Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,19 @@
|
|
| 1 |
-
import os
|
| 2 |
import gradio as gr
|
| 3 |
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
| 6 |
from torchvision import models, transforms
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
llm = ChatGoogleGenerativeAI(model='gemini-1.5-pro')
|
| 11 |
|
| 12 |
-
# Load a pre-trained ResNet50 model for image
|
| 13 |
model = models.resnet50(pretrained=True)
|
| 14 |
-
model.eval()
|
| 15 |
|
| 16 |
-
#
|
| 17 |
transform = transforms.Compose([
|
| 18 |
transforms.Resize(256),
|
| 19 |
transforms.CenterCrop(224),
|
|
@@ -21,68 +21,64 @@ transform = transforms.Compose([
|
|
| 21 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 22 |
])
|
| 23 |
|
| 24 |
-
# Load
|
| 25 |
LABELS_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
|
| 26 |
-
labels =
|
| 27 |
-
|
| 28 |
-
if not os.path.exists("imagenet_labels.json"):
|
| 29 |
-
import requests
|
| 30 |
-
response = requests.get(LABELS_URL)
|
| 31 |
-
with open("imagenet_labels.json", "wb") as f:
|
| 32 |
-
f.write(response.content)
|
| 33 |
-
|
| 34 |
-
import json
|
| 35 |
-
with open("imagenet_labels.json") as f:
|
| 36 |
-
labels = json.load(f)
|
| 37 |
|
| 38 |
def chat_with_gemini(message, chat_history):
|
| 39 |
-
#
|
| 40 |
bot_response = llm.predict(message)
|
| 41 |
chat_history.append((message, bot_response))
|
| 42 |
-
|
| 43 |
-
return chat_history, chat_history
|
| 44 |
|
| 45 |
def analyze_image(image_path, chat_history):
|
| 46 |
-
#
|
| 47 |
image = Image.open(image_path).convert("RGB")
|
| 48 |
image_tensor = transform(image).unsqueeze(0)
|
| 49 |
-
|
| 50 |
-
# Predict the image class
|
| 51 |
with torch.no_grad():
|
| 52 |
outputs = model(image_tensor)
|
| 53 |
_, predicted_idx = outputs.max(1)
|
| 54 |
|
| 55 |
-
# Retrieve the label
|
| 56 |
label = labels[predicted_idx.item()]
|
| 57 |
-
|
| 58 |
-
# Respond with the classification result
|
| 59 |
bot_response = f"The image seems to be: {label}."
|
| 60 |
chat_history.append(("Uploaded an image for analysis", bot_response))
|
| 61 |
-
|
| 62 |
-
return chat_history, chat_history
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
with gr.Blocks() as
|
| 66 |
gr.Markdown("# Ken Chatbot")
|
| 67 |
gr.Markdown("Ask me anything or upload an image for analysis!")
|
| 68 |
|
| 69 |
-
# Chatbot
|
| 70 |
chatbot = gr.Chatbot(elem_id="chatbot")
|
| 71 |
-
|
| 72 |
# User input components
|
| 73 |
-
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...")
|
| 74 |
send_btn = gr.Button("Send")
|
| 75 |
img_upload = gr.Image(type="filepath", label="Upload an image for analysis")
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
|
| 80 |
# Define interactions
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
# Custom CSS for styling
|
| 86 |
gr.HTML("""
|
| 87 |
<style>
|
| 88 |
#chatbot .message-container {
|
|
@@ -110,5 +106,4 @@ with gr.Blocks() as iface:
|
|
| 110 |
</style>
|
| 111 |
""")
|
| 112 |
|
| 113 |
-
# Launch the Gradio interface
|
| 114 |
iface.launch(debug=True)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
from torchvision import models, transforms
|
| 6 |
+
import json
|
| 7 |
+
import requests
|
| 8 |
|
| 9 |
+
# Initialize the chat model with Hugging Face-specific environment variables
|
| 10 |
+
llm = ChatGoogleGenerativeAI(model='gemini-1.5-pro')
|
|
|
|
| 11 |
|
| 12 |
+
# Load a pre-trained ResNet50 model for image classification
|
| 13 |
model = models.resnet50(pretrained=True)
|
| 14 |
+
model.eval()
|
| 15 |
|
| 16 |
+
# Transformation pipeline for image preprocessing
|
| 17 |
transform = transforms.Compose([
|
| 18 |
transforms.Resize(256),
|
| 19 |
transforms.CenterCrop(224),
|
|
|
|
| 21 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 22 |
])
|
| 23 |
|
| 24 |
+
# Load ImageNet labels
|
| 25 |
LABELS_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
|
| 26 |
+
labels = json.loads(requests.get(LABELS_URL).text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def chat_with_gemini(message, chat_history):
|
| 29 |
+
# Get a response from the language model
|
| 30 |
bot_response = llm.predict(message)
|
| 31 |
chat_history.append((message, bot_response))
|
| 32 |
+
return chat_history
|
|
|
|
| 33 |
|
| 34 |
def analyze_image(image_path, chat_history):
|
| 35 |
+
# Open, preprocess, and classify the image
|
| 36 |
image = Image.open(image_path).convert("RGB")
|
| 37 |
image_tensor = transform(image).unsqueeze(0)
|
| 38 |
+
|
|
|
|
| 39 |
with torch.no_grad():
|
| 40 |
outputs = model(image_tensor)
|
| 41 |
_, predicted_idx = outputs.max(1)
|
| 42 |
|
|
|
|
| 43 |
label = labels[predicted_idx.item()]
|
|
|
|
|
|
|
| 44 |
bot_response = f"The image seems to be: {label}."
|
| 45 |
chat_history.append(("Uploaded an image for analysis", bot_response))
|
| 46 |
+
return chat_history
|
|
|
|
| 47 |
|
| 48 |
+
# Build the Gradio interface
|
| 49 |
+
with gr.Blocks() as demo:
|
| 50 |
gr.Markdown("# Ken Chatbot")
|
| 51 |
gr.Markdown("Ask me anything or upload an image for analysis!")
|
| 52 |
|
| 53 |
+
# Chatbot display without "User" or "Bot" labels
|
| 54 |
chatbot = gr.Chatbot(elem_id="chatbot")
|
| 55 |
+
|
| 56 |
# User input components
|
| 57 |
+
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...", show_label=False)
|
| 58 |
send_btn = gr.Button("Send")
|
| 59 |
img_upload = gr.Image(type="filepath", label="Upload an image for analysis")
|
| 60 |
|
| 61 |
+
# Local chat history state
|
| 62 |
+
chat_history = []
|
| 63 |
|
| 64 |
# Define interactions
|
| 65 |
+
def handle_text_message(message):
|
| 66 |
+
nonlocal chat_history
|
| 67 |
+
chat_history = chat_with_gemini(message, chat_history)
|
| 68 |
+
return chat_history
|
| 69 |
+
|
| 70 |
+
def handle_image_upload(image_path):
|
| 71 |
+
nonlocal chat_history
|
| 72 |
+
chat_history = analyze_image(image_path, chat_history)
|
| 73 |
+
return chat_history
|
| 74 |
+
|
| 75 |
+
# Set up Gradio components with Enter key for sending
|
| 76 |
+
msg.submit(handle_text_message, msg, chatbot)
|
| 77 |
+
send_btn.click(handle_text_message, msg, chatbot)
|
| 78 |
+
send_btn.click(lambda: "", None, msg) # Clear input field
|
| 79 |
+
img_upload.change(handle_image_upload, img_upload, chatbot)
|
| 80 |
|
| 81 |
+
# Custom CSS for styling without usernames
|
| 82 |
gr.HTML("""
|
| 83 |
<style>
|
| 84 |
#chatbot .message-container {
|
|
|
|
| 106 |
</style>
|
| 107 |
""")
|
| 108 |
|
|
|
|
| 109 |
iface.launch(debug=True)
|