Spaces:
Build error
Build error
Upload dalle/utils/sampling.py with huggingface_hub
Browse files- dalle/utils/sampling.py +152 -0
dalle/utils/sampling.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Minimal DALL-E
|
3 |
+
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from typing import Optional
|
9 |
+
from tqdm import tqdm
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
|
13 |
+
def cutoff_topk_logits(logits: torch.FloatTensor, k: int) -> torch.FloatTensor:
|
14 |
+
if k is None:
|
15 |
+
return logits
|
16 |
+
else:
|
17 |
+
v, ix = torch.topk(logits, k)
|
18 |
+
out = logits.clone()
|
19 |
+
out[out < v[:, [-1]]] = -float('Inf')
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
def cutoff_topp_probs(probs: torch.FloatTensor, p: float) -> torch.FloatTensor:
|
24 |
+
if p is None:
|
25 |
+
return probs
|
26 |
+
else:
|
27 |
+
sorted_probs, sorted_indices = torch.sort(probs, dim=-1, descending=True)
|
28 |
+
cum_probs = torch.cumsum(sorted_probs, dim=-1)
|
29 |
+
|
30 |
+
sorted_idx_remove_cond = cum_probs >= p
|
31 |
+
|
32 |
+
sorted_idx_remove_cond[..., 1:] = sorted_idx_remove_cond[..., :-1].clone()
|
33 |
+
sorted_idx_remove_cond[..., 0] = 0
|
34 |
+
|
35 |
+
indices_to_remove = sorted_idx_remove_cond.scatter(-1, sorted_indices, sorted_idx_remove_cond)
|
36 |
+
probs = probs.masked_fill(indices_to_remove, 0.0)
|
37 |
+
norm_probs = probs / torch.sum(probs, dim=-1, keepdim=True)
|
38 |
+
return norm_probs
|
39 |
+
|
40 |
+
|
41 |
+
def get_positional_encoding(inputs: torch.LongTensor, mode: str = '1d') -> torch.LongTensor:
|
42 |
+
device = inputs.device
|
43 |
+
if mode == '1d':
|
44 |
+
B, N = inputs.shape
|
45 |
+
xs_pos = torch.arange(N, device=device).repeat((B, 1))
|
46 |
+
elif mode == '2d':
|
47 |
+
B, H, W = inputs.shape
|
48 |
+
xs_pos_h = torch.arange(H, device=device).repeat(B, W, 1).transpose(1, 2)
|
49 |
+
xs_pos_w = torch.arange(W, device=device).repeat(B, H, 1)
|
50 |
+
xs_pos = (xs_pos_h, xs_pos_w)
|
51 |
+
else:
|
52 |
+
raise ValueError('%s positional encoding invalid' % mode)
|
53 |
+
return xs_pos
|
54 |
+
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def sampling(model: torch.nn.Module,
|
58 |
+
tokens: torch.LongTensor,
|
59 |
+
top_k: Optional[float] = None,
|
60 |
+
top_p: Optional[float] = None,
|
61 |
+
softmax_temperature: float = 1.0,
|
62 |
+
is_tqdm: bool = True,
|
63 |
+
use_fp16: bool = True,
|
64 |
+
max_seq_len: int = 256) -> torch.LongTensor:
|
65 |
+
code = None
|
66 |
+
past = None
|
67 |
+
|
68 |
+
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
|
69 |
+
pos_enc_tokens = get_positional_encoding(tokens, mode='1d')
|
70 |
+
|
71 |
+
for cnt, h in enumerate(pbar):
|
72 |
+
if code is None:
|
73 |
+
code_ = None
|
74 |
+
pos_enc_code_ = None
|
75 |
+
else:
|
76 |
+
code_ = code.clone().detach()
|
77 |
+
pos_enc_code_ = get_positional_encoding(code_, mode='1d')
|
78 |
+
code_ = code_[:, cnt-1].unsqueeze(-1)
|
79 |
+
pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)
|
80 |
+
|
81 |
+
logits, present = model.sampling(images=code_,
|
82 |
+
texts=tokens,
|
83 |
+
pos_images=pos_enc_code_,
|
84 |
+
pos_texts=pos_enc_tokens,
|
85 |
+
use_fp16=use_fp16,
|
86 |
+
past=past)
|
87 |
+
logits = logits.to(dtype=torch.float32)
|
88 |
+
logits = logits / softmax_temperature
|
89 |
+
|
90 |
+
present = torch.stack(present).clone().detach()
|
91 |
+
if past is None:
|
92 |
+
past = [present]
|
93 |
+
else:
|
94 |
+
past.append(present)
|
95 |
+
|
96 |
+
logits = cutoff_topk_logits(logits, top_k)
|
97 |
+
probs = F.softmax(logits, dim=-1)
|
98 |
+
probs = cutoff_topp_probs(probs, top_p)
|
99 |
+
|
100 |
+
idx = torch.multinomial(probs, num_samples=1).clone().detach()
|
101 |
+
code = idx if code is None else torch.cat([code, idx], axis=1)
|
102 |
+
|
103 |
+
del past
|
104 |
+
return code
|
105 |
+
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def sampling_igpt(model: torch.nn.Module,
|
109 |
+
sos: torch.FloatTensor,
|
110 |
+
top_k: Optional[float] = None,
|
111 |
+
top_p: Optional[float] = None,
|
112 |
+
softmax_temperature: float = 1.0,
|
113 |
+
is_tqdm: bool = True,
|
114 |
+
use_fp16: bool = True,
|
115 |
+
max_seq_len: int = 256) -> torch.LongTensor:
|
116 |
+
code = None
|
117 |
+
past = None
|
118 |
+
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
|
119 |
+
|
120 |
+
for cnt, h in enumerate(pbar):
|
121 |
+
if code is None:
|
122 |
+
code_ = None
|
123 |
+
pos_enc_code_ = None
|
124 |
+
else:
|
125 |
+
code_ = code.clone().detach()
|
126 |
+
pos_enc_code_ = get_positional_encoding(code_, mode='1d')
|
127 |
+
code_ = code_[:, cnt-1].unsqueeze(-1)
|
128 |
+
pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)
|
129 |
+
|
130 |
+
logits, present = model.sampling(sos=sos,
|
131 |
+
codes=code_,
|
132 |
+
pos_codes=pos_enc_code_,
|
133 |
+
use_fp16=use_fp16,
|
134 |
+
past=past)
|
135 |
+
logits = logits.to(dtype=torch.float32)
|
136 |
+
logits = logits / softmax_temperature
|
137 |
+
|
138 |
+
present = torch.stack(present).clone().detach()
|
139 |
+
if past is None:
|
140 |
+
past = [present]
|
141 |
+
else:
|
142 |
+
past.append(present)
|
143 |
+
|
144 |
+
logits = cutoff_topk_logits(logits, top_k)
|
145 |
+
probs = F.softmax(logits, dim=-1)
|
146 |
+
probs = cutoff_topp_probs(probs, top_p)
|
147 |
+
|
148 |
+
idx = torch.multinomial(probs, num_samples=1).clone().detach()
|
149 |
+
code = idx if code is None else torch.cat([code, idx], axis=1)
|
150 |
+
|
151 |
+
del past
|
152 |
+
return code
|