Spaces:
Running
Running
File size: 6,600 Bytes
226a7b7 1885732 b45db27 5850fbf b45db27 4d7ada0 b4f0b46 4d7ada0 b45db27 4d7ada0 b45db27 4d7ada0 b4f0b46 4d7ada0 b45db27 b4f0b46 6c52d81 b45db27 4d7ada0 b45db27 c9c788f 4d7ada0 b4f0b46 4d7ada0 b4f0b46 4d7ada0 b45db27 7185cf4 79937ec 4d7ada0 b45db27 c9c788f 4d7ada0 b45db27 b4f0b46 b45db27 f13e2d2 b45db27 b4f0b46 b45db27 2efc5d6 b45db27 c9c788f b4f0b46 c9c788f b4f0b46 7e3e351 4d7ada0 b45db27 4d7ada0 b4f0b46 2cada81 79dca31 b4f0b46 87d81cd b4f0b46 87d81cd 79dca31 b45db27 c9c788f b45db27 4d7ada0 b45db27 79937ec b45db27 7185cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm
# Enable TQDM progress tracking
tqdm.monitor_interval = 0
# Load the diffusion pipelines
pipe1 = StableDiffusionXLPipeline.from_pretrained(
"kayfahaarukku/UrangDiffusion-1.4",
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
)
pipe1.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe1.scheduler.config)
pipe2 = StableDiffusionXLPipeline.from_pretrained(
"kayfahaarukku/UrangDiffusion-2.0",
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
)
pipe2.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe2.scheduler.config)
# Function to generate images from both models
@spaces.GPU
def generate_comparison(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
pipe1.to('cuda')
pipe2.to('cuda')
if randomize_seed:
seed = random.randint(0, 99999999)
if use_defaults:
prompt = f"{prompt}, best quality, amazing quality, very aesthetic"
negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}"
generator = torch.manual_seed(seed)
def callback(step, timestep, latents):
progress(step / (2 * num_inference_steps))
return
width, height = map(int, resolution.split('x'))
# Generate image with UrangDiffusion-1.4
image1 = pipe1(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1
).images[0]
# Generate image with UrangDiffusion-2.0
image2 = pipe2(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1
).images[0]
torch.cuda.empty_cache()
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"
return image1, image2, seed, metadata_text
# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
image1, image2, seed, metadata_text = generate_comparison(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
return image1, image2, seed, gr.update(value=metadata_text)
def reset_inputs():
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')
with gr.Blocks(title="UrangDiffusion Comparison Demo", theme="NoCrypt/miku@1.2.1") as demo:
gr.HTML(
"<h1>UrangDiffusion 1.4 vs 2.0 Comparison Demo</h1>"
"This demo showcases a comparison between UrangDiffusion 1.4 and 2.0."
)
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
resolution_input = gr.Radio(
choices=[
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
"1344x768", "768x1344", "1536x640", "640x1536"
],
label="Resolution",
value="832x1216"
)
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7)
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("Generate Comparison")
reset_button = gr.Button("Reset")
with gr.Column():
with gr.Row():
output_image1 = gr.Image(type="pil", label="UrangDiffusion 1.4")
output_image2 = gr.Image(type="pil", label="UrangDiffusion 2.0")
with gr.Accordion("Parameters", open=False):
gr.Markdown(
"""
This parameter is compatible with Stable Diffusion WebUI's parameter importer.
"""
)
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
gr.Markdown(
"""
### Recommended prompt formatting:
`1girl/1boy, character name, from what series, everything else in any order, best quality, amazing quality, very aesthetic`
**PS:** `best quality, amazing quality, very aesthetic` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled
### Recommended settings:
- Steps: 25-30
- CFG: 5-7
"""
)
generate_button.click(
interface_fn,
inputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
],
outputs=[output_image1, output_image2, seed_input, metadata_textbox]
)
reset_button.click(
reset_inputs,
inputs=[],
outputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
]
)
demo.queue(max_size=20).launch(share=False) |