Spaces:
Running
Running
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline
|
3 |
+
from diffusers.utils import load_image
|
4 |
+
from PIL import Image as im
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
|
10 |
+
headers = {"Authorization": "Bearer HF_TOKEN"}
|
11 |
+
|
12 |
+
model_id = "instruction-tuning-sd/cartoonizer"
|
13 |
+
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
14 |
+
model_id, torch_dtype=torch.float16, use_auth_token=True
|
15 |
+
).to("cuda")
|
16 |
+
|
17 |
+
def query(payload):
|
18 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
19 |
+
return response.content
|
20 |
+
|
21 |
+
def cartoonizer(input_img,bg_prompt):
|
22 |
+
if input_img is not None:
|
23 |
+
data = im.fromarray(input_img)
|
24 |
+
data = data.resize((300,300))
|
25 |
+
org_image = load_image(data)
|
26 |
+
cart_image = pipeline("Cartoonize the following image", image=org_image).images[0]
|
27 |
+
if len(bg_prompt) !=0:
|
28 |
+
image_bytes = query({
|
29 |
+
"inputs": bg_prompt,
|
30 |
+
})
|
31 |
+
else:
|
32 |
+
image_bytes = query({
|
33 |
+
"inputs": "orange background image",
|
34 |
+
})
|
35 |
+
bg_image = im.open(io.BytesIO(image_bytes))
|
36 |
+
|
37 |
+
return [cart_image,bg_image]
|
38 |
+
else:
|
39 |
+
gr.Warning("Please upload an Input Image!")
|
40 |
+
return [input_img,input_img]
|
41 |
+
|
42 |
+
|
43 |
+
with gr.Blocks(theme = gr.themes.Citrus()) as cart:
|
44 |
+
gr.HTML("""<h1 align="center">Cartoonize your Image with best backgrounds!</h1>""")
|
45 |
+
with gr.Tab("Cartoonize"):
|
46 |
+
with gr.Row():
|
47 |
+
image_input = gr.Image()
|
48 |
+
image_output = gr.Image()
|
49 |
+
text_img_output = gr.Image()
|
50 |
+
|
51 |
+
txt_label = gr.Label("Enter your photo frame description:")
|
52 |
+
txt_input = gr.Textbox()
|
53 |
+
image_btn = gr.Button("Convert")
|
54 |
+
|
55 |
+
image_btn.click(cartoonizer,inputs = [image_input,txt_input],outputs=[image_output,text_img_output])
|
56 |
+
|
57 |
+
|
58 |
+
cart.launch()
|