kendrickfff commited on
Commit
413219b
1 Parent(s): e4f3534

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -17
app.py CHANGED
@@ -56,16 +56,59 @@ else:
56
 
57
 
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
 
 
 
 
 
 
 
 
61
  # Load your model
62
  def load_model():
63
  model = models.resnet50(weights='DEFAULT') # Using default weights for initialization
64
  num_ftrs = model.fc.in_features
65
  model.fc = nn.Linear(num_ftrs, 12) # Adjust to the number of classes you have
66
 
67
- # Load the state dict without the weights_only argument
68
- model.load_state_dict(torch.load('resnet50_garbage_classification.pth', map_location=torch.device('cpu')))
69
 
70
  model.eval() # Set to evaluation mode
71
  return model
@@ -87,18 +130,18 @@ class_names = ['battery', 'biological', 'brown-glass', 'cardboard',
87
 
88
  # Define bin colors for each class
89
  bin_colors = {
90
- 'battery': 'Merah (Red)', # Limbah berbahaya (B3)
91
- 'biological': 'Hijau (Green)', # Limbah organik
92
- 'brown-glass': 'Kuning (Yellow)',# Gelas berwarna coklat (anorganik/daur ulang)
93
- 'cardboard': 'Biru (Blue)', # Kertas (daur ulang)
94
- 'clothes': 'Kuning (Yellow)', # Pakaian (dimasukkan sebagai daur ulang)
95
- 'green-glass': 'Kuning (Yellow)',# Gelas berwarna hijau (anorganik/daur ulang)
96
- 'metal': 'Kuning (Yellow)', # Logam (anorganik/daur ulang)
97
- 'paper': 'Biru (Blue)', # Kertas (daur ulang)
98
- 'plastic': 'Kuning (Yellow)', # Plastik (anorganik/daur ulang)
99
- 'shoes': 'Kuning (Yellow)', # Sepatu (dimasukkan sebagai daur ulang)
100
- 'trash': 'Hitam (Black)', # Limbah umum
101
- 'white-glass': 'Kuning (Yellow)' # Gelas berwarna putih (anorganik/daur ulang)
102
  }
103
 
104
  # Define the prediction function
@@ -115,7 +158,7 @@ def predict(image):
115
  bin_color = bin_colors[class_name] # Get the corresponding bin color
116
  return class_name, bin_color # Return both class name and bin color
117
 
118
- # Make Gradio Interface
119
  iface = gr.Interface(
120
  fn=predict,
121
  inputs=gr.Image(type="numpy", label="Unggah Gambar"),
@@ -124,8 +167,9 @@ iface = gr.Interface(
124
  gr.Textbox(label="Tong Sampah yang Sesuai") # 2 output with label
125
  ],
126
  title="Klasifikasi Sampah dengan ResNet50 v1",
127
- description="Unggah gambar sampah, dan model akan mengklasifikasikannya ke dalam salah satu dari 12 kategori bersama dengan warna tempat sampah yang sesuai."
 
 
128
  )
129
 
130
-
131
  iface.launch(share=True)
 
56
 
57
 
58
 
59
+ import pickle
60
+
61
+ # Mengupdate hasil train dan validate terbaru
62
+ history = {
63
+ 'train_loss': [
64
+ 0.9568, 0.6937, 0.5917, 0.5718, 0.5109,
65
+ 0.4824, 0.4697, 0.3318, 0.2785, 0.2680,
66
+ 0.2371, 0.2333, 0.2198, 0.2060, 0.1962,
67
+ 0.1951, 0.1880, 0.1912, 0.1811, 0.1810
68
+ ],
69
+ 'train_acc': [
70
+ 0.7011, 0.7774, 0.8094, 0.8146, 0.8331,
71
+ 0.8452, 0.8447, 0.8899, 0.9068, 0.9114,
72
+ 0.9216, 0.9203, 0.9254, 0.9306, 0.9352,
73
+ 0.9346, 0.9368, 0.9353, 0.9396, 0.9409
74
+ ],
75
+ 'val_loss': [
76
+ 0.4934, 0.3939, 0.4377, 0.3412, 0.2614,
77
+ 0.2966, 0.2439, 0.1065, 0.0926, 0.0797,
78
+ 0.0738, 0.0639, 0.0555, 0.0560, 0.0490,
79
+ 0.0479, 0.0455, 0.0454, 0.0438, 0.0427
80
+ ],
81
+ 'val_acc': [
82
+ 0.8481, 0.8734, 0.8663, 0.8915, 0.9172,
83
+ 0.9011, 0.9221, 0.9649, 0.9714, 0.9759,
84
+ 0.9762, 0.9791, 0.9827, 0.9812, 0.9843,
85
+ 0.9850, 0.9852, 0.9854, 0.9854, 0.9866
86
+ ]
87
+ }
88
+
89
+ # Simpan history sebagai file pickle
90
+ with open('training_history.pkl', 'wb') as f:
91
+ pickle.dump(history, f)
92
+
93
+ print('Training history saved as training_history.pkl')
94
+
95
 
96
 
97
+
98
+ import torch
99
+ import torch.nn as nn
100
+ from torchvision import models, transforms
101
+ from PIL import Image
102
+ import gradio as gr
103
+
104
  # Load your model
105
  def load_model():
106
  model = models.resnet50(weights='DEFAULT') # Using default weights for initialization
107
  num_ftrs = model.fc.in_features
108
  model.fc = nn.Linear(num_ftrs, 12) # Adjust to the number of classes you have
109
 
110
+ # Load the state dict
111
+ model.load_state_dict(torch.load('resnet50_garbage_classificationv1.2.pth', map_location=torch.device('cpu')))
112
 
113
  model.eval() # Set to evaluation mode
114
  return model
 
130
 
131
  # Define bin colors for each class
132
  bin_colors = {
133
+ 'battery': 'Merah (Red)', # Limbah berbahaya (B3)
134
+ 'biological': 'Hijau (Green)', # Limbah organik
135
+ 'brown-glass': 'Kuning (Yellow or trash banks / recycling centers)', # Gelas berwarna coklat (anorganik/daur ulang)
136
+ 'cardboard': 'Biru (Blue)', # Kertas (daur ulang)
137
+ 'clothes': 'Kuning atau Bank Sampah (Yellow or trash banks / recycling centers)', # Pakaian (dimasukkan sebagai daur ulang)
138
+ 'green-glass': 'Kuning (Yellow)', # Gelas berwarna hijau (anorganik/daur ulang)
139
+ 'metal': 'Kuning (Yellow)', # Logam (anorganik/daur ulang)
140
+ 'paper': 'Biru (Blue)', # Kertas (daur ulang)
141
+ 'plastic': 'Kuning (Yellow)', # Plastik (anorganik/daur ulang)
142
+ 'shoes': 'Kuning atau Bank Sampah (Yellow or trash banks / recycling centers)', # Sepatu (dimasukkan sebagai daur ulang)
143
+ 'trash': 'Abu-abu (Gray)', # Limbah umum
144
+ 'white-glass': 'Kuning (Yellow or trash banks / recycling centers)' # Gelas berwarna putih (anorganik/daur ulang)
145
  }
146
 
147
  # Define the prediction function
 
158
  bin_color = bin_colors[class_name] # Get the corresponding bin color
159
  return class_name, bin_color # Return both class name and bin color
160
 
161
+ # Buat antarmuka Gradio dengan deskripsi
162
  iface = gr.Interface(
163
  fn=predict,
164
  inputs=gr.Image(type="numpy", label="Unggah Gambar"),
 
167
  gr.Textbox(label="Tong Sampah yang Sesuai") # 2 output with label
168
  ],
169
  title="Klasifikasi Sampah dengan ResNet50 v1",
170
+ description="Unggah gambar sampah, dan model kami akan mengklasifikasikannya ke dalam salah satu dari 12 kategori bersama dengan warna tempat sampah yang sesuai. "
171
+ "<strong>Model ini bisa memprediksi jenis sampah dari ke-12 jenis berikut:</strong> Baterai, Sampah organik, Gelas Kaca Coklat, "
172
+ "Kardus, Pakaian, Gelas Kaca Hijau, Metal, Kertas, Plastik, Sepatu/sandal, Popok/pampers, Gelas Kaca bening."
173
  )
174
 
 
175
  iface.launch(share=True)