import torch import gradio as gr import json # Use a pipeline as a high-level helper from transformers import pipeline # Initialize the translation pipeline text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16) # Load the JSON data from the file with open('language.json', 'r') as file: language_data = json.load(file) # Extract language names from the JSON data language_names = [entry['Language'] for entry in language_data] def get_FLORES_code_from_language(language): for entry in language_data: if entry['Language'].lower() == language.lower(): return entry['FLORES-200 code'] return None def translate_text(text, destination_language): dest_code = get_FLORES_code_from_language(destination_language) if dest_code: translation = text_translator(text, src_lang="eng_Latn", tgt_lang=dest_code) return translation[0]["translation_text"] else: return "Destination language code not found." # Create and launch the Gradio interface gr.close_all() demo = gr.Interface( fn=translate_text, inputs=[ gr.Textbox(label="Input text to translate", lines=6), gr.Dropdown(language_names, label="Select Destination Language") ], outputs=[gr.Textbox(label="Translated text", lines=4)], title="Multi-language Translator", description="This application translates any English text to multiple languages." ) demo.launch(auth=('user', 'test@123'))