!pip install langchain google-generativeai langchain-google-genai gradio import os # Set the path to the service account key os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/content/firm-catalyst-437006-s4-407500537db5.json" import os import gradio as gr from langchain_google_genai.chat_models import ChatGoogleGenerativeAI # Set the path to the service account key os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/content/firm-catalyst-437006-s4-407500537db5.json" # Initialize the LLM llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro") def chat_with_gemini(user_input): try: # Prepare the prompt in the expected format response = llm.predict(user_input) # Using the 'predict' method instead return response except Exception as e: return f"Error: {str(e)}" # Create a Gradio interface iface = gr.Interface( fn=chat_with_gemini, inputs="text", outputs="text", title="Chatbot with Gemini 1.5", description="Ask me anything!" ) # Launch the interface with debugging iface.launch(debug=True)