import gradio as gr from huggingface_hub import InferenceClient from langchain_community.chat_models import ChatOpenAI from langchain.chains.retrieval_qa.base import RetrievalQA from langchain_community.embeddings import OpenAIEmbeddings from langchain.schema import HumanMessage, SystemMessage from langchain_community.document_loaders import DirectoryLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Chroma import requests from langchain_core.prompts import PromptTemplate """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ import gradio as gr from openai import OpenAI import os TOKEN = os.getenv("HF_TOKEN") def load_embedding_mode(): # embedding_model_dict = {"m3e-base": "/home/xiongwen/m3e-base"} encode_kwargs = {"normalize_embeddings": False} model_kwargs = {"device": 'cpu'} return HuggingFaceEmbeddings(model_name="BAAI/bge-m3", model_kwargs=model_kwargs, encode_kwargs=encode_kwargs) client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=TOKEN, ) def qwen_api(user_message, top_p=0.9,temperature=0.7, system_message='', max_tokens=1024, gradio_history=[]): history = [] if gradio_history: for message in history: if message: history.append({"role": "user", "content": message[0]}) history.append({"role": "assistant", "content": message[1]}) if system_message!='': history.append({'role': 'system', 'content': system_message}) history.append({"role": "user", "content": user_message}) response = "" for message in client.chat.completions.create( model="meta-llama/Meta-Llama-3-8B-Instruct", # model="Qwen/Qwen1.5-4B-Chat", max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=history, ): token = message.choices[0].delta.content response += token return response os.environ["OPENAI_API_BASE"] = "https://api-inference.huggingface.co/v1/" os.environ["OPENAI_API_KEY"] = TOKEN embedding = load_embedding_mode() db = Chroma(persist_directory='./VecterStore2_512_txt/VecterStore2_512_txt', embedding_function=embedding) prompt_template = """ {context} The above content is a form of biological background knowledge. Please answer the questions according to the above content. Question: {question} Please be sure to answer the questions according to the background knowledge and attach the doi number of the information source when answering. Answer in English:""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) chain_type_kwargs = {"prompt": PROMPT} retriever = db.as_retriever() def langchain_chat(message, temperature, top_p, max_tokens): llm = ChatOpenAI( model="meta-llama/Meta-Llama-3-8B-Instruct", # model="Qwen/Qwen1.5-4B-Chat", temperature=temperature, top_p=top_p, max_tokens=max_tokens) qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, chain_type_kwargs=chain_type_kwargs, return_source_documents=True ) response = qa.invoke(message)['result'] return response def chat( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): if len(history) == 0: response = langchain_chat(message, temperature, top_p, max_tokens) else: response = qwen_api(message, gradio_history=history, max_tokens=max_tokens, top_p=top_p, temperature=temperature) print(response) yield response return response def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat.completions.create( model="meta-llama/Meta-Llama-3-8B-Instruct", # model="Qwen/Qwen1.5-4B-Chat", max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ): token = message.choices[0].delta.content response += token yield response chatbot = gr.Chatbot(height=600) demo = gr.ChatInterface( fn=chat, fill_height=True, chatbot=chatbot, additional_inputs=[ gr.Textbox(label="System message"), gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()