File size: 3,701 Bytes
d65aa43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import yaml
import gradio as gr
import numpy as np

import imageio, cv2
from moviepy.editor import *
from skimage.transform import resize
from skimage import img_as_ubyte
from skimage.color import rgb2gray


from tensorflow import keras

# load model
model = keras.models.load_model('saved_model')

# Examples
samples = []
example_driving = os.listdir('asset/driving')
for video in example_driving:
    samples.append([f'asset/driving/{video}', 0.5, False])


def inference(driving,
              split_pred = 0.4, # predict 0.6% of video
              predict_one = False, # Whether to predict a sliding one frame or all frames at once
              output_name = 'output.mp4',
              output_path = 'asset/output',
              cpu = False,
              ):

    # driving
    reader = imageio.get_reader(driving)
    fps = reader.get_meta_data()['fps']
    driving_video = []
    try:
        for im in reader:
            driving_video.append(im)
    except RuntimeError:
        pass
    reader.close()
    driving_video = [rgb2gray(resize(frame, (64, 64)))[..., np.newaxis] for frame in driving_video]
    
    example = np.array(driving_video)
    print(example.shape)
    # Pick the first/last ten frames from the example.
    start_pred_id = int(split_pred * example.shape[0]) # prediction starts from frame start_pred_id
    frames = example[:start_pred_id, ...] 
    original_frames = example[start_pred_id:, ...]
    new_predictions = np.zeros(shape=(example.shape[0] - start_pred_id, *frames[0].shape))

    # Predict a new set of 10 frames.
    for i in range(example.shape[0] - start_pred_id):
        # Extract the model's prediction and post-process it.
        if predict_one:
            frames = example[: start_pred_id + i + 1, ...]
        else:
            frames = np.concatenate((example[: start_pred_id+1 , ...], new_predictions[:i, ...]), axis=0)
        new_prediction = model.predict(np.expand_dims(frames, axis=0))
        new_prediction = np.squeeze(new_prediction, axis=0)
        predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)

        # Extend the set of prediction frames.
        new_predictions[i] = predicted_frame

    # Create and save MP4s for each of the ground truth/prediction images.
    def postprocess(frame_set, save_file):
        # Construct a GIF from the selected video frames.
        current_frames = np.squeeze(frame_set)
        current_frames = current_frames[..., np.newaxis] * np.ones(3)
        current_frames = (current_frames * 255).astype(np.uint8)
        current_frames = list(current_frames)

        print(f'{output_path}/{save_file}')    
        imageio.mimsave(f'{output_path}/{save_file}', current_frames, fps=fps)

    # save video
    os.makedirs(output_path, exist_ok=True)
    postprocess(original_frames, "original.mp4")
    postprocess(new_predictions, output_name)
    return f'{output_path}/{output_name}', f'{output_path}/original.mp4'

iface = gr.Interface(
    inference, # main function
    inputs = [ 
        gr.inputs.Video(label='Video', type='mp4'),
        gr.inputs.Slider(minimum=.1, maximum=.9, default=.5, step=.001, label="prediction start"),
        gr.inputs.Checkbox(label="predict one frame only", default=False), 
        
    ],
    outputs = [
        gr.outputs.Video(label='result'), # generated video
        gr.outputs.Video(label='ground truth') # same part of original video
    ], 
    
    title = 'Next-Frame Video Prediction with Convolutional LSTMs',
    description = "This app is an unofficial demo web app of the Next-Frame Video Prediction with Convolutional LSTMs by Keras.",
    examples = samples,
).launch(enable_queue=True, cache_examples=True)