Spaces:
Runtime error
Runtime error
import torch | |
from diffusers.models.attention_processor import LoRAAttnProcessor | |
def add_tokens(tokenizer, text_encoder, placeholder_token, num_vec_per_token=1, initializer_token=None): | |
""" | |
Add tokens to the tokenizer and set the initial value of token embeddings | |
""" | |
tokenizer.add_placeholder_tokens(placeholder_token, num_vec_per_token=num_vec_per_token) | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
token_embeds = text_encoder.get_input_embeddings().weight.data | |
placeholder_token_ids = tokenizer.encode(placeholder_token, add_special_tokens=False) | |
if initializer_token: | |
token_ids = tokenizer.encode(initializer_token, add_special_tokens=False) | |
for i, placeholder_token_id in enumerate(placeholder_token_ids): | |
token_embeds[placeholder_token_id] = token_embeds[token_ids[i * len(token_ids) // num_vec_per_token]] | |
else: | |
for i, placeholder_token_id in enumerate(placeholder_token_ids): | |
token_embeds[placeholder_token_id] = torch.randn_like(token_embeds[placeholder_token_id]) | |
return placeholder_token_ids | |
def tokenize_prompt(tokenizer, prompt, replace_token=False): | |
text_inputs = tokenizer( | |
prompt, | |
replace_token=replace_token, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
return text_input_ids | |
def get_processor(self, return_deprecated_lora: bool = False): | |
r""" | |
Get the attention processor in use. | |
Args: | |
return_deprecated_lora (`bool`, *optional*, defaults to `False`): | |
Set to `True` to return the deprecated LoRA attention processor. | |
Returns: | |
"AttentionProcessor": The attention processor in use. | |
""" | |
if not return_deprecated_lora: | |
return self.processor | |
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible | |
# serialization format for LoRA Attention Processors. It should be deleted once the integration | |
# with PEFT is completed. | |
is_lora_activated = { | |
name: module.lora_layer is not None | |
for name, module in self.named_modules() | |
if hasattr(module, "lora_layer") | |
} | |
# 1. if no layer has a LoRA activated we can return the processor as usual | |
if not any(is_lora_activated.values()): | |
return self.processor | |
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj` | |
is_lora_activated.pop("add_k_proj", None) | |
is_lora_activated.pop("add_v_proj", None) | |
# 2. else it is not posssible that only some layers have LoRA activated | |
if not all(is_lora_activated.values()): | |
raise ValueError( | |
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" | |
) | |
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor | |
# non_lora_processor_cls_name = self.processor.__class__.__name__ | |
# lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) | |
hidden_size = self.inner_dim | |
# now create a LoRA attention processor from the LoRA layers | |
kwargs = { | |
"cross_attention_dim": self.cross_attention_dim, | |
"rank": self.to_q.lora_layer.rank, | |
"network_alpha": self.to_q.lora_layer.network_alpha, | |
"q_rank": self.to_q.lora_layer.rank, | |
"q_hidden_size": self.to_q.lora_layer.out_features, | |
"k_rank": self.to_k.lora_layer.rank, | |
"k_hidden_size": self.to_k.lora_layer.out_features, | |
"v_rank": self.to_v.lora_layer.rank, | |
"v_hidden_size": self.to_v.lora_layer.out_features, | |
"out_rank": self.to_out[0].lora_layer.rank, | |
"out_hidden_size": self.to_out[0].lora_layer.out_features, | |
} | |
if hasattr(self.processor, "attention_op"): | |
kwargs["attention_op"] = self.processor.attention_op | |
lora_processor = LoRAAttnProcessor(hidden_size, **kwargs) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
return lora_processor | |
def get_attn_processors(self): | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = get_processor(module, return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |