Spaces:
Sleeping
Sleeping
File size: 13,005 Bytes
e1aa577 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import pandas as pd
from eval.evaluator import Eval
from dataset.base_dataset import DatasetBase
from utils.llm_chain import MetaChain
from estimator import give_estimator
from pathlib import Path
import pickle
import os
import json
import logging
import wandb
class OptimizationPipeline:
"""
The main pipeline for optimization. The pipeline is composed of 4 main components:
1. dataset - The dataset handle the data including the annotation and the prediction
2. annotator - The annotator is responsible generate the GT
3. predictor - The predictor is responsible to generate the prediction
4. eval - The eval is responsible to calculate the score and the large errors
"""
def __init__(self, config, task_description: str = None, initial_prompt: str = None, output_path: str = ''):
"""
Initialize a new instance of the ClassName class.
:param config: The configuration file (EasyDict)
:param task_description: Describe the task that needed to be solved
:param initial_prompt: Provide an initial prompt to solve the task
:param output_path: The output dir to save dump, by default the dumps are not saved
"""
if config.use_wandb: # In case of using W&B
wandb.login()
self.wandb_run = wandb.init(
project="AutoGPT",
config=config,
)
if output_path == '':
self.output_path = None
else:
if not os.path.isdir(output_path):
os.makedirs(output_path)
self.output_path = Path(output_path)
logging.basicConfig(filename=self.output_path / 'info.log', level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s', force=True)
self.dataset = None
self.config = config
self.meta_chain = MetaChain(config)
self.initialize_dataset()
self.task_description = task_description
self.cur_prompt = initial_prompt
self.predictor = give_estimator(config.predictor)
self.annotator = give_estimator(config.annotator)
self.eval = Eval(config.eval, self.meta_chain.error_analysis, self.dataset.label_schema)
self.batch_id = 0
self.patient = 0
@staticmethod
def log_and_print(message):
print(message)
logging.info(message)
def initialize_dataset(self):
"""
Initialize the dataset: Either empty dataset or loading an existing dataset
"""
logging.info('Initialize dataset')
self.dataset = DatasetBase(self.config.dataset)
if 'initial_dataset' in self.config.dataset.keys():
logging.info(f'Load initial dataset from {self.config.dataset.initial_dataset}')
self.dataset.load_dataset(self.config.dataset.initial_dataset)
def calc_usage(self):
"""
Calculate the usage of the optimization process (either $ in case of openAI or #tokens the other cases)
"""
total_usage = 0
total_usage += self.meta_chain.calc_usage()
total_usage += self.annotator.calc_usage()
total_usage += self.predictor.calc_usage()
return total_usage
def extract_best_prompt(self):
sorted_history = sorted(
self.eval.history[min(self.config.meta_prompts.warmup - 1, len(self.eval.history) - 1):],
key=lambda x: x['score'],
reverse=False)
return {'prompt': sorted_history[-1]['prompt'], 'score': sorted_history[-1]['score']}
def run_step_prompt(self):
"""
Run the meta-prompts and get new prompt suggestion, estimated prompt score and a set of challenging samples
for the new prompts
"""
step_num = len(self.eval.history)
if (step_num < self.config.meta_prompts.warmup) or (step_num % 3) > 0:
last_history = self.eval.history[-self.config.meta_prompts.history_length:]
else:
sorted_history = sorted(self.eval.history[self.config.meta_prompts.warmup - 1:], key=lambda x: x['score'],
reverse=False)
last_history = sorted_history[-self.config.meta_prompts.history_length:]
history_prompt = '\n'.join([self.eval.sample_to_text(sample,
num_errors_per_label=self.config.meta_prompts.num_err_prompt,
is_score=True) for sample in last_history])
prompt_input = {"history": history_prompt, "task_description": self.task_description,
'error_analysis': last_history[-1]['analysis']}
if 'label_schema' in self.config.dataset.keys():
prompt_input["labels"] = json.dumps(self.config.dataset.label_schema)
prompt_suggestion = self.meta_chain.step_prompt_chain.invoke(prompt_input)
self.log_and_print(f'Previous prompt score:\n{self.eval.mean_score}\n#########\n')
self.log_and_print(f'Get new prompt:\n{prompt_suggestion["prompt"]}')
self.batch_id += 1
if len(self.dataset) < self.config.dataset.max_samples:
batch_input = {"num_samples": self.config.meta_prompts.samples_generation_batch,
"task_description": self.task_description,
"prompt": prompt_suggestion['prompt']}
batch_inputs = self.generate_samples_batch(batch_input, self.config.meta_prompts.num_generated_samples,
self.config.meta_prompts.samples_generation_batch)
if sum([len(t['errors']) for t in last_history]) > 0:
history_samples = '\n'.join([self.eval.sample_to_text(sample,
num_errors_per_label=self.config.meta_prompts.num_err_samples,
is_score=False) for sample in last_history])
for batch in batch_inputs:
extra_samples = self.dataset.sample_records()
extra_samples_text = DatasetBase.samples_to_text(extra_samples)
batch['history'] = history_samples
batch['extra_samples'] = extra_samples_text
else:
for batch in batch_inputs:
extra_samples = self.dataset.sample_records()
extra_samples_text = DatasetBase.samples_to_text(extra_samples)
batch['history'] = 'No previous errors information'
batch['extra_samples'] = extra_samples_text
samples_batches = self.meta_chain.step_samples.batch_invoke(batch_inputs,
self.config.meta_prompts.num_workers)
new_samples = [element for sublist in samples_batches for element in sublist['samples']]
new_samples = self.dataset.remove_duplicates(new_samples)
self.dataset.add(new_samples, self.batch_id)
logging.info('Get new samples')
self.cur_prompt = prompt_suggestion['prompt']
def stop_criteria(self):
"""
Check if the stop criteria holds. The conditions for stopping:
1. Usage is above the threshold
2. There was no improvement in the last > patient steps
"""
if 0 < self.config.stop_criteria.max_usage < self.calc_usage():
return True
if len(self.eval.history) <= self.config.meta_prompts.warmup:
self.patient = 0
return False
min_batch_id, max_score = self.eval.get_max_score(self.config.meta_prompts.warmup-1)
if max_score - self.eval.history[-1]['score'] > -self.config.stop_criteria.min_delta:
self.patient += 1
else:
self.patient = 0
if self.patient > self.config.stop_criteria.patience:
return True
return False
@staticmethod
def generate_samples_batch(batch_input, num_samples, batch_size):
"""
Generate samples in batch
"""
batch_num = num_samples // batch_size
all_batches = [batch_input.copy() for _ in range(batch_num)]
reminder = num_samples - batch_num * batch_size
if reminder > 0:
all_batches.append(batch_input.copy())
all_batches[-1]['num_samples'] = reminder
return all_batches
def generate_initial_samples(self):
"""
In case the initial dataset is empty generate the initial samples
"""
batch_input = {"num_samples": self.config.meta_prompts.samples_generation_batch,
"task_description": self.task_description,
"instruction": self.cur_prompt}
batch_inputs = self.generate_samples_batch(batch_input, self.config.meta_prompts.num_initialize_samples,
self.config.meta_prompts.samples_generation_batch)
samples_batches = self.meta_chain.initial_chain.batch_invoke(batch_inputs, self.config.meta_prompts.num_workers)
samples_list = [element for sublist in samples_batches for element in sublist['samples']]
samples_list = self.dataset.remove_duplicates(samples_list)
self.dataset.add(samples_list, 0)
def save_state(self):
"""
Save the process state
"""
if self.output_path is None:
return
logging.info('Save state')
self.dataset.save_dataset(self.output_path / 'dataset.csv')
state = {'history': self.eval.history, 'batch_id': self.batch_id,
'prompt': self.cur_prompt, 'task_description': self.task_description,
'patient': self.patient}
pickle.dump(state, open(self.output_path / 'history.pkl', 'wb'))
def load_state(self, path: str):
"""
Load pretrain state
"""
path = Path(path)
if (path / 'dataset.csv').is_file():
self.dataset.load_dataset(path / 'dataset.csv')
if (path / 'history.pkl').is_file():
state = pickle.load(open(path / 'history.pkl', 'rb'))
self.eval.history = state['history']
self.batch_id = state['batch_id']
self.cur_prompt = state['prompt']
self.task_description = state['task_description']
self.patient = state['patient']
def step(self, current_iter, total_iter):
"""
This is the main optimization process step.
"""
self.log_and_print(f'Starting step {self.batch_id}')
if len(self.dataset.records) == 0:
self.log_and_print('Dataset is empty generating initial samples')
self.generate_initial_samples()
if self.config.use_wandb:
cur_batch = self.dataset.get_leq(self.batch_id)
random_subset = cur_batch.sample(n=min(10, len(cur_batch)))[['text']]
self.wandb_run.log(
{"Prompt": wandb.Html(f"<p>{self.cur_prompt}</p>"), "Samples": wandb.Table(dataframe=random_subset)},
step=self.batch_id)
logging.info('Running annotator')
records = self.annotator.apply(self.dataset, self.batch_id)
self.dataset.update(records)
self.predictor.cur_instruct = self.cur_prompt
logging.info('Running Predictor')
records = self.predictor.apply(self.dataset, self.batch_id, leq=True)
self.dataset.update(records)
self.eval.dataset = self.dataset.get_leq(self.batch_id)
self.eval.eval_score()
logging.info('Calculating Score')
large_errors = self.eval.extract_errors()
self.eval.add_history(self.cur_prompt, self.task_description)
if self.config.use_wandb:
large_errors = large_errors.sample(n=min(6, len(large_errors)))
correct_samples = self.eval.extract_correct()
correct_samples = correct_samples.sample(n=min(6, len(correct_samples)))
vis_data = pd.concat([large_errors, correct_samples])
self.wandb_run.log({"score": self.eval.history[-1]['score'],
"prediction_result": wandb.Table(dataframe=vis_data),
'Total usage': self.calc_usage()}, step=self.batch_id)
if self.stop_criteria():
self.log_and_print('Stop criteria reached')
return True
if current_iter != total_iter-1:
self.run_step_prompt()
self.save_state()
return False
def run_pipeline(self, num_steps: int):
# Run the optimization pipeline for num_steps
num_steps_remaining = num_steps - self.batch_id
for i in range(num_steps_remaining):
stop_criteria = self.step(i, num_steps_remaining)
if stop_criteria:
break
final_result = self.extract_best_prompt()
return final_result
|