Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_keras
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import transformers
|
5 |
+
|
6 |
+
class BertSemanticDataGenerator(tf.keras.utils.Sequence):
|
7 |
+
"""Generates batches of data."""
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
sentence_pairs,
|
11 |
+
labels,
|
12 |
+
batch_size=batch_size,
|
13 |
+
shuffle=True,
|
14 |
+
include_targets=True,
|
15 |
+
):
|
16 |
+
self.sentence_pairs = sentence_pairs
|
17 |
+
self.labels = labels
|
18 |
+
self.shuffle = shuffle
|
19 |
+
self.batch_size = batch_size
|
20 |
+
self.include_targets = include_targets
|
21 |
+
# Load our BERT Tokenizer to encode the text.
|
22 |
+
# We will use base-base-uncased pretrained model.
|
23 |
+
self.tokenizer = transformers.BertTokenizer.from_pretrained(
|
24 |
+
"bert-base-uncased", do_lower_case=True
|
25 |
+
)
|
26 |
+
self.indexes = np.arange(len(self.sentence_pairs))
|
27 |
+
self.on_epoch_end()
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
# Denotes the number of batches per epoch.
|
31 |
+
return len(self.sentence_pairs) // self.batch_size
|
32 |
+
|
33 |
+
def __getitem__(self, idx):
|
34 |
+
# Retrieves the batch of index.
|
35 |
+
indexes = self.indexes[idx * self.batch_size : (idx + 1) * self.batch_size]
|
36 |
+
sentence_pairs = self.sentence_pairs[indexes]
|
37 |
+
|
38 |
+
# With BERT tokenizer's batch_encode_plus batch of both the sentences are
|
39 |
+
# encoded together and separated by [SEP] token.
|
40 |
+
encoded = self.tokenizer.batch_encode_plus(
|
41 |
+
sentence_pairs.tolist(),
|
42 |
+
add_special_tokens=True,
|
43 |
+
max_length=max_length,
|
44 |
+
return_attention_mask=True,
|
45 |
+
return_token_type_ids=True,
|
46 |
+
pad_to_max_length=True,
|
47 |
+
return_tensors="tf",
|
48 |
+
)
|
49 |
+
|
50 |
+
# Convert batch of encoded features to numpy array.
|
51 |
+
input_ids = np.array(encoded["input_ids"], dtype="int32")
|
52 |
+
attention_masks = np.array(encoded["attention_mask"], dtype="int32")
|
53 |
+
token_type_ids = np.array(encoded["token_type_ids"], dtype="int32")
|
54 |
+
|
55 |
+
# Set to true if data generator is used for training/validation.
|
56 |
+
if self.include_targets:
|
57 |
+
labels = np.array(self.labels[indexes], dtype="int32")
|
58 |
+
return [input_ids, attention_masks, token_type_ids], labels
|
59 |
+
else:
|
60 |
+
return [input_ids, attention_masks, token_type_ids]
|
61 |
+
|
62 |
+
model = from_pretrained_keras("keras-io/bert-semantic-similarity")
|
63 |
+
|
64 |
+
def predict(sentence1, sentence2):
|
65 |
+
sentence_pairs = np.array([[str(sentence1), str(sentence2)]])
|
66 |
+
test_data = BertSemanticDataGenerator(
|
67 |
+
sentence_pairs, labels=None, batch_size=1, shuffle=False, include_targets=False,
|
68 |
+
)
|
69 |
+
proba = model.predict(test_data[0])[0]
|
70 |
+
idx = np.argmax(proba)
|
71 |
+
proba = f"{proba[idx]*100:.2f}%"
|
72 |
+
pred = labels[idx]
|
73 |
+
return f'These two sentence is {pred} with {proba} of probability'
|
74 |
+
|
75 |
+
inputs = [
|
76 |
+
gr.Audio(source = "upload", label='Upload audio file', type="filepath"),
|
77 |
+
]
|
78 |
+
|
79 |
+
examples = [["Two women are observing something together.", "Two women are standing with their eyes closed."],
|
80 |
+
["A smiling costumed woman is holding an umbrella", "A happy woman in a fairy costume holds an umbrella"],
|
81 |
+
["A soccer game with multiple males playing", "Some men are playing a sport"],
|
82 |
+
]
|
83 |
+
|
84 |
+
gr.Interface(
|
85 |
+
fn=predict,
|
86 |
+
title="Semantic Similarity with BERT",
|
87 |
+
description = "Natural Language Inference by fine-tuning BERT model on SNLI Corpus.)",
|
88 |
+
inputs=["text", "text"],
|
89 |
+
examples=examples,
|
90 |
+
outputs=gr.Textbox(label='Prediction'),
|
91 |
+
cache_examples=False,
|
92 |
+
article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the keras example from <a href=\"https://keras.io/examples/nlp/semantic_similarity_with_bert/\">Mohamad Merchant</a>",
|
93 |
+
).launch(debug=True, enable_queue=True)
|