kendrickfff's picture
Create app.py
b863376 verified
raw
history blame
9.79 kB
import os
import shutil
import subprocess
import zipfile
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.optim import lr_scheduler
import subprocess
import zipfile
from PIL import Image
import gradio as gr
# Step 1: Setup Kaggle API
# Ensure the .kaggle directory exists
kaggle_dir = os.path.expanduser("~/.kaggle")
if not os.path.exists(kaggle_dir):
os.makedirs(kaggle_dir)
# Step 2: Copy the kaggle.json file to the ~/.kaggle directory
kaggle_json_path = "kaggle.json"
kaggle_dest_path = os.path.join(kaggle_dir, "kaggle.json")
if not os.path.exists(kaggle_dest_path):
shutil.copy(kaggle_json_path, kaggle_dest_path)
os.chmod(kaggle_dest_path, 0o600)
print("Kaggle API key copied and permissions set.")
else:
print("Kaggle API key already exists.")
# Step 3: Download the dataset from Kaggle using Kaggle CLI
dataset_name = "mostafaabla/garbage-classification"
print(f"Downloading the dataset: {dataset_name}")
download_command = f"kaggle datasets download -d {dataset_name}"
# Run the download command
subprocess.run(download_command, shell=True)
# Step 4: Unzip the downloaded dataset
dataset_zip = "garbage-classification.zip"
extracted_folder = "./garbage-classification"
# Check if the zip file exists
if os.path.exists(dataset_zip):
if not os.path.exists(extracted_folder):
with zipfile.ZipFile(dataset_zip, 'r') as zip_ref:
zip_ref.extractall(extracted_folder)
print("Dataset unzipped successfully!")
else:
print("Dataset already unzipped.")
else:
print(f"Dataset zip file '{dataset_zip}' not found.")
# Path to the data directory
data_dir = 'C:\\Users\\kendr\\Downloads\\data' # Adjust this if necessary
# Define data transformations
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomRotation(15),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'valid': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# Create the datasets from the image folder
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in ['train', 'valid']}
# Create the dataloaders
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4)
for x in ['train', 'valid']}
# Class names
class_names = image_datasets['train'].classes
print(f"Classes: {class_names}")
# Check if a GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load pre-trained ResNet50 model
model = models.resnet50(weights='ResNet50_Weights.DEFAULT') # Use weights instead of pretrained
# Modify the final layer to match the number of classes
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(class_names)) # Output classes match
# Move the model to the GPU if available
model = model.to(device)
# Loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Learning rate scheduler
scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
# Number of epochs
num_epochs = 10
# Training function with detailed output for each epoch
def train_model(model, criterion, optimizer, scheduler, num_epochs=10):
since = time.time()
best_model_wts = model.state_dict()
best_acc = 0.0
for epoch in range(num_epochs):
epoch_start = time.time() # Start time for this epoch
print(f'Epoch {epoch + 1}/{num_epochs}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'valid']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# Backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# Statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
# Calculate epoch loss and accuracy
epoch_loss = running_loss / len(image_datasets[phase])
epoch_acc = running_corrects.double() / len(image_datasets[phase])
# Print loss and accuracy for each phase
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# Deep copy the model if it's the best accuracy
if phase == 'valid' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = model.state_dict()
epoch_end = time.time() # End time for this epoch
print(f'Epoch {epoch + 1} completed in {epoch_end - epoch_start:.2f} seconds.')
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:.4f}')
# Load best model weights
model.load_state_dict(best_model_wts)
return model
# Train the model
best_model = train_model(model, criterion, optimizer, scheduler, num_epochs=num_epochs)
# Save the model
torch.save(model.state_dict(), 'resnet50_garbage_classification.pth')
import pickle
# Manually creating the history dictionary based on the logs you provided
history = {
'train_loss': [1.0083, 0.7347, 0.6510, 0.5762, 0.5478, 0.5223, 0.4974, 0.3464, 0.2896, 0.2604],
'train_acc': [0.6850, 0.7687, 0.7913, 0.8126, 0.8210, 0.8272, 0.8355, 0.8870, 0.9049, 0.9136],
'val_loss': [0.6304, 0.8616, 0.5594, 0.4006, 0.3968, 0.4051, 0.3223, 0.2221, 0.2125, 0.2076],
'val_acc': [0.7985, 0.7307, 0.8260, 0.8655, 0.8793, 0.8729, 0.9094, 0.9338, 0.9338, 0.9326]
}
# Save the history as a pickle file
with open('training_history.pkl', 'wb') as f:
pickle.dump(history, f)
print('Training history saved as training_history.pkl')
# Load your model
def load_model():
model = models.resnet50(weights='DEFAULT') # Using default weights for initialization
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 12) # Adjust to the number of classes you have
# Load the state dict without the weights_only argument
model.load_state_dict(torch.load('resnet50_garbage_classification.pth', map_location=torch.device('cpu')))
model.eval() # Set to evaluation mode
return model
model = load_model()
# Define image transformations
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Class names
class_names = ['battery', 'biological', 'brown-glass', 'cardboard',
'clothes', 'green-glass', 'metal', 'paper',
'plastic', 'shoes', 'trash', 'white-glass']
# Define bin colors for each class
bin_colors = {
'battery': 'Merah (Red)', # Limbah berbahaya
'biological': 'Cokelat (Brown)', # Limbah organik
'brown-glass': 'Hijau (Green)', # Gelas berwarna coklat
'cardboard': 'Kuning (Yellow)', # Limbah daur ulang
'clothes': 'Biru (Blue)', # Pakaian dan tekstil
'green-glass': 'Hijau (Green)', # Gelas berwarna hijau
'metal': 'Kuning (Yellow)', # Limbah daur ulang
'paper': 'Kuning (Yellow)', # Limbah daur ulang
'plastic': 'Kuning (Yellow)', # Limbah daur ulang
'shoes': 'Biru (Blue)', # Pakaian dan tekstil
'trash': 'Hitam (Black)', # Limbah umum
'white-glass': 'Putih (White)' # Gelas berwarna putih
}
# Define the prediction function
def predict(image):
image = Image.fromarray(image) # Convert numpy array to PIL Image
image = transform(image) # Apply transformations
image = image.unsqueeze(0) # Add batch dimension
with torch.no_grad():
outputs = model(image)
_, predicted = torch.max(outputs, 1)
class_name = class_names[predicted.item()] # Return predicted class name
bin_color = bin_colors[class_name] # Get the corresponding bin color
return class_name, bin_color # Return both class name and bin color
# Make Gradio Interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="numpy", label="Unggah Gambar"),
outputs=[
gr.Textbox(label="Jenis Sampah"),
gr.Textbox(label="Tong Sampah yang Sesuai") # 2 output with label
],
title="Klasifikasi Sampah dengan ResNet50",
description="Unggah gambar sampah, dan model akan mengklasifikasikannya ke dalam salah satu dari 12 kategori bersama dengan warna tempat sampah yang sesuai."
)
iface.launch(share=True)