull_date = get_time()[0] print(f"\nrequest: {dfull_date}\nTarget Language; {target_langd}, User Input: {userinputd}\n") if not userinputd or not target_langd: raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.") source_langd, translated_text_d = translate_detect(userinputd, target_langd) dcurrent_time = get_time()[1] print(f"\nresponse: {dcurrent_time}; ... Source_language: {source_langd}, Translated Text: {translated_text_d}\n\n") return { "source_language": source_langd, "translated_text": translated_text_d[0], } @app.post("/translate_enter/") async def translate_enter_endpoint(request: Request): datae = await request.json() userinpute = datae.get("userinput") source_lange = datae.get("source_lang") target_lange = datae.get("target_lang") efull_date = get_time()[0] print(f"\nrequest: {efull_date}\nSource_language; {source_lange}, Target Language; {target_lange}, User Input: {userinpute}\n") if not userinpute or not target_lange: raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.") translated_text_e = translate_enter(userinpute, source_lange, target_lange) ecurrent_time = get_time()[1] print(f"\nresponse: {ecurrent_time}; ... Translated Text: {translated_text_e}\n\n") return { "translated_text": translated_text_e, } print("\nAPI starting .......\n")