Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
r"""Converts Depth-aware Video Panoptic Segmentation (DVPS) data to sharded TFRecord file format with tf.train.Example protos. | |
The expected directory structure of the DVPS dataset should be as follows: | |
+ DVPS_ROOT | |
+ train | val | |
- ground-truth depth maps (*_depth.png) | |
- ground-truth panoptic maps (*_gtFine_instanceTrainIds.png) | |
- images (*_leftImg8bit.png) | |
+ test | |
- images (*_leftImg8bit.png) | |
The ground-truth panoptic map is encoded as the following in PNG format: | |
panoptic ID = semantic ID * panoptic divisor (1000) + instance ID | |
The output Example proto contains the following fields: | |
image/encoded: encoded image content. | |
image/filename: image filename. | |
image/format: image file format. | |
image/height: image height. | |
image/width: image width. | |
image/channels: image channels. | |
image/segmentation/class/encoded: encoded panoptic segmentation content. | |
image/segmentation/class/format: segmentation encoding format. | |
image/depth/encoded: encoded depth content. | |
image/depth/format: depth encoding format. | |
video/sequence_id: sequence ID of the frame. | |
video/frame_id: ID of the frame of the video sequence. | |
next_image/encoded: encoded next-frame image content. | |
next_image/segmentation/class/encoded: encoded panoptic segmentation content | |
of the next frame. | |
The output panoptic segmentation map stored in the Example will be the raw bytes | |
of an int32 panoptic map, where each pixel is assigned to a panoptic ID: | |
panoptic ID = semantic ID * panoptic divisor (1000) + instance ID | |
where semantic ID will be the same with `category_id` for each segment, and | |
ignore label for pixels not belong to any segment. | |
The depth map will be the raw bytes of an int32 depth map, where each pixel is: | |
depth map = depth ground truth * 256 | |
Example to run the scipt: | |
python deeplab2/data/build_dvps_data.py \ | |
--dvps_root=${DVPS_ROOT} \ | |
--output_dir=${OUTPUT_DIR} | |
""" | |
import math | |
import os | |
from typing import Sequence, Tuple, Optional | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
from deeplab2.data import data_utils | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string('dvps_root', None, 'DVPS dataset root folder.') | |
flags.DEFINE_string('output_dir', None, | |
'Path to save converted TFRecord of TensorFlow examples.') | |
_PANOPTIC_DEPTH_FORMAT = 'raw' | |
_NUM_SHARDS = 1000 | |
_TF_RECORD_PATTERN = '%s-%05d-of-%05d.tfrecord' | |
_IMAGE_SUFFIX = '_leftImg8bit.png' | |
_LABEL_SUFFIX = '_gtFine_instanceTrainIds.png' | |
_DEPTH_SUFFIX = '_depth.png' | |
def _get_image_info_from_path(image_path: str) -> Tuple[str, str]: | |
"""Gets image info including sequence id and image id. | |
Image path is in the format of '{sequence_id}_{image_id}_*.png', | |
where `sequence_id` refers to the id of the video sequence, and `image_id` is | |
the id of the image in the video sequence. | |
Args: | |
image_path: Absolute path of the image. | |
Returns: | |
sequence_id, and image_id as strings. | |
""" | |
image_path = os.path.basename(image_path) | |
return tuple(image_path.split('_')[:2]) | |
def _get_images(dvps_root: str, dataset_split: str) -> Sequence[str]: | |
"""Gets files for the specified data type and dataset split. | |
Args: | |
dvps_root: String, path to DVPS dataset root folder. | |
dataset_split: String, dataset split ('train', 'val', 'test'). | |
Returns: | |
A list of sorted file names under dvps_root and dataset_split. | |
""" | |
search_files = os.path.join(dvps_root, dataset_split, '*' + _IMAGE_SUFFIX) | |
filenames = tf.io.gfile.glob(search_files) | |
return sorted(filenames) | |
def _decode_panoptic_or_depth_map(map_path: str) -> Optional[str]: | |
"""Decodes the panoptic or depth map from encoded image file. | |
Args: | |
map_path: Path to the panoptic or depth map image file. | |
Returns: | |
Panoptic or depth map as an encoded int32 numpy array bytes or None if not | |
existing. | |
""" | |
if not tf.io.gfile.exists(map_path): | |
return None | |
with tf.io.gfile.GFile(map_path, 'rb') as f: | |
decoded_map = np.array(Image.open(f)).astype(np.int32) | |
return decoded_map.tobytes() | |
def _get_next_frame_path(image_path: str) -> Optional[str]: | |
"""Gets next frame path. | |
If not exists, return None. | |
The files are named {sequence_id}_{frame_id}*. To get the path of the next | |
frame, this function keeps sequence_id and increase the frame_id by 1. It | |
finds all the files matching this pattern, and returns the corresponding | |
file path matching the input type. | |
Args: | |
image_path: String, path to the image. | |
Returns: | |
A string for the path of the next frame of the given image path or None if | |
the given image path is the last frame of the sequence. | |
""" | |
sequence_id, image_id = _get_image_info_from_path(image_path) | |
next_image_id = '{:06d}'.format(int(image_id) + 1) | |
next_image_name = sequence_id + '_' + next_image_id | |
next_image_path = None | |
for suffix in (_IMAGE_SUFFIX, _LABEL_SUFFIX): | |
if image_path.endswith(suffix): | |
next_image_path = os.path.join( | |
os.path.dirname(image_path), next_image_name + suffix) | |
if not tf.io.gfile.exists(next_image_path): | |
return None | |
return next_image_path | |
def _create_tfexample(image_path: str, panoptic_map_path: str, | |
depth_map_path: str) -> Optional[tf.train.Example]: | |
"""Creates a TF example for each image. | |
Args: | |
image_path: Path to the image. | |
panoptic_map_path: Path to the panoptic map (as an image file). | |
depth_map_path: Path to the depth map (as an image file). | |
Returns: | |
TF example proto. | |
""" | |
with tf.io.gfile.GFile(image_path, 'rb') as f: | |
image_data = f.read() | |
label_data = _decode_panoptic_or_depth_map(panoptic_map_path) | |
depth_data = _decode_panoptic_or_depth_map(depth_map_path) | |
image_name = os.path.basename(image_path) | |
image_format = image_name.split('.')[1].lower() | |
sequence_id, frame_id = _get_image_info_from_path(image_path) | |
next_image_data = None | |
next_label_data = None | |
# Next image. | |
next_image_path = _get_next_frame_path(image_path) | |
# If there is no next image, no examples will be created. | |
if next_image_path is None: | |
return None | |
with tf.io.gfile.GFile(next_image_path, 'rb') as f: | |
next_image_data = f.read() | |
# Next panoptic map. | |
next_panoptic_map_path = _get_next_frame_path(panoptic_map_path) | |
next_label_data = _decode_panoptic_or_depth_map(next_panoptic_map_path) | |
return data_utils.create_video_and_depth_tfexample( | |
image_data, | |
image_format, | |
image_name, | |
label_format=_PANOPTIC_DEPTH_FORMAT, | |
sequence_id=sequence_id, | |
image_id=frame_id, | |
label_data=label_data, | |
next_image_data=next_image_data, | |
next_label_data=next_label_data, | |
depth_data=depth_data, | |
depth_format=_PANOPTIC_DEPTH_FORMAT) | |
def _convert_dataset(dvps_root: str, dataset_split: str, output_dir: str): | |
"""Converts the specified dataset split to TFRecord format. | |
Args: | |
dvps_root: String, path to DVPS dataset root folder. | |
dataset_split: String, the dataset split (e.g., train, val, test). | |
output_dir: String, directory to write output TFRecords to. | |
""" | |
image_files = _get_images(dvps_root, dataset_split) | |
num_images = len(image_files) | |
num_per_shard = int(math.ceil(len(image_files) / _NUM_SHARDS)) | |
for shard_id in range(_NUM_SHARDS): | |
shard_filename = _TF_RECORD_PATTERN % (dataset_split, shard_id, _NUM_SHARDS) | |
output_filename = os.path.join(output_dir, shard_filename) | |
with tf.io.TFRecordWriter(output_filename) as tfrecord_writer: | |
start_idx = shard_id * num_per_shard | |
end_idx = min((shard_id + 1) * num_per_shard, num_images) | |
for i in range(start_idx, end_idx): | |
image_path = image_files[i] | |
panoptic_map_path = image_path.replace(_IMAGE_SUFFIX, _LABEL_SUFFIX) | |
depth_map_path = image_path.replace(_IMAGE_SUFFIX, _DEPTH_SUFFIX) | |
example = _create_tfexample(image_path, panoptic_map_path, | |
depth_map_path) | |
if example is not None: | |
tfrecord_writer.write(example.SerializeToString()) | |
def main(argv: Sequence[str]) -> None: | |
if len(argv) > 1: | |
raise app.UsageError('Too many command-line arguments.') | |
tf.io.gfile.makedirs(FLAGS.output_dir) | |
for dataset_split in ('train', 'val', 'test'): | |
logging.info('Starts to processing DVPS dataset split %s.', dataset_split) | |
_convert_dataset(FLAGS.dvps_root, dataset_split, FLAGS.output_dir) | |
if __name__ == '__main__': | |
app.run(main) | |