import os import gradio as gr from langchain_google_genai.chat_models import ChatGoogleGenerativeAI # Set the path to the service account key os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "./firm-catalyst-437006-s4-407500537db5.json" # Initialize the LLM llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro") # Chat function def chat_with_gemini(user_input, chat_history=[]): try: # Prepare the prompt and include chat history conversation = "\n".join([f"User: {msg[0]}\nBot: {msg[1]}" for msg in chat_history]) conversation += f"\nUser: {user_input}\nBot:" # Get response from the model response = llm.predict(conversation) # Assuming 'predict' method is used for response generation # Update chat history chat_history.append((user_input, response)) return response, chat_history except Exception as e: return f"Error: {str(e)}", chat_history # Create Gradio interface iface = gr.Interface( fn=chat_with_gemini, inputs=["text", "state"], # Use "state" to maintain chat history outputs=["text", "state"], # Return updated chat history title="Chatbot with Gemini 1.5", description="Ask me anything!", theme="default", # Optional: Specify a theme if desired live=True ) # Launch the interface with debugging enabled iface.launch(debug=True)