Spaces:
Runtime error
Runtime error
File size: 8,186 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for utils."""
import itertools
import numpy as np
import tensorflow as tf
from deeplab2.model import utils
class UtilsTest(tf.test.TestCase):
def test_resize_logits_graph_mode(self):
@tf.function
def graph_mode_wrapper(*args):
return utils.resize_and_rescale_offsets(*args)
resized_logits = graph_mode_wrapper(tf.ones((2, 33, 33, 2)), [65, 65])
resized_logits_2 = graph_mode_wrapper(tf.ones((2, 33, 33, 2)), [33, 33])
self.assertListEqual(resized_logits.shape.as_list(), [2, 65, 65, 2])
self.assertListEqual(resized_logits_2.shape.as_list(), [2, 33, 33, 2])
def test_resize_logits(self):
offset_logits = tf.convert_to_tensor([[[[2, 2], [2, 1], [2, 0]],
[[1, 2], [1, 1], [1, 0]],
[[0, 2], [0, 1], [0, 0]]]],
dtype=tf.float32)
target_size = [5, 5]
resized_logits = utils.resize_and_rescale_offsets(offset_logits,
target_size)
self.assertListEqual(resized_logits.shape.as_list(), [1, 5, 5, 2])
for i in range(5):
for j in range(5):
np.testing.assert_array_almost_equal(resized_logits.numpy()[0, i, j, :],
[4 - i, 4 - j])
def test_zero_padding(self):
input_tensor = tf.ones(shape=(2, 5, 5, 2))
input_tensor_2 = tf.ones(shape=(5, 5, 2))
padded_tensor = utils.add_zero_padding(input_tensor, kernel_size=5, rank=4)
padded_tensor_2 = utils.add_zero_padding(
input_tensor_2, kernel_size=5, rank=3)
self.assertEqual(tf.reduce_sum(padded_tensor), 100)
self.assertEqual(tf.reduce_sum(padded_tensor_2), 50)
self.assertListEqual(padded_tensor.shape.as_list(), [2, 9, 9, 2])
self.assertListEqual(padded_tensor_2.shape.as_list(), [9, 9, 2])
# Count zero elements.
self.assertEqual(tf.reduce_sum(padded_tensor-1), -224)
self.assertEqual(tf.reduce_sum(padded_tensor_2-1), -112)
def test_resize_function_error(self):
input_tensor = tf.random.uniform(shape=(2, 10, 10, 2))
with self.assertRaises(ValueError):
_ = utils.resize_align_corners(input_tensor, [19, 19],
method='not_a_valid_method')
def test_resize_function_shape(self):
input_tensor = tf.random.uniform(shape=(2, 10, 10, 2))
result_tensor = utils.resize_align_corners(input_tensor, [19, 19])
self.assertListEqual(result_tensor.shape.as_list(), [2, 19, 19, 2])
def test_resize_graph_mode(self):
@tf.function
def graph_mode_wrapper(*args):
return utils.resize_align_corners(*args)
result_tensor = graph_mode_wrapper(tf.ones((2, 33, 33, 2)), [65, 65])
result_tensor_2 = graph_mode_wrapper(tf.ones((2, 33, 33, 2)), [33, 33])
self.assertListEqual(result_tensor.shape.as_list(), [2, 65, 65, 2])
self.assertListEqual(result_tensor_2.shape.as_list(), [2, 33, 33, 2])
def test_resize_function_constant_input(self):
input_tensor = tf.ones(shape=(2, 10, 10, 2))
result_tensor = utils.resize_align_corners(input_tensor, [19, 19])
self.assertTrue(tf.keras.backend.all(result_tensor == 1))
def test_resize_function_invalid_rank(self):
input_tensor = tf.keras.Input(shape=(None, 2))
with self.assertRaisesRegex(
ValueError, 'should have rank of 4'):
_ = utils.resize_align_corners(input_tensor, [19, 19])
def test_resize_function_v1_compatibility(self):
# Test for odd and even input, and output shapes.
input_shapes = [(2, 10, 10, 3), (2, 11, 11, 3)]
target_sizes = [[19, 19], [20, 20]]
methods = ['bilinear', 'nearest']
for shape, target_size, method in itertools.product(input_shapes,
target_sizes, methods):
input_tensor = tf.random.uniform(shape=shape)
result_tensor = utils.resize_align_corners(input_tensor, target_size,
method)
if method == 'bilinear':
expected_tensor = tf.compat.v1.image.resize(
input_tensor,
target_size,
align_corners=True,
method=tf.compat.v1.image.ResizeMethod.BILINEAR)
else:
expected_tensor = tf.compat.v1.image.resize(
input_tensor,
target_size,
align_corners=True,
method=tf.compat.v1.image.ResizeMethod.NEAREST_NEIGHBOR)
np.testing.assert_equal(result_tensor.numpy(), expected_tensor.numpy())
def test_resize_bilinear_v1_compatibility(self):
# Test for odd and even input, and output shapes.
input_shapes = [(2, 10, 10, 3), (2, 11, 11, 3), (1, 11, 11, 64)]
target_sizes = [[19, 19], [20, 20], [10, 10]]
for shape, target_size in itertools.product(input_shapes, target_sizes):
input_tensor = tf.random.uniform(shape=shape)
result_tensor = utils.resize_bilinear(input_tensor, target_size)
expected_tensor = tf.compat.v1.image.resize(
input_tensor,
target_size,
align_corners=True,
method=tf.compat.v1.image.ResizeMethod.BILINEAR)
self.assertAllClose(result_tensor, expected_tensor)
def test_make_divisible(self):
value, divisor, min_value = 17, 2, 8
new_value = utils.make_divisible(value, divisor, min_value)
self.assertAllEqual(new_value, 18)
value, divisor, min_value = 17, 2, 22
new_value = utils.make_divisible(value, divisor, min_value)
self.assertAllEqual(new_value, 22)
def test_transpose_and_reshape_for_attention_operation(self):
images = tf.zeros([2, 8, 11, 2])
output = utils.transpose_and_reshape_for_attention_operation(images)
self.assertEqual(output.get_shape().as_list(), [2, 11, 16])
def test_reshape_and_transpose_for_attention_operation(self):
images = tf.zeros([2, 11, 16])
output = utils.reshape_and_transpose_for_attention_operation(images,
num_heads=8)
self.assertEqual(output.get_shape().as_list(), [2, 8, 11, 2])
def test_safe_setattr_raise_error(self):
layer = tf.keras.layers.Conv2D(1, 1)
with self.assertRaises(ValueError):
utils.safe_setattr(layer, 'filters', 3)
utils.safe_setattr(layer, 'another_conv', tf.keras.layers.Conv2D(1, 1))
with self.assertRaises(ValueError):
utils.safe_setattr(layer, 'another_conv', tf.keras.layers.Conv2D(1, 1))
def test_pad_sequence_with_none(self):
sequence = [1, 2]
output_2 = utils.pad_sequence_with_none(sequence, target_length=2)
self.assertEqual(output_2, [1, 2])
output_3 = utils.pad_sequence_with_none(sequence, target_length=3)
self.assertEqual(output_3, [1, 2, None])
def test_strided_downsample(self):
inputs = tf.zeros([2, 11, 11])
output = utils.strided_downsample(inputs, target_size=[6, 6])
self.assertEqual(output.get_shape().as_list(), [2, 6, 6])
def test_get_stuff_class_ids(self):
# num_thing_stuff_classes does not include `void` class.
num_thing_stuff_classes = 5
thing_class_ids = [3, 4]
void_label_list = [5, 0]
expected_stuff_class_ids_list = [
[0, 1, 2], [1, 2, 5]
]
for void_label, expected_stuff_class_ids in zip(
void_label_list, expected_stuff_class_ids_list):
stuff_class_ids = utils.get_stuff_class_ids(
num_thing_stuff_classes, thing_class_ids, void_label)
np.testing.assert_equal(stuff_class_ids,
expected_stuff_class_ids)
if __name__ == '__main__':
tf.test.main()
|