from shiny import App, ui, render, reactive from shinywidgets import output_widget, render_widget import fastf1 as ff1 import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib import cm import numpy as np ff1.Cache.enable_cache('.\cache') app_ui = ui.page_fluid( ui.div( ui.input_select( "track", label="Track", choices=["Austria", "Hungary"] ), class_="d-flex gap-3" ), ui.output_plot("gear") ) def server(input, output, session): @reactive.Calc def get_data(): session = ff1.get_session(2023, input.track, 'R') session.load() lap = session.laps.pick_fastest() tel = lap.get_telemetry() #converting data to numpy data tables x = np.array(tel['X'].values) y = np.array(tel['Y'].values) points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) gear = tel['nGear'].to_numpy().astype(float) return lap, tel, x, y, points, segments, gear @output @render_widget def gear(): lap = get_data().lap tel = get_data().tel points = get_data().points segments = get_data().segments cmap = cm.get_cmap('Paired') lc_comp = LineCollection(segments, norm=plt.Normalize(1, cmap.N+1), cmap=cmap) lc_comp.set_array(gear) lc_comp.set_linewidth(4) plt.gca().add_collection(lc_comp) plt.axis('equal') plt.tick_params(labelleft=False, left=False, labelbottom=False, bottom=False) ##title = plt.suptitle( ## f"Fastest Lap Gear Shift Visualization\n" ## f"{lap['Driver']} - {session.event['EventName']} {session.event.year}" ## ) cbar = plt.colorbar(mappable=lc_comp, label="Gear", boundaries=np.arange(1, 10)) cbar.set_ticks(np.arange(1.5, 9.5)) cbar.set_ticklabels(np.arange(1, 9)) return plt app = App(app_ui, server)