Spaces:
Runtime error
Runtime error
File size: 6,983 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains functions to build encoder and decoder."""
import tensorflow as tf
from deeplab2 import config_pb2
from deeplab2.model.decoder import deeplabv3
from deeplab2.model.decoder import deeplabv3plus
from deeplab2.model.decoder import max_deeplab
from deeplab2.model.decoder import motion_deeplab_decoder
from deeplab2.model.decoder import panoptic_deeplab
from deeplab2.model.decoder import vip_deeplab_decoder
from deeplab2.model.encoder import axial_resnet_instances
from deeplab2.model.encoder import mobilenet
def create_encoder(backbone_options: config_pb2.ModelOptions.BackboneOptions,
bn_layer: tf.keras.layers.Layer,
conv_kernel_weight_decay: float = 0.0) -> tf.keras.Model:
"""Creates an encoder.
Args:
backbone_options: A proto config of type
config_pb2.ModelOptions.BackboneOptions.
bn_layer: A tf.keras.layers.Layer that computes the normalization.
conv_kernel_weight_decay: A float, the weight decay for convolution kernels.
Returns:
An instance of tf.keras.Model containing the encoder.
Raises:
ValueError: An error occurs when the specified encoder meta architecture is
not supported.
"""
if ('resnet' in backbone_options.name or
'swidernet' in backbone_options.name or
'axial_deeplab' in backbone_options.name or
'max_deeplab' in backbone_options.name):
return create_resnet_encoder(
backbone_options,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay)
elif 'mobilenet' in backbone_options.name:
return create_mobilenet_encoder(
backbone_options,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay)
raise ValueError('The specified encoder %s is not a valid encoder.' %
backbone_options.name)
def create_mobilenet_encoder(
backbone_options: config_pb2.ModelOptions.BackboneOptions,
bn_layer: tf.keras.layers.Layer,
conv_kernel_weight_decay: float = 0.0) -> tf.keras.Model:
"""Creates a MobileNet encoder specified by name.
Args:
backbone_options: A proto config of type
config_pb2.ModelOptions.BackboneOptions.
bn_layer: A tf.keras.layers.Layer that computes the normalization.
conv_kernel_weight_decay: A float, the weight decay for convolution kernels.
Returns:
An instance of tf.keras.Model containing the MobileNet encoder.
"""
if backbone_options.name.lower() == 'mobilenet_v3_large':
backbone = mobilenet.MobileNetV3Large
elif backbone_options.name.lower() == 'mobilenet_v3_small':
backbone = mobilenet.MobileNetV3Small
else:
raise ValueError('The specified encoder %s is not a valid encoder.' %
backbone_options.name)
assert backbone_options.use_squeeze_and_excite
assert backbone_options.drop_path_keep_prob == 1
assert backbone_options.use_sac_beyond_stride == -1
assert backbone_options.backbone_layer_multiplier == 1
return backbone(
output_stride=backbone_options.output_stride,
width_multiplier=backbone_options.backbone_width_multiplier,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay)
def create_resnet_encoder(
backbone_options: config_pb2.ModelOptions.BackboneOptions,
bn_layer: tf.keras.layers.Layer,
conv_kernel_weight_decay: float = 0.0) -> tf.keras.Model:
"""Creates a ResNet encoder specified by name.
Args:
backbone_options: A proto config of type
config_pb2.ModelOptions.BackboneOptions.
bn_layer: A tf.keras.layers.Layer that computes the normalization.
conv_kernel_weight_decay: A float, the weight decay for convolution kernels.
Returns:
An instance of tf.keras.Model containing the ResNet encoder.
"""
return axial_resnet_instances.get_model(
backbone_options.name,
output_stride=backbone_options.output_stride,
stem_width_multiplier=backbone_options.stem_width_multiplier,
width_multiplier=backbone_options.backbone_width_multiplier,
backbone_layer_multiplier=backbone_options.backbone_layer_multiplier,
block_group_config={
'use_squeeze_and_excite': backbone_options.use_squeeze_and_excite,
'drop_path_keep_prob': backbone_options.drop_path_keep_prob,
'drop_path_schedule': backbone_options.drop_path_schedule,
'use_sac_beyond_stride': backbone_options.use_sac_beyond_stride},
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay)
def create_decoder(model_options: config_pb2.ModelOptions,
bn_layer: tf.keras.layers.Layer,
ignore_label: int) -> tf.keras.Model:
"""Creates a DeepLab decoder.
Args:
model_options: A proto config of type config_pb2.ModelOptions.
bn_layer: A tf.keras.layers.Layer that computes the normalization.
ignore_label: An integer specifying the ignore label.
Returns:
An instance of tf.keras.layers.Layer containing the decoder.
Raises:
ValueError: An error occurs when the specified meta architecture is not
supported.
"""
meta_architecture = model_options.WhichOneof('meta_architecture')
if meta_architecture == 'deeplab_v3':
return deeplabv3.DeepLabV3(
model_options.decoder, model_options.deeplab_v3, bn_layer=bn_layer)
elif meta_architecture == 'deeplab_v3_plus':
return deeplabv3plus.DeepLabV3Plus(
model_options.decoder, model_options.deeplab_v3_plus, bn_layer=bn_layer)
elif meta_architecture == 'panoptic_deeplab':
return panoptic_deeplab.PanopticDeepLab(
model_options.decoder,
model_options.panoptic_deeplab,
bn_layer=bn_layer)
elif meta_architecture == 'motion_deeplab':
return motion_deeplab_decoder.MotionDeepLabDecoder(
model_options.decoder,
model_options.motion_deeplab,
bn_layer=bn_layer)
elif meta_architecture == 'vip_deeplab':
return vip_deeplab_decoder.ViPDeepLabDecoder(
model_options.decoder,
model_options.vip_deeplab,
bn_layer=bn_layer)
elif meta_architecture == 'max_deeplab':
return max_deeplab.MaXDeepLab(
model_options.decoder,
model_options.max_deeplab,
ignore_label=ignore_label,
bn_layer=bn_layer)
raise ValueError('The specified meta architecture %s is not implemented.' %
meta_architecture)
|