Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
r"""Converts STEP (KITTI-STEP or MOTChallenge-STEP) data to sharded TFRecord file format with tf.train.Example protos. | |
The expected directory structure of the STEP dataset should be as follows: | |
+ {KITTI | MOTChallenge}-STEP | |
+ images | |
+ train | |
+ sequence_id | |
- *.{png|jpg} | |
... | |
+ val | |
+ test | |
+ panoptic_maps | |
+ train | |
+ sequence_id | |
- *.png | |
... | |
+ val | |
The ground-truth panoptic map is encoded as the following in PNG format: | |
R: semantic_id | |
G: instance_id // 256 | |
B: instance % 256 | |
See ./utils/create_step_panoptic_maps.py for more details of how we create the | |
panoptic map by merging semantic and instance maps. | |
The output Example proto contains the following fields: | |
image/encoded: encoded image content. | |
image/filename: image filename. | |
image/format: image file format. | |
image/height: image height. | |
image/width: image width. | |
image/channels: image channels. | |
image/segmentation/class/encoded: encoded panoptic segmentation content. | |
image/segmentation/class/format: segmentation encoding format. | |
video/sequence_id: sequence ID of the frame. | |
video/frame_id: ID of the frame of the video sequence. | |
The output panoptic segmentation map stored in the Example will be the raw bytes | |
of an int32 panoptic map, where each pixel is assigned to a panoptic ID: | |
panoptic ID = semantic ID * label divisor (1000) + instance ID | |
where semantic ID will be the same with `category_id` (use TrainId) for | |
each segment, and ignore label for pixels not belong to any segment. | |
The instance ID will be 0 for pixels belonging to | |
1) `stuff` class | |
2) `thing` class with `iscrowd` label | |
3) pixels with ignore label | |
and [1, label divisor) otherwise. | |
Example to run the scipt: | |
python deeplab2/data/build_step_data.py \ | |
--step_root=${STEP_ROOT} \ | |
--output_dir=${OUTPUT_DIR} | |
""" | |
import math | |
import os | |
from typing import Iterator, Sequence, Tuple, Optional | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
from deeplab2.data import data_utils | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string('step_root', None, 'STEP dataset root folder.') | |
flags.DEFINE_string('output_dir', None, | |
'Path to save converted TFRecord of TensorFlow examples.') | |
flags.DEFINE_bool( | |
'use_two_frames', False, 'Flag to separate between 1 frame ' | |
'per TFExample or 2 consecutive frames per TFExample.') | |
_PANOPTIC_LABEL_FORMAT = 'raw' | |
_NUM_SHARDS = 10 | |
_IMAGE_FOLDER_NAME = 'images' | |
_PANOPTIC_MAP_FOLDER_NAME = 'panoptic_maps' | |
_LABEL_MAP_FORMAT = 'png' | |
_INSTANCE_LABEL_DIVISOR = 1000 | |
_ENCODED_INSTANCE_LABEL_DIVISOR = 256 | |
_TF_RECORD_PATTERN = '%s-%05d-of-%05d.tfrecord' | |
_FRAME_ID_PATTERN = '%06d' | |
def _get_image_info_from_path(image_path: str) -> Tuple[str, str]: | |
"""Gets image info including sequence id and image id. | |
Image path is in the format of '.../split/sequence_id/image_id.png', | |
where `sequence_id` refers to the id of the video sequence, and `image_id` is | |
the id of the image in the video sequence. | |
Args: | |
image_path: Absolute path of the image. | |
Returns: | |
sequence_id, and image_id as strings. | |
""" | |
sequence_id = image_path.split('/')[-2] | |
image_id = os.path.splitext(os.path.basename(image_path))[0] | |
return sequence_id, image_id | |
def _get_images_per_shard(step_root: str, dataset_split: str, | |
sharded_by_sequence: bool) -> Iterator[Sequence[str]]: | |
"""Gets files for the specified data type and dataset split. | |
Args: | |
step_root: String, Path to STEP dataset root folder. | |
dataset_split: String, dataset split ('train', 'val', 'test') | |
sharded_by_sequence: Whether the images should be sharded by sequence or | |
even split. | |
Yields: | |
A list of sorted file lists. Each inner list corresponds to one shard and is | |
a list of files for this shard. | |
""" | |
search_files = os.path.join(step_root, _IMAGE_FOLDER_NAME, dataset_split, '*', | |
'*') | |
filenames = sorted(tf.io.gfile.glob(search_files)) | |
num_per_even_shard = int(math.ceil(len(filenames) / _NUM_SHARDS)) | |
sequence_ids = [os.path.basename(os.path.dirname(name)) for name in filenames] | |
images_per_shard = [] | |
for i, name in enumerate(filenames): | |
images_per_shard.append(name) | |
shard_data = (i == len(filenames) - 1) | |
# Sharded by sequence id. | |
shard_data = shard_data or (sharded_by_sequence and | |
sequence_ids[i + 1] != sequence_ids[i]) | |
# Sharded evenly. | |
shard_data = shard_data or (not sharded_by_sequence and | |
len(images_per_shard) == num_per_even_shard) | |
if shard_data: | |
yield images_per_shard | |
images_per_shard = [] | |
def _decode_panoptic_map(panoptic_map_path: str) -> Optional[str]: | |
"""Decodes the panoptic map from encoded image file. | |
Args: | |
panoptic_map_path: Path to the panoptic map image file. | |
Returns: | |
Panoptic map as an encoded int32 numpy array bytes or None if not existing. | |
""" | |
if not tf.io.gfile.exists(panoptic_map_path): | |
return None | |
with tf.io.gfile.GFile(panoptic_map_path, 'rb') as f: | |
panoptic_map = np.array(Image.open(f)).astype(np.int32) | |
semantic_map = panoptic_map[:, :, 0] | |
instance_map = ( | |
panoptic_map[:, :, 1] * _ENCODED_INSTANCE_LABEL_DIVISOR + | |
panoptic_map[:, :, 2]) | |
panoptic_map = semantic_map * _INSTANCE_LABEL_DIVISOR + instance_map | |
return panoptic_map.tobytes() | |
def _get_previous_frame_path(image_path: str) -> str: | |
"""Gets previous frame path. If not exists, duplicate it with image_path.""" | |
frame_id, frame_ext = os.path.splitext(os.path.basename(image_path)) | |
folder_dir = os.path.dirname(image_path) | |
prev_frame_id = _FRAME_ID_PATTERN % (int(frame_id) - 1) | |
prev_image_path = os.path.join(folder_dir, prev_frame_id + frame_ext) | |
# If first frame, duplicates it. | |
if not tf.io.gfile.exists(prev_image_path): | |
tf.compat.v1.logging.warn( | |
'Could not find previous frame %s of frame %d, duplicate the previous ' | |
'frame with the current frame.', prev_image_path, int(frame_id)) | |
prev_image_path = image_path | |
return prev_image_path | |
def _create_panoptic_tfexample(image_path: str, | |
panoptic_map_path: str, | |
use_two_frames: bool, | |
is_testing: bool = False) -> tf.train.Example: | |
"""Creates a TF example for each image. | |
Args: | |
image_path: Path to the image. | |
panoptic_map_path: Path to the panoptic map (as an image file). | |
use_two_frames: Whether to encode consecutive two frames in the Example. | |
is_testing: Whether it is testing data. If so, skip adding label data. | |
Returns: | |
TF example proto. | |
""" | |
with tf.io.gfile.GFile(image_path, 'rb') as f: | |
image_data = f.read() | |
label_data = None | |
if not is_testing: | |
label_data = _decode_panoptic_map(panoptic_map_path) | |
image_name = os.path.basename(image_path) | |
image_format = image_name.split('.')[1].lower() | |
sequence_id, frame_id = _get_image_info_from_path(image_path) | |
prev_image_data = None | |
prev_label_data = None | |
if use_two_frames: | |
# Previous image. | |
prev_image_path = _get_previous_frame_path(image_path) | |
with tf.io.gfile.GFile(prev_image_path, 'rb') as f: | |
prev_image_data = f.read() | |
# Previous panoptic map. | |
if not is_testing: | |
prev_panoptic_map_path = _get_previous_frame_path(panoptic_map_path) | |
prev_label_data = _decode_panoptic_map(prev_panoptic_map_path) | |
return data_utils.create_video_tfexample( | |
image_data, | |
image_format, | |
image_name, | |
label_format=_PANOPTIC_LABEL_FORMAT, | |
sequence_id=sequence_id, | |
image_id=frame_id, | |
label_data=label_data, | |
prev_image_data=prev_image_data, | |
prev_label_data=prev_label_data) | |
def _convert_dataset(step_root: str, | |
dataset_split: str, | |
output_dir: str, | |
use_two_frames: bool = False): | |
"""Converts the specified dataset split to TFRecord format. | |
Args: | |
step_root: String, Path to STEP dataset root folder. | |
dataset_split: String, the dataset split (e.g., train, val). | |
output_dir: String, directory to write output TFRecords to. | |
use_two_frames: Whether to encode consecutive two frames in the Example. | |
""" | |
# For val and test set, if we run with use_two_frames, we should create a | |
# sorted tfrecord per sequence. | |
create_tfrecord_per_sequence = ('train' | |
not in dataset_split) and use_two_frames | |
is_testing = 'test' in dataset_split | |
image_files_per_shard = list( | |
_get_images_per_shard(step_root, dataset_split, | |
sharded_by_sequence=create_tfrecord_per_sequence)) | |
num_shards = len(image_files_per_shard) | |
for shard_id, image_list in enumerate(image_files_per_shard): | |
shard_filename = _TF_RECORD_PATTERN % (dataset_split, shard_id, num_shards) | |
output_filename = os.path.join(output_dir, shard_filename) | |
with tf.io.TFRecordWriter(output_filename) as tfrecord_writer: | |
for image_path in image_list: | |
sequence_id, image_id = _get_image_info_from_path(image_path) | |
panoptic_map_path = os.path.join( | |
step_root, _PANOPTIC_MAP_FOLDER_NAME, dataset_split, sequence_id, | |
'%s.%s' % (image_id, _LABEL_MAP_FORMAT)) | |
example = _create_panoptic_tfexample(image_path, panoptic_map_path, | |
use_two_frames, is_testing) | |
tfrecord_writer.write(example.SerializeToString()) | |
def main(argv: Sequence[str]) -> None: | |
if len(argv) > 1: | |
raise app.UsageError('Too many command-line arguments.') | |
tf.io.gfile.makedirs(FLAGS.output_dir) | |
for dataset_split in ('train', 'val', 'test'): | |
logging.info('Starts to processing STEP dataset split %s.', dataset_split) | |
_convert_dataset(FLAGS.step_root, dataset_split, FLAGS.output_dir, | |
FLAGS.use_two_frames) | |
if __name__ == '__main__': | |
app.run(main) | |