Spaces:
Runtime error
Runtime error
File size: 12,564 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains code to build a ViP-DeepLab decoder.
Reference:
- [ViP-DeepLab: Learning Visual Perception with Depth-aware Video
Panoptic Segmentation](https://arxiv.org/abs/2012.05258)
"""
import tensorflow as tf
from deeplab2 import common
from deeplab2.model.decoder import panoptic_deeplab
layers = tf.keras.layers
class ViPDeepLabDecoder(layers.Layer):
"""A ViP-DeepLab decoder layer.
This layer takes low- and high-level features as input and uses a dual-ASPP
and dual-decoder structure to aggregate features for semantic and instance
segmentation. On top of the decoders, three heads are used to predict semantic
segmentation, instance center probabilities, and instance center regression
per pixel. It also has a branch to predict the next-frame instance center
regression. Different from the ViP-DeepLab paper which uses Cascade-ASPP, this
reimplementation only uses ASPP.
"""
def __init__(self,
decoder_options,
vip_deeplab_options,
bn_layer=tf.keras.layers.BatchNormalization):
"""Initializes a ViP-DeepLab decoder.
Args:
decoder_options: Decoder options as defined in config_pb2.DecoderOptions.
vip_deeplab_options: Model options as defined in
config_pb2.ModelOptions.ViPDeeplabOptions.
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
"""
super(ViPDeepLabDecoder, self).__init__(name='ViPDeepLab')
low_level_feature_keys = [
item.feature_key for item in vip_deeplab_options.low_level
]
low_level_channels_project = [
item.channels_project for item in vip_deeplab_options.low_level
]
self._semantic_decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name=decoder_options.feature_key,
low_level_feature_names=low_level_feature_keys,
low_level_channels_project=low_level_channels_project,
aspp_output_channels=decoder_options.aspp_channels,
decoder_output_channels=decoder_options.decoder_channels,
atrous_rates=decoder_options.atrous_rates,
name='semantic_decoder',
aspp_use_only_1x1_proj_conv=decoder_options.aspp_use_only_1x1_proj_conv,
decoder_conv_type=decoder_options.decoder_conv_type,
bn_layer=bn_layer)
self._semantic_head = panoptic_deeplab.PanopticDeepLabSingleHead(
vip_deeplab_options.semantic_head.head_channels,
vip_deeplab_options.semantic_head.output_channels,
common.PRED_SEMANTIC_LOGITS_KEY,
name='semantic_head',
conv_type=vip_deeplab_options.semantic_head.head_conv_type,
bn_layer=bn_layer)
self._instance_decoder = None
self._instance_center_head = None
self._instance_regression_head = None
self._next_instance_decoder = None
self._next_instance_regression_head = None
if vip_deeplab_options.instance.enable:
if vip_deeplab_options.instance.low_level_override:
low_level_options = vip_deeplab_options.instance.low_level_override
else:
low_level_options = vip_deeplab_options.low_level
# If instance_decoder is set, use those options; otherwise reuse the
# architecture as defined for the semantic decoder.
if vip_deeplab_options.instance.HasField(
'instance_decoder_override'):
decoder_options = (vip_deeplab_options.instance
.instance_decoder_override)
low_level_feature_keys = [item.feature_key for item in low_level_options]
low_level_channels_project = [
item.channels_project for item in low_level_options
]
self._instance_decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name=decoder_options.feature_key,
low_level_feature_names=low_level_feature_keys,
low_level_channels_project=low_level_channels_project,
aspp_output_channels=decoder_options.aspp_channels,
decoder_output_channels=decoder_options.decoder_channels,
atrous_rates=decoder_options.atrous_rates,
name='instance_decoder',
aspp_use_only_1x1_proj_conv=(
decoder_options.aspp_use_only_1x1_proj_conv),
decoder_conv_type=decoder_options.decoder_conv_type,
bn_layer=bn_layer)
self._instance_center_head = panoptic_deeplab.PanopticDeepLabSingleHead(
vip_deeplab_options.instance.center_head.head_channels,
vip_deeplab_options.instance.center_head.output_channels,
common.PRED_CENTER_HEATMAP_KEY,
name='instance_center_head',
conv_type=(
vip_deeplab_options.instance.center_head.head_conv_type),
bn_layer=bn_layer)
self._instance_regression_head = (
panoptic_deeplab.PanopticDeepLabSingleHead(
vip_deeplab_options.instance.regression_head.head_channels,
vip_deeplab_options.instance.regression_head.output_channels,
common.PRED_OFFSET_MAP_KEY,
name='instance_regression_head',
conv_type=(
vip_deeplab_options.instance.regression_head.head_conv_type),
bn_layer=bn_layer))
if vip_deeplab_options.instance.HasField('next_regression_head'):
self._next_instance_decoder = (
panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name=decoder_options.feature_key,
low_level_feature_names=low_level_feature_keys,
low_level_channels_project=low_level_channels_project,
aspp_output_channels=decoder_options.aspp_channels,
decoder_output_channels=decoder_options.decoder_channels,
atrous_rates=decoder_options.atrous_rates,
name='next_instance_decoder',
aspp_use_only_1x1_proj_conv=(
decoder_options.aspp_use_only_1x1_proj_conv),
decoder_conv_type=decoder_options.decoder_conv_type,
bn_layer=bn_layer))
self._next_instance_regression_head = (
panoptic_deeplab.PanopticDeepLabSingleHead(
(vip_deeplab_options.instance.next_regression_head
.head_channels),
(vip_deeplab_options.instance.next_regression_head
.output_channels),
common.PRED_NEXT_OFFSET_MAP_KEY,
name='next_instance_regression_head',
conv_type=(vip_deeplab_options.instance.next_regression_head
.head_conv_type),
bn_layer=bn_layer))
self._next_high_level_feature_name = decoder_options.feature_key
def reset_pooling_layer(self):
"""Resets the ASPP pooling layers to global average pooling."""
self._semantic_decoder.reset_pooling_layer()
if self._instance_decoder is not None:
self._instance_decoder.reset_pooling_layer()
if self._next_instance_decoder is not None:
self._next_instance_decoder.reset_pooling_layer()
def set_pool_size(self, pool_size):
"""Sets the pooling size of the ASPP pooling layers.
Args:
pool_size: A tuple specifying the pooling size of the ASPP pooling layers.
"""
self._semantic_decoder.set_pool_size(pool_size)
if self._instance_decoder is not None:
self._instance_decoder.set_pool_size(pool_size)
if self._next_instance_decoder is not None:
self._next_instance_decoder.set_pool_size(pool_size)
def get_pool_size(self):
return self._semantic_decoder.get_pool_size()
@property
def checkpoint_items(self):
items = {
common.CKPT_SEMANTIC_DECODER:
self._semantic_decoder,
common.CKPT_SEMANTIC_HEAD_WITHOUT_LAST_LAYER:
self._semantic_head.conv_block,
common.CKPT_SEMANTIC_LAST_LAYER:
self._semantic_head.final_conv
}
if self._instance_decoder is not None:
instance_items = {
common.CKPT_INSTANCE_DECODER:
self._instance_decoder,
common.CKPT_INSTANCE_CENTER_HEAD_WITHOUT_LAST_LAYER:
self._instance_center_head.conv_block,
common.CKPT_INSTANCE_CENTER_HEAD_LAST_LAYER:
self._instance_center_head.final_conv,
common.CKPT_INSTANCE_REGRESSION_HEAD_WITHOUT_LAST_LAYER:
self._instance_regression_head.conv_block,
common.CKPT_INSTANCE_REGRESSION_HEAD_LAST_LAYER:
self._instance_regression_head.final_conv,
}
items.update(instance_items)
if self._next_instance_decoder is not None:
next_instance_items = {
common.CKPT_NEXT_INSTANCE_DECODER:
self._next_instance_decoder,
common.CKPT_NEXT_INSTANCE_REGRESSION_HEAD_WITHOUT_LAST_LAYER:
self._next_instance_regression_head.conv_block,
common.CKPT_NEXT_INSTANCE_REGRESSION_HEAD_LAST_LAYER:
self._next_instance_regression_head.final_conv,
}
items.update(next_instance_items)
return items
def call(self, features, next_features, training=False):
"""Performs a forward pass.
Args:
features: An input dict of tf.Tensor with shape [batch, height, width,
channels]. Different keys should point to different features extracted
by the encoder, e.g. low-level or high-level features.
next_features: An input dict of tf.Tensor similar to features. The
features are computed with the next frame as input.
training: A boolean flag indicating whether training behavior should be
used (default: False).
Returns:
A dictionary containing the results of the semantic segmentation head and
depending on the configuration also of the instance segmentation head.
"""
semantic_features = self._semantic_decoder(features, training=training)
results = self._semantic_head(semantic_features, training=training)
if self._instance_decoder is not None:
instance_features = self._instance_decoder(features, training=training)
instance_center_predictions = self._instance_center_head(
instance_features, training=training)
instance_regression_predictions = self._instance_regression_head(
instance_features, training=training)
if results.keys() & instance_center_predictions.keys():
raise ValueError('The keys of the semantic branch and the instance '
'center branch overlap. Please use unique keys.')
results.update(instance_center_predictions)
if results.keys() & instance_regression_predictions.keys():
raise ValueError('The keys of the semantic branch and the instance '
'regression branch overlap. Please use unique keys.')
results.update(instance_regression_predictions)
if self._next_instance_decoder is not None:
# We update the high level features in next_features with the concated
# features of the high level features in both features and next_features.
high_level_feature_name = self._next_high_level_feature_name
high_level_features = features[high_level_feature_name]
next_high_level_features = next_features[high_level_feature_name]
next_high_level_features = tf.concat(
[high_level_features, next_high_level_features], axis=3)
next_features[high_level_feature_name] = next_high_level_features
next_regression_features = self._next_instance_decoder(
next_features, training=training)
next_regression_predictions = self._next_instance_regression_head(
next_regression_features, training=training)
if results.keys() & next_regression_predictions.keys():
raise ValueError('The keys of the next regresion branch overlap.'
'Please use unique keys.')
results.update(next_regression_predictions)
return results
|