Spaces:
Runtime error
Runtime error
kenplusplus
commited on
Commit
•
fa02e71
1
Parent(s):
d0a5cbc
use vicuna
Browse filesSigned-off-by: Lu Ken <ken.lu@intel.com>
- app.py +15 -8
- requirements.txt +3 -2
app.py
CHANGED
@@ -1,20 +1,27 @@
|
|
1 |
-
from transformers import AutoModel, AutoTokenizer
|
2 |
import gradio as gr
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
model = model.eval()
|
7 |
|
8 |
def predict(input, history=None):
|
9 |
if history is None:
|
10 |
history = []
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
with gr.Blocks() as demo:
|
16 |
-
gr.Markdown('''##
|
17 |
-
Unnoficial demo of the [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B/blob/main/README_en.md) model, trained on 1T tokens of English and Chinese
|
18 |
''')
|
19 |
state = gr.State([])
|
20 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400)
|
@@ -25,4 +32,4 @@ with gr.Blocks() as demo:
|
|
25 |
button = gr.Button("Generate")
|
26 |
txt.submit(predict, [txt, state], [chatbot, state])
|
27 |
button.click(predict, [txt, state], [chatbot, state])
|
28 |
-
demo.queue().launch()
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer, LlamaTokenizer, LlamaForCausalLM
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
|
5 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
+
|
7 |
+
tokenizer = LlamaTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3", trust_remote_code=True)
|
8 |
+
model = LlamaForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3", trust_remote_code=True).to(DEVICE)
|
9 |
model = model.eval()
|
10 |
|
11 |
def predict(input, history=None):
|
12 |
if history is None:
|
13 |
history = []
|
14 |
+
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
15 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
16 |
+
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
|
17 |
+
# convert the tokens to text, and then split the responses into the right format
|
18 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
19 |
+
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
20 |
+
return response, history
|
21 |
|
22 |
|
23 |
with gr.Blocks() as demo:
|
24 |
+
gr.Markdown('''## Confidential HuggingFace Runner
|
|
|
25 |
''')
|
26 |
state = gr.State([])
|
27 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400)
|
|
|
32 |
button = gr.Button("Generate")
|
33 |
txt.submit(predict, [txt, state], [chatbot, state])
|
34 |
button.click(predict, [txt, state], [chatbot, state])
|
35 |
+
demo.queue().launch(share=True, server_name="0.0.0.0")
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
torch
|
2 |
-
transformers==4.27.1
|
3 |
cpm_kernels
|
4 |
-
icetk
|
|
|
|
|
|
1 |
torch
|
|
|
2 |
cpm_kernels
|
3 |
+
icetk
|
4 |
+
gradio==3.50.2
|
5 |
+
accelerate
|