Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled1.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Oyv-OC4NLyS4SOfffFLwdI0wqvX7K_q2
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install transformers PyPDF2 gradio
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
from transformers import pipeline
|
14 |
+
from PyPDF2 import PdfReader
|
15 |
+
from huggingface_hub import InferenceClient
|
16 |
+
from google.colab import userdata
|
17 |
+
import requests
|
18 |
+
from PIL import Image
|
19 |
+
import io
|
20 |
+
|
21 |
+
pipe = pipeline("text2text-generation", model="asach/simpleT5-resume-summarization")
|
22 |
+
|
23 |
+
reader = PdfReader("/KennethGuillont.pdf")
|
24 |
+
text = ""
|
25 |
+
for page in reader.pages:
|
26 |
+
text += page.extract_text()
|
27 |
+
|
28 |
+
summary = pipe(text, max_length=150, min_length=30)[0]['generated_text']
|
29 |
+
summary
|
30 |
+
|
31 |
+
my_key = userdata.get('HF')
|
32 |
+
|
33 |
+
client = InferenceClient(api_key=my_key)
|
34 |
+
|
35 |
+
model_name= 'meta-llama/Llama-3.2-3B-Instruct'
|
36 |
+
|
37 |
+
agent_desc = """
|
38 |
+
You are an AI agent helps a user generate a prompt to feed into an AI image
|
39 |
+
generation model based on a summary of their resume given to you. The image should depict a rabbit
|
40 |
+
within the the career feild related to the summary. encase the image prompt between
|
41 |
+
two '---\n' marks, to separate it from the rest of the text.
|
42 |
+
"""
|
43 |
+
|
44 |
+
print(summary)
|
45 |
+
|
46 |
+
messages = [
|
47 |
+
{"role": "user", "content": agent_desc},
|
48 |
+
{"role": "user", "content": summary}
|
49 |
+
]
|
50 |
+
|
51 |
+
stream = client.chat.completions.create(
|
52 |
+
model=model_name,
|
53 |
+
messages=messages,
|
54 |
+
max_tokens=700,
|
55 |
+
stream=True
|
56 |
+
)
|
57 |
+
|
58 |
+
response_text =""
|
59 |
+
|
60 |
+
for chunk in stream:
|
61 |
+
response_text += chunk.choices[0].delta.content
|
62 |
+
|
63 |
+
print(response_text)
|
64 |
+
|
65 |
+
print(response_text.replace('.','.\n'))
|
66 |
+
|
67 |
+
image_prompt = response_text.split('---\n')[1]
|
68 |
+
image_prompt
|
69 |
+
|
70 |
+
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
|
71 |
+
headers = {"Authorization": f"Bearer {my_key}"}
|
72 |
+
|
73 |
+
def query(payload):
|
74 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
75 |
+
return response.content
|
76 |
+
|
77 |
+
image_bytes = query({
|
78 |
+
"inputs": image_prompt,
|
79 |
+
})
|
80 |
+
# You can access the image with PIL.Image for example
|
81 |
+
import io
|
82 |
+
from PIL import Image
|
83 |
+
image = Image.open(io.BytesIO(image_bytes))
|
84 |
+
|
85 |
+
image
|