Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for deeplabv3.""" | |
import numpy as np | |
import tensorflow as tf | |
from deeplab2 import common | |
from deeplab2 import config_pb2 | |
from deeplab2.model.decoder import deeplabv3 | |
from deeplab2.utils import test_utils | |
def _create_deeplabv3_model(feature_key, decoder_channels, aspp_channels, | |
atrous_rates, num_classes, **kwargs): | |
decoder_options = config_pb2.DecoderOptions( | |
feature_key=feature_key, | |
decoder_channels=decoder_channels, | |
aspp_channels=aspp_channels, | |
atrous_rates=atrous_rates) | |
deeplabv3_options = config_pb2.ModelOptions.DeeplabV3Options( | |
num_classes=num_classes) | |
return deeplabv3.DeepLabV3(decoder_options, deeplabv3_options, **kwargs) | |
class Deeplabv3Test(tf.test.TestCase): | |
def test_deeplabv3_feature_key_not_present(self): | |
deeplabv3_decoder = _create_deeplabv3_model( | |
feature_key='not_in_features_dict', | |
aspp_channels=64, | |
decoder_channels=48, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
input_dict = dict() | |
input_dict['not_the_same_key'] = tf.random.uniform(shape=(2, 65, 65, 32)) | |
with self.assertRaises(KeyError): | |
_ = deeplabv3_decoder(input_dict) | |
def test_deeplabv3_output_shape(self): | |
list_of_num_classes = [2, 19, 133] | |
for num_classes in list_of_num_classes: | |
deeplabv3_decoder = _create_deeplabv3_model( | |
feature_key='not_used', | |
aspp_channels=64, | |
decoder_channels=48, | |
atrous_rates=[6, 12, 18], | |
num_classes=num_classes) | |
input_tensor = tf.random.uniform(shape=(2, 65, 65, 32)) | |
expected_shape = [2, 65, 65, num_classes] | |
logit_tensor = deeplabv3_decoder(input_tensor) | |
self.assertListEqual( | |
logit_tensor[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_shape) | |
def test_sync_bn(self, strategy): | |
input_tensor = tf.random.uniform(shape=(2, 65, 65, 32)) | |
with strategy.scope(): | |
for bn_layer in test_utils.NORMALIZATION_LAYERS: | |
deeplabv3_decoder = _create_deeplabv3_model( | |
feature_key='not_used', | |
aspp_channels=64, | |
decoder_channels=48, | |
atrous_rates=[6, 12, 18], | |
num_classes=19, | |
bn_layer=bn_layer) | |
_ = deeplabv3_decoder(input_tensor) | |
def test_deeplabv3_feature_extraction_consistency(self): | |
deeplabv3_decoder = _create_deeplabv3_model( | |
aspp_channels=64, | |
decoder_channels=48, | |
atrous_rates=[6, 12, 18], | |
num_classes=80, | |
feature_key='feature_key') | |
input_tensor = tf.random.uniform(shape=(2, 65, 65, 32)) | |
input_dict = dict() | |
input_dict['feature_key'] = input_tensor | |
reference_logits_tensor = deeplabv3_decoder(input_tensor, training=False) | |
logits_tensor_to_compare = deeplabv3_decoder(input_dict, training=False) | |
np.testing.assert_equal( | |
reference_logits_tensor[common.PRED_SEMANTIC_LOGITS_KEY].numpy(), | |
logits_tensor_to_compare[common.PRED_SEMANTIC_LOGITS_KEY].numpy()) | |
def test_deeplabv3_pool_size_setter(self): | |
deeplabv3_decoder = _create_deeplabv3_model( | |
feature_key='not_used', | |
aspp_channels=64, | |
decoder_channels=48, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
pool_size = (10, 10) | |
deeplabv3_decoder.set_pool_size(pool_size) | |
self.assertTupleEqual(deeplabv3_decoder._aspp._aspp_pool._pool_size, | |
pool_size) | |
def test_deeplabv3_pool_size_resetter(self): | |
deeplabv3_decoder = _create_deeplabv3_model( | |
feature_key='not_used', | |
aspp_channels=64, | |
decoder_channels=48, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
pool_size = (None, None) | |
deeplabv3_decoder.reset_pooling_layer() | |
self.assertTupleEqual(deeplabv3_decoder._aspp._aspp_pool._pool_size, | |
pool_size) | |
def test_deeplabv3_ckpt_items(self): | |
deeplabv3_decoder = _create_deeplabv3_model( | |
feature_key='not_used', | |
aspp_channels=64, | |
decoder_channels=48, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
ckpt_dict = deeplabv3_decoder.checkpoint_items | |
self.assertIn(common.CKPT_DEEPLABV3_ASPP, ckpt_dict) | |
self.assertIn(common.CKPT_DEEPLABV3_CLASSIFIER_CONV_BN_ACT, ckpt_dict) | |
self.assertIn(common.CKPT_SEMANTIC_LAST_LAYER, ckpt_dict) | |
if __name__ == '__main__': | |
tf.test.main() | |