Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for deeplabv3plus.""" | |
import numpy as np | |
import tensorflow as tf | |
from deeplab2 import common | |
from deeplab2 import config_pb2 | |
from deeplab2.model.decoder import deeplabv3plus | |
from deeplab2.utils import test_utils | |
def _create_deeplabv3plus_model(high_level_feature_name, low_level_feature_name, | |
low_level_channels_project, | |
aspp_output_channels, decoder_output_channels, | |
atrous_rates, num_classes, **kwargs): | |
decoder_options = config_pb2.DecoderOptions( | |
feature_key=high_level_feature_name, | |
decoder_channels=decoder_output_channels, | |
aspp_channels=aspp_output_channels, | |
atrous_rates=atrous_rates) | |
deeplabv3plus_options = config_pb2.ModelOptions.DeeplabV3PlusOptions( | |
low_level=config_pb2.LowLevelOptions( | |
feature_key=low_level_feature_name, | |
channels_project=low_level_channels_project), | |
num_classes=num_classes) | |
return deeplabv3plus.DeepLabV3Plus(decoder_options, deeplabv3plus_options, | |
**kwargs) | |
class Deeplabv3PlusTest(tf.test.TestCase): | |
def test_deeplabv3plus_feature_key_not_present(self): | |
deeplabv3plus_decoder = _create_deeplabv3plus_model( | |
high_level_feature_name='not_in_features_dict', | |
low_level_feature_name='in_feature_dict', | |
low_level_channels_project=128, | |
aspp_output_channels=64, | |
decoder_output_channels=64, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
input_dict = dict() | |
input_dict['in_feature_dict'] = tf.random.uniform(shape=(2, 65, 65, 32)) | |
with self.assertRaises(KeyError): | |
_ = deeplabv3plus_decoder(input_dict) | |
def test_deeplabv3plus_output_shape(self): | |
list_of_num_classes = [2, 19, 133] | |
for num_classes in list_of_num_classes: | |
deeplabv3plus_decoder = _create_deeplabv3plus_model( | |
high_level_feature_name='high', | |
low_level_feature_name='low', | |
low_level_channels_project=128, | |
aspp_output_channels=64, | |
decoder_output_channels=128, | |
atrous_rates=[6, 12, 18], | |
num_classes=num_classes) | |
input_dict = dict() | |
input_dict['high'] = tf.random.uniform(shape=(2, 65, 65, 32)) | |
input_dict['low'] = tf.random.uniform(shape=(2, 129, 129, 16)) | |
expected_shape = [2, 129, 129, num_classes] | |
logit_tensor = deeplabv3plus_decoder(input_dict) | |
self.assertListEqual( | |
logit_tensor[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_shape) | |
def test_deeplabv3plus_feature_extraction_consistency(self): | |
deeplabv3plus_decoder = _create_deeplabv3plus_model( | |
high_level_feature_name='high', | |
low_level_feature_name='low', | |
low_level_channels_project=128, | |
aspp_output_channels=96, | |
decoder_output_channels=64, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
input_dict = dict() | |
input_dict['high'] = tf.random.uniform(shape=(2, 65, 65, 32)) | |
input_dict['low'] = tf.random.uniform(shape=(2, 129, 129, 16)) | |
reference_logits_tensor = deeplabv3plus_decoder( | |
input_dict, training=False) | |
logits_tensor_to_compare = deeplabv3plus_decoder(input_dict, training=False) | |
np.testing.assert_equal( | |
reference_logits_tensor[common.PRED_SEMANTIC_LOGITS_KEY].numpy(), | |
logits_tensor_to_compare[common.PRED_SEMANTIC_LOGITS_KEY].numpy()) | |
def test_deeplabv3plus_pool_size_setter(self): | |
deeplabv3plus_decoder = _create_deeplabv3plus_model( | |
high_level_feature_name='high', | |
low_level_feature_name='low', | |
low_level_channels_project=128, | |
aspp_output_channels=96, | |
decoder_output_channels=64, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
pool_size = (10, 10) | |
deeplabv3plus_decoder.set_pool_size(pool_size) | |
self.assertTupleEqual(deeplabv3plus_decoder._aspp._aspp_pool._pool_size, | |
pool_size) | |
def test_deeplabv3plus_sync_bn(self, strategy): | |
input_dict = dict() | |
input_dict['high'] = tf.random.uniform(shape=(2, 65, 65, 32)) | |
input_dict['low'] = tf.random.uniform(shape=(2, 129, 129, 16)) | |
with strategy.scope(): | |
for bn_layer in test_utils.NORMALIZATION_LAYERS: | |
deeplabv3plus_decoder = _create_deeplabv3plus_model( | |
high_level_feature_name='high', | |
low_level_feature_name='low', | |
low_level_channels_project=128, | |
aspp_output_channels=96, | |
decoder_output_channels=64, | |
atrous_rates=[6, 12, 18], | |
num_classes=80, | |
bn_layer=bn_layer) | |
_ = deeplabv3plus_decoder(input_dict) | |
def test_deeplabv3plus_pool_size_resetter(self): | |
deeplabv3plus_decoder = _create_deeplabv3plus_model( | |
high_level_feature_name='high', | |
low_level_feature_name='low', | |
low_level_channels_project=128, | |
aspp_output_channels=96, | |
decoder_output_channels=64, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
pool_size = (None, None) | |
deeplabv3plus_decoder.reset_pooling_layer() | |
self.assertTupleEqual(deeplabv3plus_decoder._aspp._aspp_pool._pool_size, | |
pool_size) | |
def test_deeplabv3plus_ckpt_items(self): | |
deeplabv3plus_decoder = _create_deeplabv3plus_model( | |
high_level_feature_name='high', | |
low_level_feature_name='low', | |
low_level_channels_project=128, | |
aspp_output_channels=96, | |
decoder_output_channels=64, | |
atrous_rates=[6, 12, 18], | |
num_classes=80) | |
ckpt_dict = deeplabv3plus_decoder.checkpoint_items | |
self.assertIn(common.CKPT_DEEPLABV3PLUS_ASPP, ckpt_dict) | |
self.assertIn(common.CKPT_DEEPLABV3PLUS_PROJECT_CONV_BN_ACT, ckpt_dict) | |
self.assertIn(common.CKPT_DEEPLABV3PLUS_FUSE, ckpt_dict) | |
self.assertIn(common.CKPT_SEMANTIC_LAST_LAYER, ckpt_dict) | |
if __name__ == '__main__': | |
tf.test.main() | |