kavyamanohar
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import re
|
6 |
+
from huggingface_hub import from_pretrained_keras
|
7 |
+
|
8 |
+
# Load the model from Hugging Face
|
9 |
+
model = from_pretrained_keras("vrclc/transliteration")
|
10 |
+
|
11 |
+
# Define source and target tokenizers
|
12 |
+
source_tokens = list('abcdefghijklmnopqrstuvwxyz ')
|
13 |
+
source_tokenizer = Tokenizer(char_level=True, filters='')
|
14 |
+
source_tokenizer.fit_on_texts(source_tokens)
|
15 |
+
|
16 |
+
malayalam_tokens = [
|
17 |
+
# Independent vowels
|
18 |
+
'അ', 'ആ', 'ഇ', 'ഈ', 'ഉ', 'ഊ', 'ഋ', 'ൠ', 'ഌ', 'ൡ', 'എ', 'ഏ', 'ഐ', 'ഒ', 'ഓ', 'ഔ',
|
19 |
+
# Consonants
|
20 |
+
'ക', 'ഖ', 'ഗ', 'ഘ', 'ങ', 'ച', 'ഛ', 'ജ', 'ഝ', 'ഞ',
|
21 |
+
'ട', 'ഠ', 'ഡ', 'ഢ', 'ണ', 'ത', 'ഥ', 'ദ', 'ധ', 'ന',
|
22 |
+
'പ', 'ഫ', 'ബ', 'ഭ', 'മ', 'യ', 'ര', 'ല', 'വ', 'ശ',
|
23 |
+
'ഷ', 'സ', 'ഹ', 'ള', 'ഴ', 'റ',
|
24 |
+
# Chillu letters
|
25 |
+
'ൺ', 'ൻ', 'ർ', 'ൽ', 'ൾ',
|
26 |
+
# Additional characters
|
27 |
+
'ം', 'ഃ', '്',
|
28 |
+
# Vowel modifiers / Signs
|
29 |
+
'ാ', 'ി', 'ീ', 'ു', 'ൂ', 'ൃ', 'ൄ', 'െ', 'േ', 'ൈ', 'ൊ', 'ോ', 'ൌ', 'ൗ', ' '
|
30 |
+
]
|
31 |
+
|
32 |
+
# Create tokenizer for Malayalam tokens
|
33 |
+
target_tokenizer = Tokenizer(char_level=True, filters='')
|
34 |
+
target_tokenizer.fit_on_texts(malayalam_tokens)
|
35 |
+
|
36 |
+
# Get max sequence length from the model
|
37 |
+
max_seq_length = model.get_layer("encoder_input").input_shape[0][1]
|
38 |
+
|
39 |
+
def transliterate_with_split_tokens(input_text, model, source_tokenizer, target_tokenizer, max_seq_length):
|
40 |
+
"""
|
41 |
+
Transliterates input text, preserving non-token characters.
|
42 |
+
"""
|
43 |
+
# Handle empty input
|
44 |
+
if not input_text:
|
45 |
+
return ""
|
46 |
+
|
47 |
+
# Regular expression to split the text into tokens and non-tokens
|
48 |
+
tokens_and_non_tokens = re.findall(r"([a-zA-Z]+)|([^a-zA-Z]+)", input_text)
|
49 |
+
transliterated_text = ""
|
50 |
+
|
51 |
+
for token_or_non_token in tokens_and_non_tokens:
|
52 |
+
token = token_or_non_token[0]
|
53 |
+
non_token = token_or_non_token[1]
|
54 |
+
|
55 |
+
if token:
|
56 |
+
# Convert to lowercase to handle mixed case
|
57 |
+
token = token.lower()
|
58 |
+
input_sequence = source_tokenizer.texts_to_sequences([token])[0]
|
59 |
+
input_sequence_padded = pad_sequences([input_sequence], maxlen=max_seq_length, padding='post')
|
60 |
+
predicted_sequence = model.predict(input_sequence_padded)
|
61 |
+
predicted_indices = np.argmax(predicted_sequence, axis=-1)[0]
|
62 |
+
transliterated_word = ''.join([target_tokenizer.index_word[idx] for idx in predicted_indices if idx != 0])
|
63 |
+
transliterated_text += transliterated_word
|
64 |
+
elif non_token:
|
65 |
+
transliterated_text += non_token
|
66 |
+
|
67 |
+
return transliterated_text
|
68 |
+
|
69 |
+
# Create Gradio interface with enhanced features
|
70 |
+
def create_transliteration_interface():
|
71 |
+
# Define input and output components with more details
|
72 |
+
input_textbox = gr.Textbox(
|
73 |
+
lines=3,
|
74 |
+
placeholder="Enter English text to transliterate to Malayalam...",
|
75 |
+
label="Input Text"
|
76 |
+
)
|
77 |
+
|
78 |
+
output_textbox = gr.Textbox(
|
79 |
+
lines=3,
|
80 |
+
label="Transliterated Malayalam Text"
|
81 |
+
)
|
82 |
+
|
83 |
+
# Create the Gradio interface with more comprehensive configuration
|
84 |
+
interface = gr.Interface(
|
85 |
+
fn=transliterate_with_split_tokens,
|
86 |
+
inputs=[
|
87 |
+
gr.Textbox(
|
88 |
+
lines=3,
|
89 |
+
placeholder="Enter English text to transliterate to Malayalam...",
|
90 |
+
label="Input Text"
|
91 |
+
)
|
92 |
+
],
|
93 |
+
outputs=[
|
94 |
+
gr.Textbox(
|
95 |
+
lines=3,
|
96 |
+
label="Transliterated Malayalam Text"
|
97 |
+
)
|
98 |
+
],
|
99 |
+
title="🌟 English to Malayalam Transliterator",
|
100 |
+
description="Transliterate English text to Malayalam characters. Simply type or paste your English text, and see the Malayalam transliteration instantly!",
|
101 |
+
article="## How to Use\n1. Enter English text in the input box\n2. The transliteration will appear automatically\n3. Works with words, phrases, and sentences",
|
102 |
+
examples=[
|
103 |
+
["ente veed"],
|
104 |
+
["malayalam"],
|
105 |
+
["hello world"],
|
106 |
+
["njan pranayam"]
|
107 |
+
],
|
108 |
+
theme="huggingface"
|
109 |
+
)
|
110 |
+
|
111 |
+
return interface
|
112 |
+
|
113 |
+
# Launch the Gradio interface
|
114 |
+
if __name__ == "__main__":
|
115 |
+
iface = create_transliteration_interface()
|
116 |
+
iface.launch()
|