Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for deeplab.""" | |
import os | |
import numpy as np | |
import tensorflow as tf | |
from google.protobuf import text_format | |
from deeplab2 import common | |
from deeplab2 import config_pb2 | |
from deeplab2.data import dataset | |
from deeplab2.model import deeplab | |
from deeplab2.model import utils | |
# resources dependency | |
_CONFIG_PATH = 'deeplab2/configs/example' | |
def _read_proto_file(filename, proto): | |
filename = filename # OSS: removed internal filename loading. | |
with tf.io.gfile.GFile(filename, 'r') as proto_file: | |
return text_format.ParseLines(proto_file, proto) | |
def _create_model_from_test_proto(file_name, | |
dataset_name='cityscapes_panoptic'): | |
proto_filename = os.path.join(_CONFIG_PATH, file_name) | |
config = _read_proto_file(proto_filename, config_pb2.ExperimentOptions()) | |
return deeplab.DeepLab(config, | |
dataset.MAP_NAME_TO_DATASET_INFO[dataset_name] | |
), config | |
class DeeplabTest(tf.test.TestCase): | |
def test_deeplab_with_deeplabv3(self): | |
model, experiment_options = _create_model_from_test_proto( | |
'example_cityscapes_deeplabv3.textproto') | |
train_crop_size = tuple( | |
experiment_options.train_dataset_options.crop_size) | |
input_tensor = tf.random.uniform( | |
shape=(2, train_crop_size[0], train_crop_size[1], 3)) | |
expected_semantic_shape = [ | |
2, train_crop_size[0], train_crop_size[1], | |
experiment_options.model_options.deeplab_v3.num_classes] | |
resulting_dict = model(input_tensor) | |
self.assertListEqual( | |
resulting_dict[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_semantic_shape) | |
num_params = np.sum( | |
[np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
self.assertEqual(num_params, 39638355) | |
def test_deeplab_with_deeplabv3plus(self): | |
model, experiment_options = _create_model_from_test_proto( | |
'example_cityscapes_deeplabv3plus.textproto') | |
train_crop_size = tuple( | |
experiment_options.train_dataset_options.crop_size) | |
input_tensor = tf.random.uniform( | |
shape=(2, train_crop_size[0], train_crop_size[1], 3)) | |
expected_semantic_shape = [ | |
2, train_crop_size[0], train_crop_size[1], | |
experiment_options.model_options.deeplab_v3_plus.num_classes] | |
resulting_dict = model(input_tensor) | |
self.assertListEqual( | |
resulting_dict[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_semantic_shape) | |
num_params = np.sum( | |
[np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
self.assertEqual(num_params, 39210947) | |
def test_deeplab_with_deeplabv3_mv3l(self): | |
model, experiment_options = _create_model_from_test_proto( | |
'example_cityscapes_deeplabv3_mv3l.textproto') | |
train_crop_size = tuple( | |
experiment_options.train_dataset_options.crop_size) | |
input_tensor = tf.random.uniform( | |
shape=(2, train_crop_size[0], train_crop_size[1], 3)) | |
expected_semantic_shape = [ | |
2, train_crop_size[0], train_crop_size[1], | |
experiment_options.model_options.deeplab_v3.num_classes] | |
resulting_dict = model(input_tensor) | |
self.assertListEqual( | |
resulting_dict[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_semantic_shape) | |
num_params = np.sum( | |
[np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
self.assertEqual(num_params, 11024963) | |
def test_deeplab_with_panoptic_deeplab(self): | |
model, experiment_options = _create_model_from_test_proto( | |
'example_cityscapes_panoptic_deeplab.textproto') | |
train_crop_size = tuple( | |
experiment_options.train_dataset_options.crop_size) | |
input_tensor = tf.random.uniform( | |
shape=(2, train_crop_size[0], train_crop_size[1], 3)) | |
expected_semantic_shape = [ | |
2, train_crop_size[0], train_crop_size[1], | |
experiment_options.model_options.panoptic_deeplab.semantic_head. | |
output_channels] | |
expected_instance_center_shape = [ | |
2, train_crop_size[0], train_crop_size[1]] | |
expected_instance_regression_shape = [ | |
2, train_crop_size[0], train_crop_size[1], 2] | |
resulting_dict = model(input_tensor) | |
self.assertListEqual( | |
resulting_dict[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_semantic_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_INSTANCE_SCORES_KEY].shape.as_list(), | |
expected_instance_center_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_CENTER_HEATMAP_KEY].shape.as_list(), | |
expected_instance_center_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_OFFSET_MAP_KEY].shape.as_list(), | |
expected_instance_regression_shape) | |
num_params = np.sum( | |
[np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
self.assertEqual(num_params, 54973702) | |
def test_deeplab_with_panoptic_deeplab_mv3l(self): | |
model, experiment_options = _create_model_from_test_proto( | |
'example_cityscapes_panoptic_deeplab_mv3l.textproto') | |
train_crop_size = tuple( | |
experiment_options.train_dataset_options.crop_size) | |
input_tensor = tf.random.uniform( | |
shape=(2, train_crop_size[0], train_crop_size[1], 3)) | |
expected_semantic_shape = [ | |
2, train_crop_size[0], train_crop_size[1], | |
experiment_options.model_options.panoptic_deeplab.semantic_head. | |
output_channels] | |
expected_instance_center_shape = [ | |
2, train_crop_size[0], train_crop_size[1]] | |
expected_instance_regression_shape = [ | |
2, train_crop_size[0], train_crop_size[1], 2] | |
resulting_dict = model(input_tensor) | |
self.assertListEqual( | |
resulting_dict[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_semantic_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_INSTANCE_SCORES_KEY].shape.as_list(), | |
expected_instance_center_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_CENTER_HEATMAP_KEY].shape.as_list(), | |
expected_instance_center_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_OFFSET_MAP_KEY].shape.as_list(), | |
expected_instance_regression_shape) | |
num_params = np.sum( | |
[np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
self.assertEqual(num_params, 18226550) | |
def test_deeplab_with_max_deeplab(self): | |
model, experiment_options = _create_model_from_test_proto( | |
'example_coco_max_deeplab.textproto', dataset_name='coco_panoptic') | |
train_crop_size = tuple( | |
experiment_options.train_dataset_options.crop_size) | |
input_tensor = tf.random.uniform( | |
shape=(2, train_crop_size[0], train_crop_size[1], 3)) | |
stride_4_size = utils.scale_mutable_sequence(train_crop_size, 0.25) | |
expected_semantic_shape = [ | |
2, stride_4_size[0], stride_4_size[1], experiment_options.model_options. | |
max_deeplab.auxiliary_semantic_head.output_channels] | |
expected_transformer_class_logits_shape = [ | |
2, 128, experiment_options.model_options. | |
max_deeplab.auxiliary_semantic_head.output_channels] | |
expected_pixel_space_normalized_feature_shape = [ | |
2, stride_4_size[0], stride_4_size[1], experiment_options.model_options. | |
max_deeplab.pixel_space_head.output_channels] | |
expected_pixel_space_mask_logits_shape = [ | |
2, stride_4_size[0], stride_4_size[1], 128] | |
resulting_dict = model(input_tensor, training=True) | |
self.assertListEqual( | |
resulting_dict[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_semantic_shape) | |
self.assertListEqual( | |
resulting_dict[ | |
common.PRED_TRANSFORMER_CLASS_LOGITS_KEY].shape.as_list(), | |
expected_transformer_class_logits_shape) | |
self.assertListEqual( | |
resulting_dict[ | |
common.PRED_PIXEL_SPACE_NORMALIZED_FEATURE_KEY].shape.as_list(), | |
expected_pixel_space_normalized_feature_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_PIXEL_SPACE_MASK_LOGITS_KEY].shape.as_list(), | |
expected_pixel_space_mask_logits_shape) | |
num_params = 0 | |
for v in model.trainable_weights: | |
params = np.prod(v.get_shape().as_list()) | |
# Exclude the auxiliary semantic head. | |
if 'auxiliary_semantic' not in v.name: | |
num_params += params | |
self.assertEqual(num_params, 61900200) # 61.9M in the paper. | |
def test_deeplab_errors(self): | |
proto_filename = os.path.join( | |
_CONFIG_PATH, 'example_cityscapes_panoptic_deeplab.textproto') | |
experiment_options = _read_proto_file(proto_filename, | |
config_pb2.ExperimentOptions()) | |
with self.subTest('ResNet error.'): | |
with self.assertRaises(ValueError): | |
experiment_options.model_options.backbone.name = 'not_a_resnet_backbone' | |
_ = deeplab.DeepLab(experiment_options, | |
dataset.CITYSCAPES_PANOPTIC_INFORMATION) | |
with self.subTest('Encoder family error.'): | |
with self.assertRaises(ValueError): | |
experiment_options.model_options.backbone.name = 'not_a_backbone' | |
_ = deeplab.DeepLab(experiment_options, | |
dataset.CITYSCAPES_PANOPTIC_INFORMATION) | |
def test_deeplab_set_pooling(self): | |
model, _ = _create_model_from_test_proto( | |
'example_cityscapes_panoptic_deeplab.textproto') | |
pool_size = (10, 10) | |
model.set_pool_size(pool_size) | |
self.assertTupleEqual( | |
model._decoder._semantic_decoder._aspp._aspp_pool._pool_size, pool_size) | |
self.assertTupleEqual( | |
model._decoder._instance_decoder._aspp._aspp_pool._pool_size, pool_size) | |
def test_deeplab_reset_pooling(self): | |
model, _ = _create_model_from_test_proto( | |
'example_cityscapes_panoptic_deeplab.textproto') | |
model.reset_pooling_layer() | |
pool_size = (None, None) | |
self.assertTupleEqual( | |
model._decoder._semantic_decoder._aspp._aspp_pool._pool_size, pool_size) | |
self.assertTupleEqual( | |
model._decoder._instance_decoder._aspp._aspp_pool._pool_size, pool_size) | |
if __name__ == '__main__': | |
tf.test.main() | |