kengui commited on
Commit
3271349
·
verified ·
1 Parent(s): f164b8b

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Untitled1.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1Oyv-OC4NLyS4SOfffFLwdI0wqvX7K_q2
8
+ """
9
+
10
+ !pip install transformers PyPDF2 gradio
11
+
12
+ import gradio as gr
13
+ from transformers import pipeline
14
+ from PyPDF2 import PdfReader
15
+ from huggingface_hub import InferenceClient
16
+ from google.colab import userdata
17
+ import requests
18
+ from PIL import Image
19
+ import io
20
+
21
+ pipe = pipeline("text2text-generation", model="asach/simpleT5-resume-summarization")
22
+
23
+ reader = PdfReader("/KennethGuillont.pdf")
24
+ text = ""
25
+ for page in reader.pages:
26
+ text += page.extract_text()
27
+
28
+ summary = pipe(text, max_length=150, min_length=30)[0]['generated_text']
29
+ summary
30
+
31
+ my_key = userdata.get('HF')
32
+
33
+ client = InferenceClient(api_key=my_key)
34
+
35
+ model_name= 'meta-llama/Llama-3.2-3B-Instruct'
36
+
37
+ agent_desc = """
38
+ You are an AI agent helps a user generate a prompt to feed into an AI image
39
+ generation model based on a summary of their resume given to you. The image should depict a rabbit
40
+ within the the career feild related to the summary. encase the image prompt between
41
+ two '---\n' marks, to separate it from the rest of the text.
42
+ """
43
+
44
+ print(summary)
45
+
46
+ messages = [
47
+ {"role": "user", "content": agent_desc},
48
+ {"role": "user", "content": summary}
49
+ ]
50
+
51
+ stream = client.chat.completions.create(
52
+ model=model_name,
53
+ messages=messages,
54
+ max_tokens=700,
55
+ stream=True
56
+ )
57
+
58
+ response_text =""
59
+
60
+ for chunk in stream:
61
+ response_text += chunk.choices[0].delta.content
62
+
63
+ print(response_text)
64
+
65
+ print(response_text.replace('.','.\n'))
66
+
67
+ image_prompt = response_text.split('---\n')[1]
68
+ image_prompt
69
+
70
+ API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
71
+ headers = {"Authorization": f"Bearer {my_key}"}
72
+
73
+ def query(payload):
74
+ response = requests.post(API_URL, headers=headers, json=payload)
75
+ return response.content
76
+
77
+ image_bytes = query({
78
+ "inputs": image_prompt,
79
+ })
80
+ # You can access the image with PIL.Image for example
81
+ import io
82
+ from PIL import Image
83
+ image = Image.open(io.BytesIO(image_bytes))
84
+
85
+ image