import os import gradio as gr from langchain_google_genai.chat_models import ChatGoogleGenerativeAI # Set the path to the service account key os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "./firm-catalyst-437006-s4-407500537db5.json" # Initialize the language model with required parameters # Replace 'your-model-name' with the actual model you intend to use llm = ChatGoogleGenerativeAI(model='gemini-1.5-pro') # Chat function def chat_with_gemini(user_input, chat_history): try: # Append the user input to the chat history chat_history.append(("User", user_input)) # Get response from the model response = llm.predict(user_input) # Append the bot's response to the chat history chat_history.append(("Bot", response)) # Return the updated chat history return chat_history except Exception as e: # In case of an error, return the error message in the chat chat_history.append(("Bot", f"Error: {str(e)}")) return chat_history # Create a Gradio interface with gr.Blocks() as iface: gr.Markdown("# Ken Chatbot") gr.Markdown("Ask me anything!") chatbot = gr.Chatbot() # Initialize the chatbot msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message and press enter to send your message...") # Text input for user messages state = gr.State([]) # Store chat history # Set up the interaction for when the user submits a message msg.submit(chat_with_gemini, [msg, state], [chatbot]) # Update chatbot with new messages msg.submit(lambda: "", None, msg) # Clear the input box after submission # Launch the interface with debugging enabled iface.launch(debug=True)