import gradio as gr from transformers import pipeline import io, base64 from PIL import Image import numpy as np import tensorflow as tf import mediapy import os import sys from huggingface_hub import snapshot_download from image_tools.sizes import resize_and_crop os.system("git clone https://github.com/google-research/frame-interpolation") sys.path.append("frame-interpolation") from eval import interpolator, util ffmpeg_path = util.get_ffmpeg_path() mediapy.set_ffmpeg(ffmpeg_path) model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") interpolator = interpolator.Interpolator(model, None) def resize(width, img): basewidth = width img = Image.open(img) wpercent = (basewidth / float(img.size[0])) hsize = int((float(img.size[1]) * float(wpercent))) img = img.resize((basewidth, hsize), Image.ANTIALIAS) return img def resize_img(img1, img2, output_name): img_target_size = Image.open(img1) img_to_resize = resize_and_crop( img2, (img_target_size.size[0], img_target_size.size[1]), crop_origin="middle" ) img_to_resize.save(output_name) def generate_interpolation(frame1, frame2, frame3, frame4, frame5, frame6, times_to_interpolate): frame1 = resize(256, frame1) frame2 = resize(256, frame2) frame3 = resize(256, frame3) frame4 = resize(256, frame4) frame5 = resize(256, frame5) frame6 = resize(256, frame6) frame1.save("test1.png") frame2.save("test2.png") frame3.save("test3.png") frame4.save("test4.png") frame5.save("test5.png") frame6.save("test6.png") resize_img("test1.png", "test2.png", "resized_img2.png") resize_img("test1.png", "test3.png", "resized_img3.png") resize_img("test1.png", "test4.png", "resized_img4.png") resize_img("test1.png", "test5.png", "resized_img5.png") resize_img("test1.png", "test6.png", "resized_img6.png") input_frames = ["test1.png", "resized_img2.png", "resized_img3.png", "resized_img4.png", "resized_img5.png", "resized_img6.png"] frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator)) mediapy.write_video("out.mp4", frames, fps=30) return "out.mp4" demo = gr.Blocks() with demo: with gr.Row(): # Left column (inputs) with gr.Column(): with gr.Row(): # upload images and get image strings input_arr = [ gr.inputs.Image(type='filepath'), gr.inputs.Image(type='filepath'), gr.inputs.Image(type='filepath'), gr.inputs.Image(type='filepath'), gr.inputs.Image(type='filepath'), gr.inputs.Image(type='filepath'), ] with gr.Row(): input_arr.append(gr.inputs.Slider(minimum=2, maximum=4, step=1)) # Rows of instructions & buttons with gr.Row(): gr.Markdown("After uploading some images, hit the 'Generate Video' button to create a short video!") button_gen_video = gr.Button("Generate Video") # Right column (outputs) with gr.Column(): output_interpolation = gr.Video(label="Generated Video") # Bind functions to buttons button_gen_video.click(fn=generate_interpolation, inputs=input_arr, outputs=output_interpolation) demo.launch(debug=True, enable_queue=True)