Spaces:
Running
Running
kendrickfff
commited on
Commit
•
7fb780e
1
Parent(s):
ddb0e33
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,20 @@ from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
|
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
from torchvision import models, transforms
|
|
|
|
|
7 |
|
8 |
-
# Set
|
9 |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "./firm-catalyst-437006-s4-407500537db5.json"
|
10 |
-
llm = ChatGoogleGenerativeAI(model='gemini-1.5-pro')
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
13 |
model = models.resnet50(pretrained=True)
|
14 |
-
model.eval()
|
15 |
|
16 |
-
#
|
17 |
transform = transforms.Compose([
|
18 |
transforms.Resize(256),
|
19 |
transforms.CenterCrop(224),
|
@@ -21,68 +25,62 @@ transform = transforms.Compose([
|
|
21 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
22 |
])
|
23 |
|
24 |
-
# Load
|
25 |
LABELS_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
|
26 |
-
labels =
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
response = requests.get(LABELS_URL)
|
31 |
-
with open("imagenet_labels.json", "wb") as f:
|
32 |
-
f.write(response.content)
|
33 |
-
|
34 |
-
import json
|
35 |
-
with open("imagenet_labels.json") as f:
|
36 |
-
labels = json.load(f)
|
37 |
|
38 |
-
def chat_with_gemini(message
|
39 |
-
|
|
|
40 |
bot_response = llm.predict(message)
|
41 |
chat_history.append((message, bot_response))
|
42 |
-
|
43 |
-
return chat_history, chat_history
|
44 |
|
45 |
-
def analyze_image(image_path
|
46 |
-
|
|
|
47 |
image = Image.open(image_path).convert("RGB")
|
48 |
image_tensor = transform(image).unsqueeze(0)
|
49 |
-
|
50 |
-
# Predict the image class
|
51 |
with torch.no_grad():
|
52 |
outputs = model(image_tensor)
|
53 |
_, predicted_idx = outputs.max(1)
|
54 |
|
55 |
-
# Retrieve the label
|
56 |
label = labels[predicted_idx.item()]
|
57 |
-
|
58 |
-
# Respond with the classification result
|
59 |
bot_response = f"The image seems to be: {label}."
|
60 |
chat_history.append(("Uploaded an image for analysis", bot_response))
|
61 |
-
|
62 |
-
return chat_history, chat_history
|
63 |
|
64 |
-
#
|
65 |
-
with gr.Blocks() as
|
66 |
gr.Markdown("# Ken Chatbot")
|
67 |
gr.Markdown("Ask me anything or upload an image for analysis!")
|
68 |
|
69 |
-
# Chatbot
|
70 |
chatbot = gr.Chatbot(elem_id="chatbot")
|
71 |
-
|
72 |
# User input components
|
73 |
-
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...")
|
74 |
send_btn = gr.Button("Send")
|
75 |
img_upload = gr.Image(type="filepath", label="Upload an image for analysis")
|
76 |
|
77 |
-
# State for chat history
|
78 |
-
state = gr.State([])
|
79 |
-
|
80 |
# Define interactions
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Custom CSS for styling
|
86 |
gr.HTML("""
|
87 |
<style>
|
88 |
#chatbot .message-container {
|
@@ -110,5 +108,5 @@ with gr.Blocks() as iface:
|
|
110 |
</style>
|
111 |
""")
|
112 |
|
113 |
-
# Launch
|
114 |
-
|
|
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
from torchvision import models, transforms
|
7 |
+
import json
|
8 |
+
import requests
|
9 |
|
10 |
+
# Set the environment variable for Google Application Credentials
|
11 |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "./firm-catalyst-437006-s4-407500537db5.json"
|
|
|
12 |
|
13 |
+
# Initialize the chat model with Hugging Face-specific environment variables
|
14 |
+
llm = ChatGoogleGenerativeAI(model='gemini-1.5-pro')
|
15 |
+
|
16 |
+
# Load a pre-trained ResNet50 model for image classification
|
17 |
model = models.resnet50(pretrained=True)
|
18 |
+
model.eval()
|
19 |
|
20 |
+
# Transformation pipeline for image preprocessing
|
21 |
transform = transforms.Compose([
|
22 |
transforms.Resize(256),
|
23 |
transforms.CenterCrop(224),
|
|
|
25 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
26 |
])
|
27 |
|
28 |
+
# Load ImageNet labels
|
29 |
LABELS_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
|
30 |
+
labels = json.loads(requests.get(LABELS_URL).text)
|
31 |
|
32 |
+
# Global chat history variable
|
33 |
+
chat_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
def chat_with_gemini(message):
|
36 |
+
global chat_history
|
37 |
+
# Get a response from the language model
|
38 |
bot_response = llm.predict(message)
|
39 |
chat_history.append((message, bot_response))
|
40 |
+
return chat_history
|
|
|
41 |
|
42 |
+
def analyze_image(image_path):
|
43 |
+
global chat_history
|
44 |
+
# Open, preprocess, and classify the image
|
45 |
image = Image.open(image_path).convert("RGB")
|
46 |
image_tensor = transform(image).unsqueeze(0)
|
47 |
+
|
|
|
48 |
with torch.no_grad():
|
49 |
outputs = model(image_tensor)
|
50 |
_, predicted_idx = outputs.max(1)
|
51 |
|
|
|
52 |
label = labels[predicted_idx.item()]
|
|
|
|
|
53 |
bot_response = f"The image seems to be: {label}."
|
54 |
chat_history.append(("Uploaded an image for analysis", bot_response))
|
55 |
+
return chat_history
|
|
|
56 |
|
57 |
+
# Build the Gradio interface
|
58 |
+
with gr.Blocks() as demo:
|
59 |
gr.Markdown("# Ken Chatbot")
|
60 |
gr.Markdown("Ask me anything or upload an image for analysis!")
|
61 |
|
62 |
+
# Chatbot display without "User" or "Bot" labels
|
63 |
chatbot = gr.Chatbot(elem_id="chatbot")
|
64 |
+
|
65 |
# User input components
|
66 |
+
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...", show_label=False)
|
67 |
send_btn = gr.Button("Send")
|
68 |
img_upload = gr.Image(type="filepath", label="Upload an image for analysis")
|
69 |
|
|
|
|
|
|
|
70 |
# Define interactions
|
71 |
+
def handle_text_message(message):
|
72 |
+
return chat_with_gemini(message)
|
73 |
+
|
74 |
+
def handle_image_upload(image_path):
|
75 |
+
return analyze_image(image_path)
|
76 |
+
|
77 |
+
# Set up Gradio components with Enter key for sending
|
78 |
+
msg.submit(handle_text_message, msg, chatbot)
|
79 |
+
send_btn.click(handle_text_message, msg, chatbot)
|
80 |
+
send_btn.click(lambda: "", None, msg) # Clear input field
|
81 |
+
img_upload.change(handle_image_upload, img_upload, chatbot)
|
82 |
|
83 |
+
# Custom CSS for styling without usernames
|
84 |
gr.HTML("""
|
85 |
<style>
|
86 |
#chatbot .message-container {
|
|
|
108 |
</style>
|
109 |
""")
|
110 |
|
111 |
+
# Launch for Hugging Face Spaces
|
112 |
+
demo.launch()
|