Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,91 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
from munch import munchify
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
from torchvision.transforms import functional as F
|
10 |
+
from diffusers import (
|
11 |
+
AutoPipelineForInpainting,
|
12 |
+
)
|
13 |
+
from generate_dataset import outpainting_generator_rectangle
|
14 |
|
15 |
+
|
16 |
+
transform = transforms.Compose([
|
17 |
+
transforms.ToPILImage(),
|
18 |
+
transforms.Resize((512, 512), interpolation=F.InterpolationMode.LANCZOS),
|
19 |
+
])
|
20 |
+
|
21 |
+
def pref_inpainting(image,
|
22 |
+
box_width_ratio,
|
23 |
+
mask_random_start,
|
24 |
+
steps,
|
25 |
+
):
|
26 |
+
with open("/data0/kendong/Diffusions/zero123-live/configs/imagereward_train_configs.yaml") as file:
|
27 |
+
config_dict= yaml.safe_load(file)
|
28 |
+
config = munchify(config_dict)
|
29 |
+
|
30 |
+
pipe = AutoPipelineForInpainting.from_pretrained(
|
31 |
+
'/data1/kendong/joint-rl-diffusion/alignment_log/exp_reward_group_regression_all_1w_1.6boundary/iteration_2560', num_inference_steps=steps)
|
32 |
+
|
33 |
+
pipe = pipe.to("cuda")
|
34 |
+
|
35 |
+
|
36 |
+
color, mask = outpainting_generator_rectangle(image, box_width_ratio/100, mask_random_start)
|
37 |
+
mask = mask.convert('L')
|
38 |
+
|
39 |
+
color, mask = np.array(color).transpose(2, 0, 1), np.array(mask)
|
40 |
+
mask = mask[None, ...]
|
41 |
+
mask_ = np.zeros_like(mask)
|
42 |
+
mask_[mask < 125] = 0
|
43 |
+
mask_[mask >= 125] = 1
|
44 |
+
|
45 |
+
color = torch.from_numpy(color).to("cuda")
|
46 |
+
mask = torch.from_numpy(mask).to("cuda")
|
47 |
+
|
48 |
+
|
49 |
+
color, mask = transform(color), transform(mask)
|
50 |
+
res = pipe(prompt='', image=color, mask_image=mask, eta=config.eta).images[0]
|
51 |
+
|
52 |
+
|
53 |
+
res.save(os.path.join('./', 'test.png'))
|
54 |
+
|
55 |
+
return color, res
|
56 |
+
|
57 |
+
|
58 |
+
inputs = [
|
59 |
+
gr.Image(type="pil", image_mode="RGBA", label='Input Image'), # shape=[512, 512]
|
60 |
+
gr.Slider(30, 45, value=35, step=1, label="box_width_ratio"),
|
61 |
+
gr.Slider(0, 256, value=125, step=1, label="mask_random_start"),
|
62 |
+
gr.Slider(30, 100, value=50, step=5, label="steps"),
|
63 |
+
]
|
64 |
+
|
65 |
+
outputs = [
|
66 |
+
gr.Image(type="pil", image_mode="RGBA", label='Mask RGB Image', container=True, width="65%"),
|
67 |
+
gr.Image(type="pil", image_mode="RGBA", label='Results', container=True, width="65%"),
|
68 |
+
]
|
69 |
+
|
70 |
+
examples = [
|
71 |
+
["/data0/kendong/Diffusions/zero123-live/test_demo/assets/ILSVRC2012_test_00000003.JPEG", 35, 125, 50],
|
72 |
+
["/data0/kendong/Diffusions/zero123-live/test_demo/assets/ILSVRC2012_test_00000181.JPEG", 35, 125, 50],
|
73 |
+
["/data0/kendong/Diffusions/zero123-live/test_demo/assets/ILSVRC2012_test_00002334.JPEG", 35, 125, 50],
|
74 |
+
["/data0/kendong/Diffusions/zero123-live/test_demo/assets/ILSVRC2012_test_00002613.JPEG", 35, 125, 50],
|
75 |
+
]
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
iface = gr.Interface(
|
80 |
+
fn=pref_inpainting,
|
81 |
+
inputs=inputs,
|
82 |
+
outputs=outputs,
|
83 |
+
title="Inpainting with Human Preference (Utilizing Free CPU Resources)",
|
84 |
+
description="Upload an image and start your inpainting (currently only supporting outpainting masks; other mask types coming soon).",
|
85 |
+
theme="default",
|
86 |
+
examples= examples,
|
87 |
+
allow_flagging="never"
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
iface.launch(share=True)
|