"""This Streamlit app allows you to compare, from a given image, the results of different solutions: EasyOcr, PaddleOCR, MMOCR, Tesseract """ #import mim # #mim.install(['mmengine>=0.7.1,<1.1.0']) #mim.install(['mmcv>=2.0.0rc4,<2.1.0']) #mim.install(['mmdet>=3.0.rc5,<3.2.0']) #mim.install(['mmocr']) import streamlit as st import plotly.express as px import numpy as np import math import pandas as pd from time import sleep import cv2 from PIL import Image, ImageColor import PIL import easyocr from paddleocr import PaddleOCR #from mmocr.utils.ocr import MMOCR import pytesseract from pytesseract import Output import os from mycolorpy import colorlist as mcp from matplotlib.cm import get_cmap import numpy as np def gen_color_normalized(cmap_name, data_arr): cmap = get_cmap(cmap_name) norm_colors = cmap(data_arr / np.max(data_arr)) # normalize data and apply colormap return norm_colors ################################################################################################### ## MAIN ################################################################################################### def app(): ################################################################################################### ## FUNCTIONS ################################################################################################### @st.cache def convert_df(in_df): """Convert data frame function, used by download button Args: in_df (data frame): data frame to convert Returns: data frame: converted data frame """ # IMPORTANT: Cache the conversion to prevent computation on every rerun return in_df.to_csv().encode('utf-8') ### def easyocr_coord_convert(in_list_coord): """Convert easyocr coordinates to standard format used by others functions Args: in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max] Returns: list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ] """ coord = in_list_coord return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]] ### @st.cache(show_spinner=False) def initializations(): """Initializations for the app Returns: list of strings : list of OCR solutions names (['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']) dict : names and indices of the OCR solutions ({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}) list of dicts : list of languages supported by each OCR solution list of int : columns for recognition details results dict : confidence color scale plotly figure : confidence color scale figure """ # the readers considered #out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'] #out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3} out_reader_type_list = ['EasyOCR', 'PPOCR', 'Tesseract'] out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'Tesseract': 2} # Columns for recognition details results out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract # Dicts of laguages supported by each reader out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \ 'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \ 'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \ 'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \ 'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \ 'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \ 'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \ 'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \ 'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \ 'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \ 'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \ 'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \ 'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \ 'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \ 'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \ 'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \ 'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \ 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'} out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \ 'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \ 'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \ 'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \ 'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \ 'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \ 'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \ 'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \ 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \ 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \ 'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \ 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \ 'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \ 'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \ 'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \ 'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'} #out_dict_lang_mmocr = {'English & Chinese': 'en'} out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \ 'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \ 'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \ 'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \ 'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \ 'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \ 'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \ 'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \ 'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \ 'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \ 'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \ 'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \ 'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \ 'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \ 'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \ 'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \ 'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \ 'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \ 'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \ 'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \ 'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \ 'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \ 'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \ 'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \ 'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \ 'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \ 'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \ 'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \ 'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \ 'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'} out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, \ #out_dict_lang_mmocr, \ out_dict_lang_tesseract] # Initialization of detection form if 'columns_size' not in st.session_state: st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]] if 'column_width' not in st.session_state: st.session_state.column_width = [400] + [300 for x in out_reader_type_list[1:]] if 'columns_color' not in st.session_state: st.session_state.columns_color = ["rgb(228,26,28)"] + \ ["rgb(79, 43, 255)" for x in out_reader_type_list[1:]] if 'list_coordinates' not in st.session_state: st.session_state.list_coordinates = [] # Confidence color scale out_list_confid = list(np.arange(0,101,1)) out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid)) out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \ for i in range(len(out_list_confid))} list_y = [1 for i in out_list_confid] df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y}) out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \ hover_data={'% confidence scale': True, 'y': False}, color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100], color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square']) out_fig.update_xaxes(showticklabels=False) out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False) out_fig.update_traces(marker_size=50) out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \ showlegend=False) return out_reader_type_list, out_reader_type_dict, out_list_dict_lang, \ out_cols_size, out_dict_back_colors, out_fig ### @st.experimental_memo(show_spinner=False) def init_easyocr(in_params): """Initialization of easyOCR reader Args: in_params (list): list with the language Returns: easyocr reader: the easyocr reader instance """ out_ocr = easyocr.Reader(in_params) return out_ocr ### @st.cache(show_spinner=False) def init_ppocr(in_params): """Initialization of PPOCR reader Args: in_params (dict): dict with parameters Returns: ppocr reader: the ppocr reader instance """ out_ocr = PaddleOCR(lang=in_params[0], **in_params[1]) return out_ocr ### #@st.experimental_memo(show_spinner=False) #def init_mmocr(in_params): # """Initialization of MMOCR reader # # Args: # in_params (dict): dict with parameters # # Returns: # mmocr reader: the ppocr reader instance # """ # out_ocr = MMOCR(recog=None, **in_params[1]) # return out_ocr ### def init_readers(in_list_params): """Initialization of the readers, and return them as list Args: in_list_params (list): list of dicts of parameters for each reader Returns: list: list of the reader's instances """ # Instantiations of the readers : # - EasyOCR with st.spinner("EasyOCR reader initialization in progress ..."): reader_easyocr = init_easyocr([in_list_params[0][0]]) # - PPOCR # Paddleocr with st.spinner("PPOCR reader initialization in progress ..."): reader_ppocr = init_ppocr(in_list_params[1]) # - MMOCR #with st.spinner("MMOCR reader initialization in progress ..."): # reader_mmocr = init_mmocr(in_list_params[2]) out_list_readers = [reader_easyocr, reader_ppocr] #, reader_mmocr] return out_list_readers ### def load_image(in_image_file): """Load input file and open it Args: in_image_file (string or Streamlit UploadedFile): image to consider Returns: string : locally saved image path (img.) PIL.Image : input file opened with Pillow matrix : input file opened with Opencv """ #if isinstance(in_image_file, str): # out_image_path = "img."+in_image_file.split('.')[-1] #else: # out_image_path = "img."+in_image_file.name.split('.')[-1] if isinstance(in_image_file, str): out_image_path = "tmp_"+in_image_file else: out_image_path = "tmp_"+in_image_file.name img = Image.open(in_image_file) img_saved = img.save(out_image_path) # Read image out_image_orig = Image.open(out_image_path) out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB) return out_image_path, out_image_orig, out_image_cv2 ### @st.experimental_memo(show_spinner=False) def easyocr_detect(_in_reader, in_image_path, in_params): """Detection with EasyOCR Args: _in_reader (EasyOCR reader) : the previously initialized instance in_image_path (string ) : locally saved image path in_params (list) : list with the parameters for detection Returns: list : list of the boxes coordinates exception on error, string 'OK' otherwise """ try: dict_param = in_params[1] detection_result = _in_reader.detect(in_image_path, #width_ths=0.7, #mag_ratio=1.5 **dict_param ) easyocr_coordinates = detection_result[0][0] # The format of the coordinate is as follows: [x_min, x_max, y_min, y_max] # Format boxes coordinates for draw out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates)) out_status = 'OK' except Exception as e: out_easyocr_boxes_coordinates = [] out_status = e return out_easyocr_boxes_coordinates, out_status ### @st.experimental_memo(show_spinner=False) def ppocr_detect(_in_reader, in_image_path): """Detection with PPOCR Args: _in_reader (PPOCR reader) : the previously initialized instance in_image_path (string ) : locally saved image path Returns: list : list of the boxes coordinates exception on error, string 'OK' otherwise """ # PPOCR detection method try: out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False) out_status = 'OK' except Exception as e: out_ppocr_boxes_coordinates = [] out_status = e return out_ppocr_boxes_coordinates, out_status ### #@st.experimental_memo(show_spinner=False) #def mmocr_detect(_in_reader, in_image_path): # """Detection with MMOCR # # Args: # _in_reader (EasyORC reader) : the previously initialized instance # in_image_path (string) : locally saved image path # in_params (list) : list with the parameters # # Returns: # list : list of the boxes coordinates # exception on error, string 'OK' otherwise # """ # # MMOCR detection method # out_mmocr_boxes_coordinates = [] # try: # det_result = _in_reader.readtext(in_image_path, details=True) # bboxes_list = [res['boundary_result'] for res in det_result] # for bboxes in bboxes_list: # for bbox in bboxes: # if len(bbox) > 9: # min_x = min(bbox[0:-1:2]) # min_y = min(bbox[1:-1:2]) # max_x = max(bbox[0:-1:2]) # max_y = max(bbox[1:-1:2]) # #box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y] # else: # min_x = min(bbox[0:-1:2]) # min_y = min(bbox[1::2]) # max_x = max(bbox[0:-1:2]) # max_y = max(bbox[1::2]) # box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ] # out_mmocr_boxes_coordinates.append(box4) # out_status = 'OK' # except Exception as e: # out_status = e # # return out_mmocr_boxes_coordinates, out_status ### def cropped_1box(in_box, in_img): """Construction of an cropped image corresponding to an area of the initial image Args: in_box (list) : box with coordinates in_img (matrix) : image Returns: matrix : cropped image """ box_ar = np.array(in_box).astype(np.int64) x_min = box_ar[:, 0].min() x_max = box_ar[:, 0].max() y_min = box_ar[:, 1].min() y_max = box_ar[:, 1].max() out_cropped = in_img[y_min:y_max, x_min:x_max] return out_cropped ### @st.experimental_memo(show_spinner=False) def tesserocr_detect(in_image_path, _in_img, in_params): """Detection with Tesseract Args: in_image_path (string) : locally saved image path _in_img (PIL.Image) : image to consider in_params (list) : list with the parameters for detection Returns: list : list of the boxes coordinates exception on error, string 'OK' otherwise """ try: dict_param = in_params[1] df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME) df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \ [d['left'] + d['width'], d['top']], \ [d['left'] + d['width'], d['top'] + d['height']], \ [d['left'], d['top'] + d['height']], \ ], axis=1) out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list() out_status = 'OK' except Exception as e: out_tesserocr_boxes_coordinates = [] out_status = e return out_tesserocr_boxes_coordinates, out_status ### @st.experimental_memo(show_spinner=False) def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color): """Detection process for each OCR solution Args: in_image_path (string) : locally saved image path _in_list_images (list) : list of original image _in_list_readers (list) : list with previously initialized reader's instances in_list_params (list) : list with dict parameters for each OCR solution in_color (tuple) : color for boxes around text Returns: list: list of detection results images list: list of boxes coordinates """ ## ------- EasyOCR Text detection with st.spinner('EasyOCR Text detection in progress ...'): easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \ in_image_path, in_list_params[0]) # Visualization if easyocr_boxes_coordinates: easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \ in_color, 'None', 3) else: easyocr_boxes_coordinates = easyocr_status ## ## ------- PPOCR Text detection with st.spinner('PPOCR Text detection in progress ...'): list_ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path) ppocr_boxes_coordinates = list_ppocr_boxes_coordinates[0] # Visualization if ppocr_boxes_coordinates: ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \ in_color, 'None', 3) else: ppocr_image_detect = ppocr_status ## ## ------- MMOCR Text detection #with st.spinner('MMOCR Text detection in progress ...'): # mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path) # # Visualization # if mmocr_boxes_coordinates: # mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \ # in_color, 'None', 3) # else: # mmocr_image_detect = mmocr_status ## ## ------- Tesseract Text detection with st.spinner('Tesseract Text detection in progress ...'): tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \ _in_list_images[0], \ in_list_params[2]) #in_list_params[3] # Visualization if tesserocr_status == 'OK': tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\ in_color, 'None', 3) else: tesserocr_image_detect = tesserocr_status ## # out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \ # mmocr_image_detect, \ tesserocr_image_detect] out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \ # mmocr_boxes_coordinates, \ tesserocr_boxes_coordinates] # return out_list_images, out_list_coordinates ### def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4): """Draw boxes around detected text Args: in_image (PIL.Image) : original image in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right [ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ], [ ... ] ] in_color (tuple) : color for boxes around text posit (str, optional) : position for text. Defaults to 'None'. in_thickness (int, optional): thickness of the box. Defaults to 4. Returns: PIL.Image : original image with detected areas """ work_img = in_image.copy() if in_boxes_coordinates: font = cv2.FONT_HERSHEY_SIMPLEX for ind_box, box in enumerate(in_boxes_coordinates): box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness) if posit != 'None': if posit == 'top_left': pos = tuple(box[0][0]) elif posit == 'top_right': pos = tuple(box[1][0]) work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \ in_thickness,cv2.LINE_AA) out_image_drawn = Image.fromarray(work_img) else: out_image_drawn = work_img return out_image_drawn ### @st.experimental_memo(show_spinner=False) def get_cropped(in_boxes_coordinates, in_image_cv): """Construct list of cropped images corresponding of the input boxes coordinates list Args: in_boxes_coordinates (list) : list of boxes coordinates in_image_cv (matrix) : original image Returns: list : list with cropped images """ out_list_images = [] for box in in_boxes_coordinates: cropped = cropped_1box(box, in_image_cv) out_list_images.append(cropped) return out_list_images ### def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params): """Recognition process for each OCR solution Args: in_list_readers (list) : list with previously initialized reader's instances in_image_cv (matrix) : original image in_boxes_coordinates (list) : list of boxes coordinates in_list_dict_params (list) : list with dict parameters for each OCR solution Returns: data frame : results for each OCR solution, except Tesseract data frame : results for Tesseract list : status for each recognition (exception or 'OK') """ out_df_results = pd.DataFrame([]) list_text_easyocr = [] list_confidence_easyocr = [] list_text_ppocr = [] list_confidence_ppocr = [] #list_text_mmocr = [] #list_confidence_mmocr = [] # Create cropped images from detection list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv) # Recognize with EasyOCR with st.spinner('EasyOCR Text recognition in progress ...'): list_text_easyocr, list_confidence_easyocr, status_easyocr = \ easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0]) ## # Recognize with PPOCR with st.spinner('PPOCR Text recognition in progress ...'): list_text_ppocr, list_confidence_ppocr, status_ppocr = \ ppocr_recog(list_cropped_images, in_list_dict_params[1]) ## # Recognize with MMOCR #with st.spinner('MMOCR Text recognition in progress ...'): # list_text_mmocr, list_confidence_mmocr, status_mmocr = \ # mmocr_recog(list_cropped_images, in_list_dict_params[2]) ## # Recognize with Tesseract with st.spinner('Tesseract Text recognition in progress ...'): out_df_results_tesseract, status_tesseract = \ tesserocr_recog(in_image_cv, in_list_dict_params[2], len(list_cropped_images)) #tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images)) ## # Create results data frame out_df_results = pd.DataFrame({'cropped_image': list_cropped_images, 'text_easyocr': list_text_easyocr, 'confidence_easyocr': list_confidence_easyocr, 'text_ppocr': list_text_ppocr, 'confidence_ppocr': list_confidence_ppocr, #'text_mmocr': list_text_mmocr, #'confidence_mmocr': list_confidence_mmocr } ) #out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract] out_list_reco_status = [status_easyocr, status_ppocr, status_tesseract] return out_df_results, out_df_results_tesseract, out_list_reco_status ### @st.experimental_memo(suppress_st_warning=True, show_spinner=False) def easyocr_recog(in_list_images, _in_reader_easyocr, in_params): """Recognition with EasyOCR Args: in_list_images (list) : list of cropped images _in_reader_easyocr (EasyOCR reader) : the previously initialized instance in_params (dict) : parameters for recognition Returns: list : list of recognized text list : list of recognition confidence string/Exception : recognition status """ progress_bar = st.progress(0) out_list_text_easyocr = [] out_list_confidence_easyocr = [] ## ------- EasyOCR Text recognition try: step = 0*len(in_list_images) # first recognition process #nb_steps = 4 * len(in_list_images) nb_steps = 3 * len(in_list_images) for ind_img, cropped in enumerate(in_list_images): result = _in_reader_easyocr.recognize(cropped, **in_params) try: out_list_text_easyocr.append(result[0][1]) out_list_confidence_easyocr.append(np.round(100*result[0][2], 1)) except: out_list_text_easyocr.append('Not recognize') out_list_confidence_easyocr.append(100.) progress_bar.progress((step+ind_img+1)/nb_steps) out_status = 'OK' except Exception as e: out_status = e progress_bar.empty() return out_list_text_easyocr, out_list_confidence_easyocr, out_status ### @st.experimental_memo(suppress_st_warning=True, show_spinner=False) def ppocr_recog(in_list_images, in_params): """Recognition with PPOCR Args: in_list_images (list) : list of cropped images in_params (dict) : parameters for recognition Returns: list : list of recognized text list : list of recognition confidence string/Exception : recognition status """ ## ------- PPOCR Text recognition out_list_text_ppocr = [] out_list_confidence_ppocr = [] try: reader_ppocr = PaddleOCR(**in_params) step = 1*len(in_list_images) # second recognition process #nb_steps = 4 * len(in_list_images) nb_steps = 3 * len(in_list_images) progress_bar = st.progress(step/nb_steps) for ind_img, cropped in enumerate(in_list_images): list_result = reader_ppocr.ocr(cropped, det=False, cls=False) result = list_result[0] try: out_list_text_ppocr.append(result[0][0]) out_list_confidence_ppocr.append(np.round(100*result[0][1], 1)) except: out_list_text_ppocr.append('Not recognize') out_list_confidence_ppocr.append(100.) progress_bar.progress((step+ind_img+1)/nb_steps) out_status = 'OK' except Exception as e: out_status = e progress_bar.empty() return out_list_text_ppocr, out_list_confidence_ppocr, out_status ### #@st.experimental_memo(suppress_st_warning=True, show_spinner=False) #def mmocr_recog(in_list_images, in_params): # """Recognition with MMOCR # # Args: # in_list_images (list) : list of cropped images # in_params (dict) : parameters for recognition # # Returns: # list : list of recognized text # list : list of recognition confidence # string/Exception : recognition status # """ # ## ------- MMOCR Text recognition # out_list_text_mmocr = [] # out_list_confidence_mmocr = [] # try: # reader_mmocr = MMOCR(det=None, **in_params) # step = 2*len(in_list_images) # third recognition process # nb_steps = 4 * len(in_list_images) # progress_bar = st.progress(step/nb_steps) # # for ind_img, cropped in enumerate(in_list_images): # result = reader_mmocr.readtext(cropped, details=True) # try: # out_list_text_mmocr.append(result[0]['text']) # out_list_confidence_mmocr.append(np.round(100* \ # (np.array(result[0]['score']).mean()), 1)) # except: # out_list_text_mmocr.append('Not recognize') # out_list_confidence_mmocr.append(100.) # progress_bar.progress((step+ind_img+1)/nb_steps) # out_status = 'OK' # except Exception as e: # out_status = e # progress_bar.empty() # # return out_list_text_mmocr, out_list_confidence_mmocr, out_status # ### @st.experimental_memo(suppress_st_warning=True, show_spinner=False) def tesserocr_recog(in_img, in_params, in_nb_images): """Recognition with Tesseract Args: in_image_cv (matrix) : original image in_params (dict) : parameters for recognition in_nb_images : nb cropped images (used for progress bar) Returns: Pandas data frame : recognition results string/Exception : recognition status """ ## ------- Tesseract Text recognition step = 3*in_nb_images # fourth recognition process #nb_steps = 4 * in_nb_images nb_steps = 3 * in_nb_images progress_bar = st.progress(step/nb_steps) try: out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME) out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \ [d['left'] + d['width'], d['top']], \ [d['left']+d['width'], d['top']+d['height']], \ [d['left'], d['top'] + d['height']], \ ], axis=1) out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img)) out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \ .reset_index(drop=True) out_status = 'OK' except Exception as e: out_df_result = pd.DataFrame([]) out_status = e progress_bar.progress(1.) return out_df_result, out_status ### def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \ in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \ in_font_scale=1, in_conf_threshold=65): """Draw recognized text on original image, for each OCR solution used Args: in_image (matrix) : original image in_boxes_coordinates (list) : list of boxes coordinates in_list_texts (list): list of recognized text for each recognizer (except Tesseract) in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract) in_df_results_tesseract (Pandas data frame): Tesseract recognition results in_font_scale (int, optional): text font scale. Defaults to 3. Returns: shows the results container """ img = in_image.copy() nb_readers = len(in_reader_type_list) list_reco_images = [img.copy() for i in range(nb_readers)] for num, box_ in enumerate(in_boxes_coordinates): box = np.array(box_).astype(np.int64) # For each box : draw the results of each recognizer for ind_r in range(nb_readers-1): confid = np.round(in_list_confid[ind_r][num], 0) rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB") if confid < in_conf_threshold: text_color = (0, 0, 0) else: text_color = (255, 255, 255) list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \ (box[0][0], box[0][1]), \ (box[2][0], box[2][1]), rgb_color, -1) list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \ in_list_texts[ind_r][num], \ (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \ cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2) # Add Tesseract process if not in_df_results_tesseract.empty: ind_tessocr = nb_readers-1 for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()): box = np.array(box_).astype(np.int64) confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0) rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB") if confid < in_conf_threshold: text_color = (0, 0, 0) else: text_color = (255, 255, 255) list_reco_images[ind_tessocr] = \ cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \ (box[2][0], box[2][1]), rgb_color, -1) try: list_reco_images[ind_tessocr] = \ cv2.putText(list_reco_images[ind_tessocr], \ in_df_results_tesseract.iloc[num]['text'], \ (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \ cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2) except: pass with show_reco.container(): # Draw the results, 2 images per line reco_lines = math.ceil(len(in_reader_type_list) / 2) column_width = 400 for ind_lig in range(0, reco_lines+1, 2): cols = st.columns(2) for ind_col in range(2): ind = ind_lig + ind_col if ind < len(in_reader_type_list): if in_reader_type_list[ind] == 'Tesseract': column_title = '
Recognition with ' + in_reader_type_list[ind] + \
'
Recognition with ' + \ in_reader_type_list[ind]+ '
' cols[ind_col].markdown(column_title, unsafe_allow_html=True) if st.session_state.list_reco_status[ind] == 'OK': cols[ind_col].image(list_reco_images[ind], \ width=column_width, use_column_width=True) else: cols[ind_col].write(list_reco_status[ind], \ use_column_width=True) st.markdown(' 💡 Bad font size? you can adjust it below and refresh:') ### def highlight(): """ Highlight choosen detector results """ with show_detect.container(): columns_size = [1 for x in reader_type_list] column_width = [300 for x in reader_type_list] columns_color = ["rgb(12, 5, 105)" for x in reader_type_list] columns_size[reader_type_dict[st.session_state.detect_reader]] = 2 column_width[reader_type_dict[st.session_state.detect_reader]] = 400 columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)" columns = st.columns(columns_size, ) #gap='medium') for ind_col, col in enumerate(columns): column_title = 'Detection with ' + reader_type_list[ind_col]+ '
' col.markdown(column_title, unsafe_allow_html=True) if isinstance(list_images[ind_col+2], PIL.Image.Image): col.image(list_images[ind_col+2], width=column_width[ind_col], \ use_column_width=True) else: col.write(list_images[ind_col+2], use_column_width=True) st.session_state.columns_size = columns_size st.session_state.column_width = column_width st.session_state.columns_color = columns_color ### @st.cache(show_spinner=False) def get_demo(): """Get the demo files Returns: PIL.Image : input file opened with Pillow PIL.Image : input file opened with Pillow """ out_img_demo_1 = Image.open("img_demo_1.jpg") out_img_demo_2 = Image.open("img_demo_2.jpg") return out_img_demo_1, out_img_demo_2 ### def raz(): st.session_state.list_coordinates = [] st.session_state.list_images = [] st.session_state.detect_reader = reader_type_list[0] st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]] st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]] st.session_state.columns_color = ["rgb(228,26,28)"] + \ ["rgb(79, 43, 255)" for x in reader_type_list[1:]] # Clear caches easyocr_detect.clear() ppocr_detect.clear() #mmocr_detect.clear() tesserocr_detect.clear() process_detect.clear() get_cropped.clear() easyocr_recog.clear() ppocr_recog.clear() #mmocr_recog.clear() tesserocr_recog.clear() ##----------- Initializations --------------------------------------------------------------------- #print("PID : ", os.getpid()) st.title("OCR solutions comparator") #st.markdown("##### *EasyOCR, PPOCR, Tesseract*") st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*") #st.markdown("#### PID : " + str(os.getpid())) # Initializations with st.spinner("Initializations in progress ..."): reader_type_list, reader_type_dict, list_dict_lang, \ cols_size, dict_back_colors, fig_colorscale = initializations() img_demo_1, img_demo_2 = get_demo() ##----------- Choose language & image ------------------------------------------------------------- st.markdown("#### Choose languages for the text recognition:") lang_col = st.columns(4) easyocr_key_lang = lang_col[0].selectbox(reader_type_list[0]+" :", list_dict_lang[0].keys(), 26) easyocr_lang = list_dict_lang[0][easyocr_key_lang] ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22) ppocr_lang = list_dict_lang[1][ppocr_key_lang] #mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0) #mmocr_lang = list_dict_lang[2][mmocr_key_lang] #tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35) #tesserocr_lang = list_dict_lang[3][tesserocr_key_lang] tesserocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 35) tesserocr_lang = list_dict_lang[2][tesserocr_key_lang] st.markdown("#### Choose picture:") cols_pict = st.columns([1, 2]) img_typ = cols_pict[0].radio("", ['Upload file', 'Take a picture', 'Use a demo file'], \ index=0, on_change=raz) if img_typ == 'Upload file': image_file = cols_pict[1].file_uploader("Upload a file:", type=["jpg","jpeg"], on_change=raz) if img_typ == 'Take a picture': image_file = cols_pict[1].camera_input("Take a picture:", on_change=raz) if img_typ == 'Use a demo file': with st.expander('Choose a demo file:', expanded=True): demo_used = st.radio('', ['File 1', 'File 2'], index=0, \ horizontal=True, on_change=raz) cols_demo = st.columns([1, 2]) cols_demo[0].markdown('###### File 1') cols_demo[0].image(img_demo_1, width=150) cols_demo[1].markdown('###### File 2') cols_demo[1].image(img_demo_2, width=300) if demo_used == 'File 1': image_file = 'img_demo_1.jpg' else: image_file = 'img_demo_2.jpg' ##----------- Process input image ----------------------------------------------------------------- if image_file is not None: image_path, image_orig, image_cv2 = load_image(image_file) list_images = [image_orig, image_cv2] ##----------- Form with original image & hyperparameters for detectors ---------------------------- with st.form("form1"): col1, col2 = st.columns(2, ) #gap="medium") col1.markdown("##### Original image") col1.image(list_images[0], width=400) col2.markdown("##### Hyperparameters values for detection") with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \ expanded=False): t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \ help="min_size (int, default = 10) - Filter text box smaller than \ minimum value in pixel") t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \ help="text_threshold (float, default = 0.7) - Text confidence threshold") t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \ help="low_text (float, default = 0.4) - Text low-bound score") t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \ help="link_threshold (float, default = 0.4) - Link confidence threshold") t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \ help='''canvas_size (int, default = 2560) \n Maximum e size. Image bigger than this value will be resized down''') t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \ help="mag_ratio (float, default = 1) - Image magnification ratio") t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \ help='''slope_ths (float, default = 0.1) - Maximum slope \ (delta y/delta x) to considered merging. \n Low valuans tiled boxes will not be merged.''') t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \ help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n Boxes wiifferent level should not be merged.''') t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \ help='''height_ths (float, default = 0.5) - Maximum different in box height. \n Boxes wiery different text size should not be merged.''') t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \ help="width_ths (float, default = 0.5) - Maximum horizontal \ distance to merge boxes.") t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \ help='''add_margin (float, default = 0.1) - \ Extend bounding boxes in all direction by certain value. \n This is rtant for language with complex script (E.g. Thai).''') t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \ help="optimal_num_chars (int, default = None) - If specified, bounding boxes \ with estimated number of characters near this value are returned first.") with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \ expanded=False): t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \ help='Type of detection algorithm selected. (default = DB)') t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \ help='''The maximum size of the long side of the image. (default = 960)\n Limit thximum image height and width.\n When theg side exceeds this value, the long side will be resized to this size, and the short side \ will be ed proportionally.''') t1_det_db_thresh = st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \ help='''Binarization threshold value of DB output map. (default = 0.3) \n Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''') t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \ help='''The threshold value of the DB output box. (default = 0.6) \n DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n Boxes sclower than this value will be discard.''') t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \ help='''The expanded ratio of DB output box. (default = 1.6) \n Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''') t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \ help="Binarization threshold value of EAST output map. (default = 0.8)") t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \ help='''The threshold value of the EAST output box. (default = 0.1) \n Boxes sclower than this value will be discarded.''') t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \ help="The NMS threshold value of EAST model output box. (default = 0.2)") t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \ help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \ to calculate. (default = fast) \n Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''') """ with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \ expanded=False): t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \ 'FCE_CTW_DCNv2','MaskRCNN_CTW','MaskRCNN_IC15', \ 'MaskRCNN_IC17', 'PANet_CTW','PANet_IC15','PS_CTW',\ 'PS_IC15','Tesseract','TextSnake'], 10, \ help='Text detection algorithm. (default = PANet_IC15)') st.write("###### *More about text detection models* 👉 \ [here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)") t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \ help='The maximum x-axis distance to merge boxes. (defaut=20)') """ #with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \ with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \ expanded=False): t3_psm = st.selectbox('Page segmentation mode (psm)', \ [' - Default', \ ' 4 Assume a single column of text of variable sizes', \ ' 5 Assume a single uniform block of vertically aligned text', \ ' 6 Assume a single uniform block of text', \ ' 7 Treat the image as a single text line', \ ' 8 Treat the image as a single word', \ ' 9 Treat the image as a single word in a circle', \ '10 Treat the image as a single character', \ '11 Sparse text. Find as much text as possible in no \ particular order', \ '13 Raw line. Treat the image as a single text line, \ bypassing hacks that are Tesseract-specific']) t3_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \ '1 Neural nets LSTM engine only', \ '2 Legacy + LSTM engines', \ '3 Default, based on what is available'], 3) t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \ placeholder='Limit tesseract to recognize only this characters', \ help='Example for numbers only : 0123456789') color_hex = col2.color_picker('Set a color for box outlines:', '#004C99') color_part = color_hex.lstrip('#') color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4)) submit_detect = st.form_submit_button("Launch detection") ##----------- Process text detection -------------------------------------------------------------- if submit_detect: # Process text detection if t0_optimal_num_chars == 0: t0_optimal_num_chars = None # Construct the config Tesseract parameter t3_config = '' psm = t3_psm[:2] if psm != ' -': t3_config += '--psm ' + psm.strip() oem = t3_oem[:1] if oem != '3': t3_config += ' --oem ' + oem if t3_whitelist != '': t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist list_params_det = \ [[easyocr_lang, \ {'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \ 'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \ 'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \ 'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \ 'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \ 'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \ }], \ [ppocr_lang, \ {'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \ 'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \ 'det_db_unclip_ratio': t1_det_db_unclip_ratio, \ 'det_east_score_thresh': t1_det_east_score_thresh, \ 'det_east_cover_thresh': t1_det_east_cover_thresh, \ 'det_east_nms_thresh': t1_det_east_nms_thresh, \ 'det_db_score_mode': t1_det_db_score_mode}], #[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}], [tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}] ] show_info1 = st.empty() show_info1.info("Readers initializations in progress (it may take a while) ...") list_readers = init_readers(list_params_det) show_info1.info("Text detection in progress ...") list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \ list_params_det, color) show_info1.empty() # Clear previous recognition results st.session_state.df_results = pd.DataFrame([]) st.session_state.list_readers = list_readers st.session_state.list_coordinates = list_coordinates st.session_state.list_images = list_images st.session_state.list_params_det = list_params_det if 'columns_size' not in st.session_state: st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]] if 'column_width' not in st.session_state: st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]] if 'columns_color' not in st.session_state: st.session_state.columns_color = ["rgb(228,26,28)"] + \ ["rgb(79, 43, 255)" for x in reader_type_list[1:]] if st.session_state.list_coordinates: list_coordinates = st.session_state.list_coordinates list_images = st.session_state.list_images list_readers = st.session_state.list_readers list_params_det = st.session_state.list_params_det ##----------- Text detection results -------------------------------------------------------------- st.subheader("Text detection") show_detect = st.empty() list_ok_detect = [] with show_detect.container(): columns = st.columns(st.session_state.columns_size, ) #gap='medium') for no_col, col in enumerate(columns): column_title = 'Detection with ' + reader_type_list[no_col]+ '
' col.markdown(column_title, unsafe_allow_html=True) if isinstance(list_images[no_col+2], PIL.Image.Image): col.image(list_images[no_col+2], width=st.session_state.column_width[no_col], \ use_column_width=True) list_ok_detect.append(reader_type_list[no_col]) else: col.write(list_images[no_col+2], use_column_width=True) st.subheader("Text recognition") st.markdown("##### Using detection performed above by:") st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \ horizontal=True, on_change=highlight) ##----------- Form with hyperparameters for recognition ----------------------- st.markdown("##### Hyperparameters values for recognition:") with st.form("form2"): with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \ expanded=False): t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \ help="decoder (string, default = 'greedy') - options are 'greedy', \ 'beamsearch' and 'wordbeamsearch.") t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \ help="beamWidth (int, default = 5) - How many beam to keep when decoder = \ 'beamsearch' or 'wordbeamsearch'.") t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \ help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \ but use more memory.") t0_workers = st.slider('workers', 0, 10, 0, step=1, \ help="workers (int, default = 0) - Number thread used in of dataloader.") t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \ placeholder='Force EasyOCR to recognize only this subset of characters', \ help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n Usefor specific problem (E.g. license plate, etc.)''') t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \ placeholder='Block subset of character (will be ignored if allowlist is given)', \ help='''blocklist (string) - Block subset of character. This argument will be \ ignored if allowlist is given.''') t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \ help="detail (int, default = 1) - Set this to 0 for simple output") t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \ help='paragraph (bool, default = False) - Combine result into paragraph') t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \ help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \ this value will be passed into model 2 times.\n Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n The with more confident level will be returned as a result.''') t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \ help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \ contrast text box') with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \ expanded=False): t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \ help="Type of recognition algorithm selected. (default=CRNN)") t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \ help="When performing recognition, the batchsize of forward images. \ (default=30)") t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \ help="The maximum text length that the recognition algorithm can recognize. \ (default=25)") t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \ help="Whether to recognize spaces. (default=TRUE)") t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \ help="Filter the output by score (from the recognition model), and those \ below this score will not be returned. (default=0.5)") """ with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \ expanded=False): t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \ 'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \ 'SATRN','SATRN_sm','SEG','Tesseract'], 7, \ help='Text recognition algorithm. (default = SAR)') st.write("###### *More about text recognition models* 👉 \ [here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)") """ #with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \ with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \ expanded=False): t3r_psm = st.selectbox('Page segmentation mode (psm)', \ [' - Default', \ ' 4 Assume a single column of text of variable sizes', \ ' 5 Assume a single uniform block of vertically aligned \ text', \ ' 6 Assume a single uniform block of text', \ ' 7 Treat the image as a single text line', \ ' 8 Treat the image as a single word', \ ' 9 Treat the image as a single word in a circle', \ '10 Treat the image as a single character', \ '11 Sparse text. Find as much text as possible in no \ particular order', \ '13 Raw line. Treat the image as a single text line, \ bypassing hacks that are Tesseract-specific']) t3r_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \ '1 Neural nets LSTM engine only', \ '2 Legacy + LSTM engines', \ '3 Default, based on what is available'], 3) t3r_whitelist = st.text_input('Limit tesseract to recognize only this \ characters :', \ placeholder='Limit tesseract to recognize only this characters', \ help='Example for numbers only : 0123456789') submit_reco = st.form_submit_button("Launch recognition") if submit_reco: process_detect.clear() ##----------- Process recognition ------------------------------------------ reader_ind = reader_type_dict[st.session_state.detect_reader] list_boxes = list_coordinates[reader_ind] # Construct the config Tesseract parameter t3r_config = '' psm = t3r_psm[:2] if psm != ' -': t3r_config += '--psm ' + psm.strip() oem = t3r_oem[:1] if oem != '3': t3r_config += ' --oem ' + oem if t3r_whitelist != '': t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist list_params_rec = \ [{'decoder': t0_decoder, 'beamWidth': t0_beamWidth, \ 'batch_size': t0_batch_size, 'workers': t0_workers, \ 'allowlist': t0_allowlist, 'blocklist': t0_blocklist, \ 'detail': t0_detail, 'paragraph': t0_paragraph, \ 'contrast_ths': t0_contrast_ths, 'adjust_contrast': t0_adjust_contrast }, { **list_params_det[1][1], **{'rec_algorithm': t1_rec_algorithm, \ 'rec_batch_num': t1_rec_batch_num, 'max_text_length': t1_max_text_length, \ 'use_space_char': t1_use_space_char, 'drop_score': t1_drop_score}, \ **{'lang': list_params_det[1][0]} }, #{'recog': t2_recog}, {'lang': tesserocr_lang, 'config': t3r_config} ] show_info2 = st.empty() with show_info2.container(): st.info("Text recognition in progress ...") df_results, df_results_tesseract, list_reco_status = \ process_recog(list_readers, list_images[1], list_boxes, list_params_rec) show_info2.empty() st.session_state.df_results = df_results st.session_state.list_boxes = list_boxes st.session_state.df_results_tesseract = df_results_tesseract st.session_state.list_reco_status = list_reco_status if 'df_results' in st.session_state: if not st.session_state.df_results.empty: ##----------- Show recognition results ------------------------------------------------------------ results_cols = st.session_state.df_results.columns list_col_text = np.arange(1, len(cols_size), 2) list_col_confid = np.arange(2, len(cols_size), 2) dict_draw_reco = {'in_image': st.session_state.list_images[1], \ 'in_boxes_coordinates': st.session_state.list_boxes, \ 'in_list_texts': [st.session_state.df_results[x].to_list() \ for x in results_cols[list_col_text]], \ 'in_list_confid': [st.session_state.df_results[x].to_list() \ for x in results_cols[list_col_confid]], \ 'in_dict_back_colors': dict_back_colors, \ 'in_df_results_tesseract' : st.session_state.df_results_tesseract, \ 'in_reader_type_list': reader_type_list } show_reco = st.empty() with st.form("form3"): st.plotly_chart(fig_colorscale, use_container_width=True) col_font, col_threshold = st.columns(2) col_font.slider('Font scale', 1, 7, 1, step=1, key="font_scale_sld") col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \ step=1, key="conf_threshold_sld") col_threshold.write("(text color is black below this % confidence threshold, \ and white above)") draw_reco_images(**dict_draw_reco) submit_resize = st.form_submit_button("Refresh") if submit_resize: draw_reco_images(**dict_draw_reco, \ in_font_scale=st.session_state.font_scale_sld, \ in_conf_threshold=st.session_state.conf_threshold_sld) st.subheader("Recognition details") #with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True): with st.expander("Detailed areas for EasyOCR, PPOCR", expanded=True): cols = st.columns(cols_size) cols[0].markdown('#### Detected area') for i in range(1, (len(reader_type_list)-1)*2, 2): cols[i].markdown('#### with ' + reader_type_list[i//2]) for row in st.session_state.df_results.itertuples(): #cols = st.columns(1 + len(reader_type_list)*2) cols = st.columns(cols_size) cols[0].image(row.cropped_image, width=150) for ind_col in range(1, len(cols), 2): cols[ind_col].write(getattr(row, results_cols[ind_col])) cols[ind_col+1].write("("+str( \ getattr(row, results_cols[ind_col+1]))+"%)") st.download_button( label="Download results as CSV file", data=convert_df(st.session_state.df_results), file_name='OCR_comparator_results.csv', mime='text/csv', ) if not st.session_state.df_results_tesseract.empty: with st.expander("Detailed areas for Tesseract", expanded=False): cols = st.columns([2,2,1]) cols[0].markdown('#### Detected area') cols[1].markdown('#### with Tesseract') for row in st.session_state.df_results_tesseract.itertuples(): cols = st.columns([2,2,1]) cols[0].image(row.cropped, width=150) cols[1].write(getattr(row, 'text')) cols[2].write("("+str(getattr(row, 'conf'))+"%)") st.download_button( label="Download Tesseract results as CSV file", data=convert_df(st.session_state.df_results), file_name='OCR_comparator_Tesseract_results.csv', mime='text/csv', )