D2Cell-chatbot / app.py
kenghuoxiong's picture
Update app.py
156644b verified
raw
history blame
5.07 kB
import gradio as gr
from huggingface_hub import InferenceClient
from langchain_community.chat_models import ChatOpenAI
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain_community.embeddings import OpenAIEmbeddings
from langchain.schema import HumanMessage, SystemMessage
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
import requests
from langchain_core.prompts import PromptTemplate
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
import gradio as gr
from openai import OpenAI
import os
TOKEN = os.getenv("HF_TOKEN")
def load_embedding_mode():
# embedding_model_dict = {"m3e-base": "/home/xiongwen/m3e-base"}
encode_kwargs = {"normalize_embeddings": False}
model_kwargs = {"device": 'cpu'}
return HuggingFaceEmbeddings(model_name="BAAI/bge-m3",
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs)
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=TOKEN,
)
def qwen_api(user_message, top_p=0.9,temperature=0.7, system_message='', max_tokens=1024, gradio_history=[]):
history = []
if gradio_history:
for message in history:
if message:
history.append({"role": "user", "content": message[0]})
history.append({"role": "assistant", "content": message[1]})
if system_message!='':
history.append({'role': 'system', 'content': system_message})
history.append({"role": "user", "content": user_message})
response = ""
for message in client.chat.completions.create(
model="meta-llama/Meta-Llama-3-8B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=history,
):
token = message.choices[0].delta.content
response += token
return response
os.environ["OPENAI_API_BASE"] = "https://api-inference.huggingface.co/v1/"
os.environ["OPENAI_API_KEY"] = TOKEN
llm = ChatOpenAI(
model="meta-llama/Meta-Llama-3-8B-Instruct",
temperature=0.8,)
embedding = load_embedding_mode()
db = Chroma(persist_directory='./VecterStore2_512_txt/VecterStore2_512_txt', embedding_function=embedding)
prompt_template = """
{context}
The above content is a form of biological background knowledge. Please answer the questions according to the above content. Please be sure to answer the questions according to the background knowledge and attach the doi number of the information source when answering.
Question: {question}
Answer in English:"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
retriever = db.as_retriever()
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs=chain_type_kwargs,
return_source_documents=True
)
def chat(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
if len(history) == 0:
response = qa.invoke(message)['result']
else:
response = qwen_api(message, gradio_history=history)
print(response)
yield response
return response
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat.completions.create(
model="meta-llama/Meta-Llama-3-8B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=messages,
):
token = message.choices[0].delta.content
response += token
yield response
chatbot = gr.Chatbot(height=600)
demo = gr.ChatInterface(
fn=chat,
fill_height=True,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()