nielsgl's picture
Update app.py
21b1026
from huggingface_hub import from_pretrained_keras
from keras_cv import models
import gradio as gr
from tensorflow import keras
from diffusers import StableDiffusionPipeline
keras.mixed_precision.set_global_policy("mixed_float16")
# prepare model
resolution = 512
# checkpoint of the converted Stable Diffusion from KerasCV
model_ckpt = "nielsgl/dreambooth-bored-ape"
pipeline = StableDiffusionPipeline.from_pretrained(model_ckpt)
pipeline = pipeline.to("cuda")
unique_id = "drawbayc"
class_label = "monkey"
prompt = f"A drawing of {unique_id} {class_label} as a cowboy"
image = pipeline(prompt, num_inference_steps=50).images[0]
# generate images
def infer(prompt, negative_prompt, guidance_scale=10, num_inference_steps=50):
neg = negative_prompt if negative_prompt else None
imgs = []
while len(imgs) != 4:
next_prompt = pipeline(prompt, negative_prompt=neg, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=5)
for img, is_neg in zip(next_prompt.images, next_prompt.nsfw_content_detected):
if not is_neg:
imgs.append(img)
if len(imgs) == 4:
break
return imgs
output = gr.Gallery(label="Outputs").style(grid=(1,2))
# customize interface
title = "KerasCV Stable Diffusion Demo on images of Bored Apes."
description = "This is a dreambooth model fine-tuned on images the NFT collection of the Bored Ape Yacht Club. To try it, input the concept with `drawbayc ape`."
examples=[
["A drawing of a drawbayc ape dressed as a cowboy", "bad anatomy, blurry, ugly, deformed, disfigured", 12, 75],
["A drawing of a drawbayc ape dressed as a clown", "bad anatomy, blurry, ugly, deformed, disfigured", 12, 75],
["A drawing of a drawbayc ape dressed as a turtle", "bad anatomy, blurry, ugly, deformed, disfigured", 12, 75],
]
base_14 = "https://huggingface.co/nielsgl/dreambooth-bored-ape/resolve/main/"
model_card_1 = f"""
# KerasCV Stable Diffusion in Diffusers πŸ§¨πŸ€—
DreamBooth model for the `drawbayc ape` concept trained by nielsgl on the [bayc-tiny](https://huggingface.co/datasets/nielsgl/bayc-tiny) dataset, images from this [Kaggle dataset](https://www.kaggle.com/datasets/stanleyjzheng/bored-apes-yacht-club).
It can be used by modifying the `instance_prompt`: **a drawing of drawbayc ape**
The model for this space can be found [here](https://huggingface.co/nielsgl/dreambooth-bored-ape).
## Description
The Stable Diffusion V2 pipeline contained in the corresponding repository (`nielsgl/dreambooth-bored-ape`) was created using a modified version of [this Space](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers) for StableDiffusionV2 from KerasCV. The purpose is to convert the KerasCV Stable Diffusion weights in a way that is compatible with [Diffusers](https://github.com/huggingface/diffusers). This allows users to fine-tune using KerasCV and use the fine-tuned weights in Diffusers taking advantage of its nifty features (like [schedulers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers), [fast attention](https://huggingface.co/docs/diffusers/optimization/fp16), etc.).
This model was created as part of the Keras DreamBooth Sprint πŸ”₯. Visit the [organisation page](https://huggingface.co/keras-dreambooth) for instructions on how to take part!
## Demo
"""
model_card_2 = f"""
## Examples
> A drawing of drawbayc monkey dressed as an astronaut
![a drawing of drawbayc monkey dressed as an astronaut]({base_14}examples/astronaut.jpg)
> A drawing of drawbayc monkey dressed as the pope
![> A drawing of drawbayc monkey dressed as an astronaut]({base_14}examples/pope.jpg)
## Usage with Stable Diffusion V2.1
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained('nielsgl/dreambooth-bored-ape')
image = pipeline().images[0]
image
```
"""
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(model_card_1)
with gr.Row():
with gr.Column():
prompt_pos = gr.Textbox(label="Positive Prompt", value="a drawing of drawbayc ape as an astronaut")
prompt_neg = gr.Textbox(label="Negative Prompt", value="bad anatomy, blurry, ugly, deformed, disfigured")
prompt_gs = gr.Number(label='Guidance scale', value=12)
prompt_steps = gr.Slider(label="Inference Steps",value=50)
prompt_btn = gr.Button("Generate")
with gr.Column():
output = gr.Gallery(label="Outputs").style(grid=(1,2))
prompt_btn.click(infer, inputs=[prompt_pos, prompt_neg, prompt_gs, prompt_steps], outputs=[output])
with gr.Row():
gr.Examples(examples, inputs=[prompt_pos, prompt_neg, prompt_gs, prompt_steps], outputs=output, fn=infer, cache_examples=True)
with gr.Row():
with gr.Column():
gr.Markdown(model_card_2)
with gr.Column():
gr.Markdown(" ")
demo.queue().launch()