Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for aspp.""" | |
import tensorflow as tf | |
from deeplab2.model.decoder import aspp | |
from deeplab2.utils import test_utils | |
class AsppTest(tf.test.TestCase): | |
def test_aspp_pool_error(self): | |
pool = aspp.ASPPPool(output_channels=64, name='') | |
# Should pass without an error. | |
pool.set_pool_size((None, None)) | |
with self.assertRaises(ValueError): | |
# Should raise an error. | |
pool.set_pool_size((2, None)) | |
def test_aspp_conv_atrous_rate_shape(self): | |
atrous_rates = [2, 6, 12, 18] | |
for rate in atrous_rates: | |
conv = aspp.ASPPConv(output_channels=64, atrous_rate=rate, name='') | |
input_tensor = tf.random.uniform(shape=(2, 12, 12, 3)) | |
output = conv(input_tensor) | |
expected_shape = [2, 12, 12, 64] | |
self.assertListEqual(output.shape.as_list(), expected_shape) | |
def test_aspp_conv_non_negative(self): | |
conv = aspp.ASPPConv(output_channels=12, atrous_rate=2, name='') | |
input_tensor = tf.random.uniform(shape=(2, 17, 17, 3)) | |
output = conv(input_tensor) | |
self.assertTrue((output.numpy() >= 0.0).all()) | |
def test_aspp_pool_shape(self): | |
pool = aspp.ASPPPool(output_channels=64, name='') | |
input_tensor = tf.random.uniform(shape=(2, 12, 12, 3)) | |
output = pool(input_tensor) | |
expected_shape = [2, 12, 12, 64] | |
self.assertListEqual(output.shape.as_list(), expected_shape) | |
def test_aspp_pool_non_negative(self): | |
pool = aspp.ASPPPool(output_channels=12, name='') | |
input_tensor = tf.random.uniform(shape=(2, 17, 17, 3)) | |
output = pool(input_tensor) | |
self.assertTrue((output.numpy() >= 0.0).all()) | |
def test_aspp_wrong_atrous_rate(self): | |
with self.assertRaises(ValueError): | |
_ = aspp.ASPP(output_channels=64, atrous_rates=[1, 2, 3, 4]) | |
def test_aspp_shape(self, strategy): | |
with strategy.scope(): | |
for bn_layer in test_utils.NORMALIZATION_LAYERS: | |
aspp_layer = aspp.ASPP( | |
output_channels=64, atrous_rates=[6, 12, 18], bn_layer=bn_layer) | |
input_tensor = tf.random.uniform(shape=(2, 32, 32, 3)) | |
output = aspp_layer(input_tensor) | |
expected_shape = [2, 32, 32, 64] | |
self.assertListEqual(output.shape.as_list(), expected_shape) | |
def test_aspp_non_negative(self): | |
aspp_layer = aspp.ASPP(output_channels=32, atrous_rates=[4, 8, 16]) | |
input_tensor = tf.random.uniform(shape=(2, 32, 32, 3)) | |
output = aspp_layer(input_tensor) | |
self.assertTrue((output.numpy() >= 0.0).all()) | |
if __name__ == '__main__': | |
tf.test.main() | |