Spaces:
Runtime error
Runtime error
from transformers import AutoModel, AutoTokenizer, LlamaTokenizer, LlamaForCausalLM | |
import gradio as gr | |
import torch | |
import os | |
import io | |
import sys | |
import platform | |
import intel_extension_for_pytorch as ipex | |
import intel_extension_for_pytorch._C as ipex_core | |
from cpuinfo import get_cpu_info | |
from contextlib import redirect_stdout | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
ROOT = '/' | |
SELF_ROOT = '/proc/self/root' | |
tokenizer = LlamaTokenizer.from_pretrained( | |
"lmsys/vicuna-7b-v1.3", trust_remote_code=True | |
) | |
model = LlamaForCausalLM.from_pretrained( | |
"lmsys/vicuna-7b-v1.3", trust_remote_code=True | |
).to(DEVICE) | |
model = model.eval() | |
def in_chroot(): | |
''' | |
Return true if running in a chroot environment. | |
''' | |
try: | |
root_stat = os.stat(ROOT) | |
self_stat = os.stat(SELF_ROOT) | |
except FileNotFoundError as e: | |
sys.exit(f"ERROR: Failed to stat: {e}") | |
root_inode = root_stat.st_ino | |
self_inode = self_stat.st_ino | |
# Inode 2 is the root inode for most filesystems. | |
# However, XFS uses 128 for root. | |
if root_inode not in [2, 128]: | |
return True | |
return not (root_inode == self_inode) | |
def get_features(): | |
''' | |
Returns a dictionary of all feature: | |
key: feature name. | |
value: Boolean showing if feature available. | |
''' | |
cpu_info = get_cpu_info() | |
flags = cpu_info["flags"] | |
detect_ipex_amx_enabled = lambda: ipex_core._get_current_isa_level() == 'AMX' | |
detect_ipex_amx_available = ( | |
lambda: ipex_core._get_highest_cpu_support_isa_level() == 'AMX' | |
) | |
features = { | |
'VM': 'hypervisor' in flags, | |
'TDX TD': 'tdx_guest' in flags, | |
'AMX available': 'amx_tile' in flags, | |
'AMX-BF16 available': 'amx_bf16' in flags, | |
'AMX-INT8 available': 'amx_int8' in flags, | |
'AVX-VNNI available': 'avx_vnni' in flags, | |
'AVX512-VNNI available': 'avx512_vnni' in flags, | |
'AVX512-FP16 available': 'avx512_fp16' in flags, | |
'AVX512-BF16 available': 'avx512_bf16' in flags, | |
'AMX IPEX available': detect_ipex_amx_available(), | |
'AMX IPEX enabled': detect_ipex_amx_enabled(), | |
} | |
return features | |
def get_debug_details(): | |
''' | |
Return a block of markdown text that shows useful debug | |
information. | |
''' | |
# ipex.version() prints to stdout, so redirect stdout to | |
# capture the output. | |
buffer = io.StringIO() | |
with redirect_stdout(buffer): | |
ipex.version() | |
ipex_version_details = buffer.getvalue().replace("\n", ", ") | |
ipex_current_isa_level = ipex_core._get_current_isa_level() | |
ipex_max_isa_level = ipex_core._get_highest_cpu_support_isa_level() | |
ipex_env_var = os.getenv('ATEN_CPU_CAPABILITY') | |
onednn_env_var = os.getenv('ONEDNN_MAX_CPU_ISA') | |
in_chroot_result = in_chroot() | |
cpu_info = get_cpu_info() | |
flags = cpu_info["flags"] | |
# Note that rather than using `<details>`, we could use gradio.Accordian(), | |
# but the markdown version is more visually compact. | |
md = f""" | |
<details> | |
<summary>Click to show debug details</summary> | |
| Feature | Value | | |
|-|-| | |
| Arch | `{cpu_info['arch']}` | | |
| CPU | `{cpu_info['brand_raw']}` | | |
| CPU flags | `{flags}` | | |
| Python version | `{sys.version}` (implementation: `{platform.python_implementation()}`) | | |
| Python version details | `{sys.version_info}` | | |
| PyTorch version | `{torch.__version__}` | | |
| IPEX version | `{ipex.ipex_version}` | | |
| IPEX CPU detected | `{ipex_core._has_cpu()}` | | |
| IPEX XPU detected | `{ipex_core._has_xpu()}` | | |
| IPEX version details | `{ipex_version_details}` | | |
| IPEX env var `ATEN_CPU_CAPABILITY` | `{ipex_env_var}` | | |
| IPEX current ISA level | `{ipex_current_isa_level}` | | |
| IPEX max ISA level | `{ipex_max_isa_level}` | | |
| oneDNN env var `ONEDNN_MAX_CPU_ISA` | `{onednn_env_var}` | | |
| in chroot | `{in_chroot_result}` | | |
</details> | |
""" | |
return md | |
def predict(input, history=None): | |
if history is None: | |
history = [] | |
new_user_input_ids = tokenizer.encode( | |
input + tokenizer.eos_token, return_tensors='pt' | |
) | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
history = model.generate( | |
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id | |
).tolist() | |
# convert the tokens to text, and then split the responses into the right format | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
response = [ | |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) | |
] # convert to tuples of list | |
return response, history | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
'''## Confidential HuggingFace Runner | |
''' | |
) | |
state = gr.State([]) | |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
txt = gr.Textbox( | |
show_label=False, placeholder="Enter text and press enter" | |
).style(container=False) | |
with gr.Column(scale=1): | |
button = gr.Button("Generate") | |
txt.submit(predict, [txt, state], [chatbot, state]) | |
button.click(predict, [txt, state], [chatbot, state]) | |
with gr.Row(): | |
features_dict = get_features() | |
all_features = features_dict.keys() | |
# Get a list of feature names that are actually set/available | |
set_features = [key for key in features_dict if features_dict[key]] | |
gr.CheckboxGroup( | |
all_features, | |
label="Features", | |
# Make the boxes read-only | |
interactive=False, | |
# Specify which features were detected | |
value=set_features, | |
info="Features detected from environment", | |
) | |
with gr.Row(): | |
debug_details = get_debug_details() | |
gr.Markdown(debug_details) | |
demo.queue().launch(share=True, server_name="0.0.0.0") | |