from pathlib import Path import os import openai openai.api_key = os.getenv("OAI_KEY") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding import nest_asyncio nest_asyncio.apply() from llama_index.core import(SimpleDirectoryReader, VectorStoreIndex, StorageContext, Settings,set_global_tokenizer) from llama_index.embeddings.huggingface import HuggingFaceEmbedding from transformers import AutoTokenizer, BitsAndBytesConfig from llama_index.llms.huggingface import HuggingFaceLLM import torch import logging import sys import streamlit as st import os from llama_index.core import load_index_from_storage Settings.llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0.2) Settings.embed_model = OpenAIEmbedding( model="text-embedding-3-large", embed_batch_size=100 ) logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) def getDocs(doc_path="./data/"): documents = SimpleDirectoryReader(doc_path).load_data() return documents def getVectorIndex(): Settings.chunk_size = 512 index_set = {} if os.path.isdir(f"./storage/open_ai_embedding_data_large"): print("Index already exists") storage_context = StorageContext.from_defaults( persist_dir=f"./storage/open_ai_embedding_data_large" ) cur_index = load_index_from_storage( storage_context, ) else: print("Index does not exist, creating new index") docs = getDocs() storage_context = StorageContext.from_defaults() cur_index = VectorStoreIndex.from_documents(docs, storage_context=storage_context) storage_context.persist(persist_dir=f"./storage/open_ai_embedding_data_large") return cur_index def getQueryEngine(index): query_engine = index.as_chat_engine() return query_engine st.set_page_config(page_title="Project BookWorm: Your own Librarian!", page_icon="🦙", layout="centered", initial_sidebar_state="auto", menu_items=None) st.title("Project BookWorm: Your own Librarian!") st.info("Use this app to get recommendations for books that your kids will love!", icon="📃") if "messages" not in st.session_state.keys(): # Initialize the chat messages history st.session_state.messages = [ {"role": "assistant", "content": "Ask me a question about children's books or movies!"} ] @st.cache_resource(show_spinner=False) def load_data(): index = getVectorIndex() return index import time s_time = time.time() index = load_data() e_time = time.time() print(f"It took {e_time - s_time} to load index") if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine st.session_state.chat_engine = index.as_chat_engine(chat_mode="condense_plus_context", verbose=True) if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history st.session_state.messages.append({"role": "user", "content": prompt}) for message in st.session_state.messages: # Display the prior chat messages with st.chat_message(message["role"]): st.write(message["content"]) # If last message is not from assistant, generate a new response if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = st.session_state.chat_engine.chat(prompt) st.write(response.response) message = {"role": "assistant", "content": response.response} st.session_state.messages.append(message) # Add response to message history # if __name__ == "__main__": # index = getVectorIndex(getDocs()) # query_engine = getQueryEngine(index) # while(True): # your_request = input("Your comment: ") # response = query_engine.chat(your_request) # print(response)