import torch from diffusers import StableDiffusionInstructPix2PixPipeline from diffusers.utils import load_image from PIL import Image as im import requests import io import gradio as gr API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image" headers = {"Authorization": "Bearer HF_TOKEN"} model_id = "instruction-tuning-sd/cartoonizer" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_auth_token=True ).to(device) def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content def cartoonizer(input_img,bg_prompt): if input_img is not None: data = im.fromarray(input_img) data = data.resize((300,300)) org_image = load_image(data) cart_image = pipeline("Cartoonize the following image", image=org_image).images[0] if len(bg_prompt) !=0: image_bytes = query({ "inputs": bg_prompt, }) else: image_bytes = query({ "inputs": "orange background image", }) bg_image = im.open(io.BytesIO(image_bytes)) return [cart_image,bg_image] else: gr.Warning("Please upload an Input Image!") return [input_img,input_img] with gr.Blocks(theme = gr.themes.Citrus()) as cart: gr.HTML("""<h1 align="center">Cartoonize your Image with best backgrounds!</h1>""") with gr.Tab("Cartoonize"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() text_img_output = gr.Image() txt_label = gr.Label("Enter your photo frame description:") txt_input = gr.Textbox() image_btn = gr.Button("Convert") image_btn.click(cartoonizer,inputs = [image_input,txt_input],outputs=[image_output,text_img_output]) cart.launch()