diff --git "a/conv_lstm.ipynb" "b/conv_lstm.ipynb" --- "a/conv_lstm.ipynb" +++ "b/conv_lstm.ipynb" @@ -1,430 +1,1255 @@ { - "cells": [ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "5iJqHKEQx66F" + }, + "source": [ + "# Next-Frame Video Prediction with Convolutional LSTMs\n", + "\n", + "**Author:** [Amogh Joshi](https://github.com/amogh7joshi)
\n", + "**Date created:** 2021/06/02
\n", + "**Last modified:** 2021/06/05
\n", + "**Description:** How to build and train a convolutional LSTM model for next-frame video prediction." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9vv8zp4vx66K" + }, + "source": [ + "## Introduction\n", + "\n", + "The\n", + "[Convolutional LSTM](https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf)\n", + "architectures bring together time series processing and computer vision by\n", + "introducing a convolutional recurrent cell in a LSTM layer. In this example, we will explore the\n", + "Convolutional LSTM model in an application to next-frame prediction, the process\n", + "of predicting what video frames come next given a series of past frames." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "daG-n305x66K" + }, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install imageio" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "4Xx9qttUx66L" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers\n", + "\n", + "import io\n", + "import imageio\n", + "from IPython.display import Image, display\n", + "from ipywidgets import widgets, Layout, HBox" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w-uOOdg1x66M" + }, + "source": [ + "## Dataset Construction\n", + "\n", + "For this example, we will be using the\n", + "[Moving MNIST](http://www.cs.toronto.edu/~nitish/unsupervised_video/)\n", + "dataset.\n", + "\n", + "We will download the dataset and then construct and\n", + "preprocess training and validation sets.\n", + "\n", + "For next-frame prediction, our model will be using a previous frame,\n", + "which we'll call `f_n`, to predict a new frame, called `f_(n + 1)`.\n", + "To allow the model to create these predictions, we'll need to process\n", + "the data such that we have \"shifted\" inputs and outputs, where the\n", + "input data is frame `x_n`, being used to predict frame `y_(n + 1)`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "H6_vt6q4x66N" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "5iJqHKEQx66F" - }, - "source": [ - "# Next-Frame Video Prediction with Convolutional LSTMs\n", - "\n", - "**Author:** [Amogh Joshi](https://github.com/amogh7joshi)
\n", - "**Date created:** 2021/06/02
\n", - "**Last modified:** 2021/06/05
\n", - "**Description:** How to build and train a convolutional LSTM model for next-frame video prediction." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy\n", + "819208192/819200096 [==============================] - 8s 0us/step\n", + "819216384/819200096 [==============================] - 8s 0us/step\n", + "Training Dataset Shapes: (900, 19, 64, 64, 1), (900, 19, 64, 64, 1)\n", + "Validation Dataset Shapes: (100, 19, 64, 64, 1), (100, 19, 64, 64, 1)\n" + ] + } + ], + "source": [ + "# Download and load the dataset.\n", + "fpath = keras.utils.get_file(\n", + " \"moving_mnist.npy\",\n", + " \"http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy\",\n", + ")\n", + "dataset = np.load(fpath)\n", + "\n", + "# Swap the axes representing the number of frames and number of data samples.\n", + "dataset = np.swapaxes(dataset, 0, 1)\n", + "# We'll pick out 1000 of the 10000 total examples and use those.\n", + "dataset = dataset[:1000, ...]\n", + "# Add a channel dimension since the images are grayscale.\n", + "dataset = np.expand_dims(dataset, axis=-1)\n", + "\n", + "# Split into train and validation sets using indexing to optimize memory.\n", + "indexes = np.arange(dataset.shape[0])\n", + "np.random.shuffle(indexes)\n", + "train_index = indexes[: int(0.9 * dataset.shape[0])]\n", + "val_index = indexes[int(0.9 * dataset.shape[0]) :]\n", + "train_dataset = dataset[train_index]\n", + "val_dataset = dataset[val_index]\n", + "\n", + "# Normalize the data to the 0-1 range.\n", + "train_dataset = train_dataset / 255\n", + "val_dataset = val_dataset / 255\n", + "\n", + "# We'll define a helper function to shift the frames, where\n", + "# `x` is frames 0 to n - 1, and `y` is frames 1 to n.\n", + "def create_shifted_frames(data):\n", + " x = data[:, 0 : data.shape[1] - 1, :, :]\n", + " y = data[:, 1 : data.shape[1], :, :]\n", + " return x, y\n", + "\n", + "\n", + "# Apply the processing function to the datasets.\n", + "x_train, y_train = create_shifted_frames(train_dataset)\n", + "x_val, y_val = create_shifted_frames(val_dataset)\n", + "\n", + "# Inspect the dataset.\n", + "print(\"Training Dataset Shapes: \" + str(x_train.shape) + \", \" + str(y_train.shape))\n", + "print(\"Validation Dataset Shapes: \" + str(x_val.shape) + \", \" + str(y_val.shape))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wJhm7oM7x66O" + }, + "source": [ + "## Data Visualization\n", + "\n", + "Our data consists of sequences of frames, each of which\n", + "are used to predict the upcoming frame. Let's take a look\n", + "at some of these sequential frames." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "jFE2fY1xx66O" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "9vv8zp4vx66K" - }, - "source": [ - "## Introduction\n", - "\n", - "The\n", - "[Convolutional LSTM](https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf)\n", - "architectures bring together time series processing and computer vision by\n", - "introducing a convolutional recurrent cell in a LSTM layer. In this example, we will explore the\n", - "Convolutional LSTM model in an application to next-frame prediction, the process\n", - "of predicting what video frames come next given a series of past frames." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Displaying frames for example 818.\n" + ] }, { - "cell_type": "markdown", - "metadata": { - "id": "daG-n305x66K" - }, - "source": [ - "## Setup" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHRCAYAAABjIxMcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADOFUlEQVR4nOzdd3hc1Zn48e+ZLmnUe+/NKrZsy92WXLAxLc7SAyQkbLIhm2zChmSTZ0PC7o/dNAJLdgNLCBBCAqEkoYTg3nu3JblLsiyrlxn1NjPn94c8dyVs2WAszWh8Ps9zHzyjOzPnzsu9895ThZQSRVEURVEUX6TzdAEURVEURVHGi0p0FEVRFEXxWSrRURRFURTFZ6lER1EURVEUn6USHUVRFEVRfJZKdBRFURRF8Vkq0VEURVEUxWd5NNERQpwVQvQJIbpHbHGeLNNHCSHyhRBrhBCtQgg16dAYJkksvyCEOCCE6BRCnBdC/EwIYfB0ubzRJInnPUKIk0KIDiFEsxDiFSFEkKfL5W0mQyxHEkJsEEJIdW5e2mSIpxDiQSGE8yNlLPVUebyhRudWKaV1xFY/8o9e8D/7EPAm8JCHyzEZeHss/YFvARHAbGAp8KgnC+TlvD2eO4D5UspgIA0wAE94tkhey9tjCYAQ4j7A6OlyTAKTIZ67PlLGzZ4qiDckOhe5kM3/oxDiNHD6wnPPCCFqL9yNHxBCLByx/+NCiLeEEL8XQnQJIcqEEFlCiO9fuNOrFUIsH7F/sBDiRSFEgxCiTgjxhBBCf6mySClPSilfBCrG+7h9kZfF8jkp5TYp5aCUsg74AzB/nL8Cn+Jl8ayVUraOeMoJZIzTofscb4qle3/gR8B3x/GwfZa3xdObeGWic8Eqhu+6p1x4vA+YBoQBrwFvCSEsI/a/FXgVCAUOAWsYPr544N+B50fs+1vAwfBFsQhYDvz9uByFAt4by0WoBPZqrMJL4imEWCCE6AC6gNuB//oUx3U9WoWXxBL4T+A5oPHqD+e6twrviWeRGO7ycUoI8ZjwZC2TlNJjG3AW6AbsF7Z3LjwvgSVXeK0NmHrh348D60b87dYL76u/8DjwwnuGANHAAOA3Yv97gU1X+LyM4a/Lc9+XN2+TKZYX9vsScB6I8PR3543bJIxn/IXPyvL0d+dt22SIJTATOMxw82PKhfcxePq788ZtksQzDUhlOGkqAI4B3/fUd+YN7XirpJTrL/F87cgHQohHGe4nE8fwlx/EcF8Lt6YR/+4DWqWUzhGPAawXXm8EGoQQ7v11H/085apMilgKIVYBPwaWydFNH8pokyKeAFLKOiHEauCPwPQr7X8d8tpYCiF0wLPAN6WUjhH7K2Pz2ngCSCmrRjwsE0L8O/Adhq+7E84bEp2xaCOcLrQrfpfhzqMVUkqXEMIGXM0ZUctwZhohpXRck5IqV+I1sRRC3Ai8ANwspSy7is9UvCieH2EA0q/iddczb4hlEMM1Om9c+BF19/s4L4S4U0q57So+/3rlDfEcq1wey2C9uY/OSIEMtw22AAYhxA8ZPjk+MSllA7AW+IUQIkgIoRNCpAshSi61vxhmAUwXHluEEOarOgoFPBvLJQx3QL5dSrn36oqvfIQn43mfECLpwr+Tgf8ANlzNZyuA52LZwXCNwbQL200Xnp8B7Lmaz1cAz56bK4UQ0Rf+nQM8Brx7NZ99LUyWRGcNsBo4BdQA/Xy6pqbPM5y4HGO4zfJtIHaMfZMZrsJzd1rtA05+is++3nkylo8BwcDfxP/N7fDhp/hsxbPxnALsFEL0MDzU/CTw5U/x2dc7j8RSDmt0bwz/MAM0SSkHP8XnX+88eW4uBY5eODf/BvyZ4c7mHiEudBxSFEVRFEXxOZOlRkdRFEVRFOUTU4mOoiiKoig+SyU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz7rshIFCCDUky0OklNd8ciUVT8+51vFUsfQcdW76FnVu+o6xYqlqdBRFURRF8Vkq0VEURVEUxWepREdRFEVRFJ+lEh1FURRFUXyWSnQURVEURfFZlx115UnLli0jLi6OqKgoOjs76evro7u7m7q6OhwOBzqdjilTpuByuejq6mL16tUMDAx4utjXvdLSUhISEoiJiaGrq4u+vj66urpoaGhgcHAQIQS5ubkIIeju7mbNmjX09vZ6utjXvbCwMEpKSoiLi8NoNNLV1aVtTU1NAAQHB5OWlkZnZyc1NTXs3asWgPe0wMBAli1bRkxMDBaLhc7OTrq7u+nu7qahoUHbJyMjg66uLurq6tixY4eHS61ciorl+PG6REen02EymVi4cCH5+fmkpKTQ2tpKZ2cnNpuN48ePMzg4iE6no7S0FKfTSWtrKxUVFTQ1NdHV1eXpQ7guCSEwmUzMnTuXadOmkZGRQVtbG11dXbS3t3Py5En6+voQQrBo0SKEELS3t3P8+HHq6+vp7Oz09CFct4xGI1FRUdx0001kZmZiNptpb2+ntbWVtrY2KisrAYiOjmbGjBm0tLRw8OBBzp07R0tLC06n08NHcH0yGAyEh4ezcuVK0tPTsVqttLa20t7eTnt7O6dOnQIgPDyc2bNn09rayrFjx6isrKStrY2hoSEPH4HipmI5zqSUY26AnOgtNDRUzpkzR546dUo6nU7pcrmky+WSTqdTOp1O6XA4tM393ODgoNy1a5f8h3/4hwkv73htl4vL1W7jWd6goCA5e/Zsefjw4Y8dN4fDIffs2SMfeeQRj3/fky2e17Js2dnZ8qGHHhoVN3fsRsbN4XBozzc1NclNmzbJxMREj3+3kz2WVxvPjIwMee+998qhoaGL4vbR2Lmfb21tlVu2bJHZ2dke/x69ZVOx9J1trJh4XY2OyWQiIiICo9GI3W7X7iYvxW63k5SURHZ2NpmZmURGRk5gSZWRjEYjERERmEwmuru7OXny5Jj7dnR0EBMTQ35+PhkZGcTGxk5gSZWPCgwMJCQkBJ1Ox8mTJ8esXRsaGqK7u5t58+YRHBxMTk4OJpNpgkuruFmtVkJCQtDr9VRWVmKz2S65n8PhoLOzk9mzZxMYGEhOTg4Wi2WCS6tcjorl+PK6REdKqVWFt7W1sWvXrjH3HRgYQK/Xk52dTXh4OAEBARNVTOUjpJS4XC5gOAG9Utzy8vLIz88nLCyMwMDAiSqmMgZ37I4dO0Ztbe2Y+wwNDVFUVITVaiUyMhK9Xj+RxVRGGFGDwIkTJ6iqqrrkfi6Xi8HBQQoKCggJCSEqKgqDwesu/dc1Fcvx5XXfUHNzM2vWrKGrq4tjx47xyCOPXHI/vV7PF7/4RbKysia4hMqltLe3s3r1ah577DHOnTs3ZtyEEHz+858nMTFxgkuojGX//v3axfLZZ59l48aNl9wvLS2Nz3zmMzgcjoksnjKGI0eOaDeFv/3tb/nLX/5yyf0SEhK4/fbbGRwcnMjiKZ+AiuX48rpEB4az25qaGhoaGrQ7zY/S6/UsXryY3NxcHA4Hv/3tb9m5c+cEl1QZSUpJbW0t3d3dY8ZNp9OxaNEiCgsLcblc/O53v2PTpk0TXFLlo/r7+zl9+vRlYxcREcHKlSsJDAzk9OnTfPDBB2NWsSsTwx23rq6uMeMWGhrKTTfdRGhoKDU1Nbz77rs0NzdPcEmVK1GxHD9elegYDAatCaS8vJzz589fcj+TyURwcDC5ubmEhYXR3t7OunXrOH78+ASXWAG05gun00lFRQX9/f2X3M9oNGK1WsnJySEqKgq73c7GjRspLy+fyOIqIxiNRhwOB93d3ezZs2fM/jkBAQHExsaSl5eHw+HgzJkzfPjhh/T09ExwiRUYvlY6nU76+vrYu3cv7e3tl9wvICCAqKgo8vPztRvIv/3tb3R0dExwiZWxqFhOAG8adRUdHS3Dw8MlIC+sAHvJLT09Xd53332yra1Nnjp1Sr766qsyODjY4z2+r+XmLSM7Ps4WGRkpIyMjtbiNFbvExER59913y/r6enn27Fn5+uuvy6ioKI9/15MxnteiTEajUSYkJEiLxaLFbqx9ly1bJn/2s59JKaVcu3at/Na3vuXx79RXYvlJ42kwGGRCQoL09/e/YtxKSkrk448/LqWUcuPGjfJf//VfPf79edumYuk726QYdbVw4ULy8vKYOnUqr7zyCsePH9fmDxipsLCQb33rWwwNDbF161aee+45dWfpQXPnzqWgoICZM2fy2muvUVFRwbFjxy7aLycnh0cffRQhBLt37+YXv/gFdrt94gusAMMTAN56661Mnz6dwcFBXnvtNcrLyy95h/jAAw8wffp0Wlpa+M1vfsOBAwc8UGIFhu/sb7nlFqZOnYrBYOCVV17h2LFjl6wJuPvuu1m4cCFtbW288sorlx0koEw8FcuJ4VWJTkBAAGlpaXz2s5/l3LlzmM1m7HY7bW1tWket8PBwMjIymDFjBocOHaKsrExddD3M39+f5ORkVq1aRUNDA2azWZvsyt1xNSwsjNTUVGbOnMnhw4cpLy9n//79Hi759U2v1xMUFMTChQvx8/Pj3LlzdHd3U1NToyWgJpOJ0NBQpk6dSnx8PMePH+fAgQOXnfZBGV86nY7AwEDmzp1LbGwslZWVWnOx+wfSaDQSGhpKQUEBSUlJHDt2jAMHDlzyxlHxHBXLCeJtTVcPPfSQdDt06JD81re+JUNDQyUgdTqdfOihh+Tbb78tBwcH5cMPPyynTZvm8eqy8dg8XT3+SbbIyEh51113aXE7fvy4fOSRR2R0dLS2zwMPPCB/97vfSafTKb/1rW/JWbNmefw7nszxvBZlMhqNMjExUW7atEmL3bPPPivvvPNObZ+UlBT5yCOPyNraWrlv3z551113+VwzsadjebXNHe+8844Wt5dfflned9992j6xsbHykUcekadPn5YVFRXyrrvu0roFqG1846li6X2x9KoaHZvNxv79+/nJT35CUVERYWFhfPnLX6anp4eDBw9y5MgR7rnnHgoKCnC5XOzZs0fdWXqBjo4Ojh49yo9//GOmTp1KeHg4X/nKVxgaGmL//v3s2bOHO+64g5kzZwKwb9++y04oqEwMh8NBS0sLv/vd7ygvL2fatGksWLCA5ORkHA4HW7ZsISEhga985StERERQUVHB1q1bVTOxh7mXvXnjjTeoqamhqKiIoqIikpKS6O3tZefOnURFRfGVr3yFuLg4Dh8+zNatW9UyK15IxXJieFWiMzg4SF1dHevXr6ezs5MZM2Zwyy23sGDBAgwGA319feTk5BAYGEhDQwMNDQ1qbSsvMDg4SFNTExs2bMBmszFt2jTuuOMO5s2bh8FgwGazkZOTQ1hYGPX19TQ0NKiRAl5ASkl/fz8HDx7Ebrdjt9u55557mDJlCqWlpbS1tZGZmUlOTg6tra00NDTQ2Njo6WJf99xxO3r0KD09PXR2drJq1SpycnJYvHgxXV1dhIWFkZOTQ3t7u4qbF1OxnCCeaOr4uNutt94qa2tr5dDQkDx79qx8++23ZVdXlzxy5Ij86U9/6tNV6J6uHv80W0lJiTx37pwcHByUdXV18q233pJ2u12eOHFC/vznP9dGaF1P22SJ5R//+EfZ3NwspRwe2bF161YppZSvvvqq/OIXv+jx79EbNm88N3/961/LxsZGKaWU27Ztkxs2bJBSSvnWW2/Jhx9+2OPfmTdvKpa+s40ZE2/4YRxri4+Pl5/97GdlXV2d7Ovrk83NzdLpdMrXXntNpqenS4PB4PEvdqID5o0/jh/doqKi5KpVq+SZM2fkwMCAbG5ulg6HQ77//vsyIyNDGo1Gj3+/kz2e41XO+fPnyx/84AdSSinb29ul3W6XUkq5atUqGRsb6/Hv0Rs2bzw3Z82aJR955BEppZR2u122t7dLKaV84IEHZHx8vMe/M2/eVCx9ZxsrJl7VdPVRra2t7Nq1i7KyMgoKCoiLiwOGm0o6OzvHnD1S8Sy73c7OnTs5evQoJpNJW+7B4XDQ0dGh4ubFKioqCAgIoLy8nPT0dPz8/ADo6emht7fXw6VTxnLixAmMRiPl5eWkpKQQHBwMQHd3t+pTNcmoWF57Ok8X4HIGBgZoamrimWee4Z133tGej4uLY9GiRZjNZs8VThnT4OAgzc3NPPvss/zxj3/Uno+KiqK0tBR/f38Plk65HLvdzqFDh/h//+//jVrcc8aMGeTn53uwZMrldHZ2cuzYMf7f//t/nDlzRnu+qKiIadOmea5gyiemYnnteXWNzlhmzZpFbGwsra2tnDx5UnXOmiQKCgr493//dzo6OqioqKCurs7TRVI+pocffpi8vDzsdjtnzpxhYGDA00VSPoYvfvGL5OXl0draSlVVlaqVm8RULK+eV9fouKWkpBAbGwsMN2cJIbRe6UVFRURHR6PTTYpDua6kpKQQHx8PQFtbGy6Xi+zsbEpLS5k5cybR0dHaOlmK9/D39yc7Oxs/Pz9tRF1cXBzTpk3jhhtuIDU1VatOV7yH2WwmOzubgIAAhoaGaGpqIioqisLCQm644QbS0tIIDQ31dDGVj+FKsczNzSU7O5uZM2cSEBDg6eJ6P2/ovHq5TafTyc2bN8u2tjbpcrnkBx98IA8cOCDdPvjgA3n77bdLs9ns8bJey80bOzx+0u2DDz6QLS0tUkop16xZI3ft2qXFbfPmzfKOO+6QAQEBHv+uJ2M8x7Osc+bMkefOnZMDAwOyoaFBvvnmm1qHSJfLJR999FE5Z84cj3+nvhLLaxXP/Px8ee7cOdnX1ydbW1vlm2++KZuamrRz7rHHHpOLFi3y+PfnbdtkjOWzzz4rf/7zn8sNGzbIKVOmSL1e7/Hv0Ru2MWPiTT+Ml9r0er0sKyuTDodDDg0NyZKSEvnFL35Rbty4Ufb390u73S6PHTsmFyxYIGNiYjxe3vEOmKdPwE+y7dq1Sw4NDUmXyyVXrlwp7777brl+/XrZ09Mju7q65MmTJ+WyZcuui5EEkymWJSUlcnBwULpcLrllyxaZlpYmf/Ob38jDhw9LKaWsra2Vr7zyiszPz5cmk8nj3+1kj+W1iue0adPkwMCAdLlc8uDBgzItLU3+93//t3ZjWFdXJ99++22Zn58v/fz8PP49esvm7bE8dOiQzM7Olr/61a+0WDY3N8vGxkbZ0dEhH3roIZmXl+fx79EbtrFiMin66JhMJvR6PUNDQ9o6PNHR0aSlpREZGUlaWhqZmZnY7XbVX8eLGI1GDAYDUkpqa2txOBysXbuW5ORkYmJiSE9PJzMzk9bWVtVfx4sIITAajQD09fVRVVXFli1bcLlcJCUlERsbq51zZ8+eZXBw0MMlVmB43SSTyQQMD+Soqqpi27ZtAKSmphIVFUV6ejrZ2dmcP3+evr4+TxZXuYyRsdTpdPj5+eHn56c9FxkZCYCUkri4OO2xcmmTsmPLkSNHeOqppzh8+DDNzc3o9Xpmz55NcnKyp4umXMaJEyd48sknOXDgAI2NjQghmDlzJhkZGZ4umnIFr776Kr/73e84ceIEAwMDREZGMn/+fG34ueKd3nzzTV5++WVOnDhBX18foaGhzJ8/H6vV6umiKR9TZGQkX/jCF1i2bBl5eXnuWiNNXFwcUVFRHird5DApEx0YXiPkz3/+M/v378dgMHDnnXcyffp0TxdLuQIpJe+++y47d+5Ep9Px2c9+ltmzZ3u6WMrHcP78eV599VXsdjupqak88MADBAUFebpYyiW4a+VWrlzJihUrGBgY0O7+H3jgAcLDwz1dROVjioyM5P777yc6OvqivwkhWLBgAQsWLCAmJgaDYVI00kw4r/9WpJQcPHgQnU5HSkoK6enpmM1m9Ho9SUlJhISEABAWFkZwcDB+fn6qStZLHDlyhICAALKzs0lNTWVoaAghBMnJyYSFhQEQGhpKSEgIfn5+9Pf3X3S3oky8zs5Odu7cSUFBgRY/gMTERJKSkjAajZhMJiIiIrBarZhMJtV85QV6enrYuXMnU6ZMISgoiEWLFrF06VIyMzOJiIjAaDRiNBpV3CaBgYEBTp06RUJCAv7+/lpi6nK5GBgYwGKxaCONY2JiSEpKIiUlhc7OThwOhyeL7pUmRaLzyiuv0NraysMPP8zSpUtpb29Hr9dz3333ERMTo+1nNpsJCwujoaFBzb7rBV577TVaW1v57ne/S2lpKdnZ2Qgh+NznPqcNOx8Zt8bGRpxOp4dLrdTW1vJf//VfPPHEE0RGRnLrrbcCkJaWxq233qrdXLhcLoKDg7FarbS3t3uwxApAc3MzzzzzDN///vdJTU3lX/7lX5gxY4Z2U+EmpSQoKIjAwEDa2to8VFrlcjo7O1mzZg233XYbycnJCCGA4dnl29vbiYqK0vrrREREkJqayowZMzh9+rSaX+cSJkWis23bNpKTk9Hr9fzDP/wDTqcTIQRBQUEYDAYcDgdvv/0227Zto6mpSSU5XmLXrl1aJ7kvfvGL2p1GcHAwBoMBl8vFn//8ZzZs2EBTU5NKcrxEe3s7q1ev5tvf/jbTp0/nu9/9LjDcudxqtWIwGKiurmbjxo1UVlZit9s9W2CF0NBQkpKSmDp1qpbEzJ8/H4vFMmq/8+fPs27dOk6dOqXi5qXcc1bdddddF817ZDKZtCYql8vF4OAgJpOJwMBAcnJy1GoBY/D6RAeGq2TPnj3L1q1bKSgoIDg4GJPJxPnz56mvr6eqqoo1a9Zw8uRJVW3nRXp7e6mtrWXr1q1adbrZbKa+vp6GhgYqKytZu3YtFRUVKm5eQKfTkZSURHh4OOHh4VRWVmI2m8nKysJisTAwMMD58+cpLy/nzJkz7N69W6055yWys7OZNm0aM2bMICgoCJ1Od9FSK93d3dTX17Njxw46OjrUjYWXSktLIz8/n7CwMC2h6e/vx2KxaBN4Hj9+nKGhIcLDwyksLMRqtZKdnU1kZCQdHR1qTayPmBSJDgyP2Hn22Wf5zne+Q2JiIkFBQRw4cIA1a9bw3nvvqeYqL1VdXc3//M//8K1vfYu0tDTCwsI4ePAgmzdv5o9//KNqrvICQghtOOvChQspLCxk5syZ/OUvf+H48eN86UtfIjIykra2Nnbt2sVTTz1FVVWVaq7yEkajkcWLF7N8+XJKSkoALtnXzWazcebMGdavX09nZ+dEF1P5GIQQFBcXU1JSonUsdic3kZGRWv+5X/3qVwwMDLBw4UISExOJiYmhuLiYzMxMlehcgrhc508hhNf0DDUYDJjNZkJCQtDr9eh0Ovr6+ujr66Onp8fnfiyllOJav6cn4qnX67FYLFpzlTtu/f39dHd3+1zcxnKt43ktYimEwGAwaHOr3H777cyZM4fIyEjMZjM/+tGP2L9/P2fOnEGv1+N0Ounv76ezs5OhoaHr9sbCm87NyMhIHn74YVatWkVOTo7WVDU0NER7ezvt7e2YTCbS09NxOp2Ul5fzy1/+kvfee0/1z7nAW85Ns9lMZmYmjz/+OIsXLyY0NJTOzk7Kysr44Q9/SENDA729vfT399PR0YGUEj8/P9avX8+0adMQQrB3717ef/99fvzjH1/LQ5o0xorlpKnRcTgcOBwOlal6OXffqdTUVKKjo7HZbOzfv1/FzctYLBaCgoLIyspi/vz5ZGdnM2PGDGJjY7W1c0JCQjAYDKNWMVe8h9VqJS4ujgULFhAfH68lOS0tLTQ0NLB37156e3uJjY0lJSUFvV6P1WolKSlJ68iqeA+DwUBkZCRhYWHaPEenT5/m8OHDnDhxgra2totGyQ0ODmp9VnU6nTb6WBlt0iQ6ivfT6XSYzWYSEhK4+eabmT17NuXl5Rw5coTBwUE1dNyLhISEkJKSwp133qmN7Pio6OhoNRGZF4uIiCAjI4OFCxdqiYuUklOnTnHw4EFefPFFTCYTRUVF3HjjjQQEBGCxWEhOTsZsNiOEUOekFzEYDMTExGC1WrWZyQ8ePMj27dtpaGgY83UulwuXy6UWtr4Mlegon5peryc4OJisrCzuvPNOCgsLKS4uxmQyERwcTElJCTt37qS7u9vTRVUYrnW78847WbJkCUuXLh1zduOFCxcCsGnTJlpaWhgaGprIYipXsHTpUlasWIHJZEIIwcDAAOfOnePnP/8527dvp6urCwC73c4zzzzDgw8+SFRUFDfeeCPvvfceTqdT1dZ5EXeiM3KknM1mu2JfOPfkq2ri1bGpREe5anq9Hn9/f7Kzs0lLS2PhwoUUFxcTHx+vzZgbGBhIfHy8doeieJa/vz+zZs1i1qxZ5OXlaVXkLpeLvr4+ent70ev1hIWFERkZSWJiIpmZmVq/HMXz9Ho94eHhZGVlkZWVpSU5jY2NvPvuu5w6dQqbzabV1rS2trJp0yZWrVpFbGwsISEhlJSUIIRQiY6XMJlMhISEMH36dIKDg3E6ndjtdqqqqqiurr7sa1tbW7HZbMBwx3Sz2awmYP0Ir0t03B0k3Z0f1cXVexmNRqKjo1m6dCmzZ89m1apVF+3j7+9PUlKSmt/BCwghCA0N5c4772TevHmkpqYC/5fkNDY20tbWhsViISwsjJCQEBITEyksLOT48eOqRs5LGAwGkpKSyMnJITMzE4Curi6qqqp46aWXqK2tHfUDZ7fb2bRpEzabDSEEFouFm266CYC//OUvHjkGZTQ/Pz+io6OZP38+ERERDA4Ocv78eSoqKjhz5sxlX2u32+ns7ERKicViwWq1EhoaSnNzs5q24wKvSnQMBgMpKSmsXLmSmTNncvToUZ555hkVLC8khCAhIYEf/vCHLFy4UJuh+qNiYmJYtWoV69evZ3BwUA1J9iD3RGT33nvvqEUdjxw5wtGjR/ntb3+LwWCgsLCQ//iP/8BsNmO1WsnLy7to4jnFc4xGI6mpqYSFhWnNjuvWrWPTpk2cOXPmuhnJ6EsSExPJzs4mISEBg8FATU0Nv/zlLzl79uwnep/o6GimT5/Ovffey0svvaTV9FzvPJ7o6HQ6LBYLERERFBUVkZOTw+LFi0lKSsLpdJKenk51dbVak8XLFBUVMWPGDIqKioiIiNBqbPr6+hgYGKCnp4eoqCgsFgtxcXFkZmZit9tVouNBOTk5FBcXY7VatRpTu93O2rVr2bNnD6dOnUKv1yOEYOvWrcyaNUtLdOLi4ujo6KCjo8PTh3Hd0+v1hIaGjqoltdvttLa2XvamsKamRlsTSfEu4eHhxMfHo9frgeHr6NGjR7V+VpcTERGhzaCs0+lwOBzY7fbrdvqHS/FooiOEwM/Pj4iICPLz87n77rvJy8ujoKAAgLa2NnJzc6mrq1OJjhfR6XTMnz+fxYsXk5eXBwyP9nA6nbS0tNDR0UF7e7s2FX1kZCQ5OTk0NjZSUVHh4dJfn3Q6Hfn5+cyZM0ebiKy/v5/q6mo++OADdu7cqV0YpZR88MEHZGZmkpiYSEFBAZmZmdhsNpXoeAGDwUB4eLiW6DidTjo7O68Ym8rKShISEkhJSUEIoW2qH4fnRUZGEhcXp61p1d/fz8mTJz/WAtWxsbHa6EgpJT09PdTU1KhuHyN4LNExm81ERUWxatUqZs2axWc+8xlMJpOW0QIEBQWRnZ3N1q1bPVVM5SMsFgtpaWnccsstzJs3T3vebrezb98+fvvb33L+/HmMRiPPPPMM2dnZGI1G0tPTr9jWrIwPk8lEbm4uCxYsYM6cOQB0dHRw7NgxHnnkEU6ePDnq7q+hoYFf//rX3HXXXSQnJxMYGMi3v/1tVq9ezfe+9z1PHYbC8Nw5iYmJ3H///SQkJDA4OEh1dTVbt25l27Ztl31tY2MjTU1NwHCfkODgYMLDw7HZbKq5y8MyMzOZOnWq9lgIgdFopL+//4qvLSwsJDc3FxgepdXQ0MDZs2dVojOCxwbeR0REcNNNN7Fs2TJmzpyJ1Wq9KNEJDQ1l+vTpREREjDkEVplYgYGBlJSUEBsbq8Wko6ODEydO8Morr3Do0CHOnDnD6dOn2bZtG0ePHgWGT+SsrCyio6NHxVgZfwaDgejoaIKDg7X1j44fP87u3buprq6+aLVjl8vFwMCAlvy4a15Vh3LPCw0NJT4+nujoaCwWCz09PWzcuJH6+vor9mV0uVxIKbXVyxMTEykuLr5oTSxl4un1eq2mFYavs6WlpYSHh4/5GiEEZrNZ+90UQtDT04PdbqetrU0lryN4pEbHz8+PhIQEbrnlFubPn09ISAiAdhK6XC4MBgMhISFMmzaN2NhY7Hb7x6rGU8aPTqcjODiYxYsXExkZiU6nQ0pJfX09R44c4c033xx1cm3ZsgWDwcCMGTNIT08nJyeH9PR0taDgBNPr9URGRmorj8NworN//35aWlrGfJ3D4WBoaEglOF4kLCyM+Ph4QkJC0Ol0dHd3s379epqbm6/4WvfSOTD8Q+runL5///6P1RdEGT9DQ0PapKru2eVXrFhBdXU1NpsNh8Mx6sbDPTlraGjoqKk7+vr66O7uxm63qybJETyS6DzwwAOUlpayYsWKUVlsW1sbXV1dtLe3M2XKFKxWK2lpaSxatAghxMc6mZXxk5SUxPTp01m2bBlWq5WhoSFsNhtPPvkkO3bsuCh5+fOf/8zQ0BBf+tKX8Pf3Z+7cufz0pz/lvvvu49y5cx46iuvPWBORXWmto507d2I0GrWJAxXPS0xMJCcnR+vL0dPTw6ZNmz7W0P/09HRtSgEYrok9fPjwx2oeUcbXgQMH8Pf3Z8aMGZhMJsLDw/nCF75AV1cXu3fvpqysjNraWgYHBwkICCAmJoapU6fy5S9/mbS0NO2m0z2HjtVqpaenR3VIvmBCEx2j0Uh4eDjFxcVMmzZNS3J6enqora1lw4YNtLW1MTQ0RExMDDExMeh0OuLj4y9bhadMjJCQECIjI/H390ev19Pe3s6mTZs4fvw4jY2NF+3vXp8Mhu9C3BMMui/Syvgzm82EhYUxd+5cIiIicDqdtLW1cfLkSU6dOnXZ17a3t2O324Hhfj5+fn4EBATQ19enLqAeEh0dfdWjppKSkkhISADQmjjUXCve4dSpUwghmD59OjNnziQ6Ohqz2UxpaSmZmZnU1dVx+vRp+vr6CAoKIiUlhcTERHJzc0d16+ju7qa/v39UBYIywYmO2WwmJSWF/Px8MjIygOERA+6FH9955x2ampqwWCzcdtttBAYGalWskZGRGAwGdVJ6UHBwMKGhodq6Ol1dXezatYvz58/T2dl5yde4XC76+/tVHysPcY9qnDFjBqGhoQwODlJTU8Pp06evOEdHd3c33d3d2kRkgYGBREREUF9frxIdDwkPDx81Oken0xEUFMTAwMBlr41CCGJjY4mOjkYIQV9f38cakq5MjHPnztHT08OGDRtITEwkKioKIYQ2hcfAwAAnTpygt7eXkJAQ0tLSRl1TpZQMDQ3R2NiopvC4hAntjBwdHc1Xv/pVkpOTtYzz/PnzrFu3jocffpjNmzdz7NgxDh06xAsvvMCHH36IEIKFCxeycOFCcnJy1FICHhQSEkJERIT2eGhoiKampssO/W9qauLDDz+ku7tb1eR4QHx8PFOmTCEhIYGAgADa29v57//+byorKz/R+0RFRTFt2jQ+97nPaX3qFM8LDw/nG9/4Bunp6WPu4161fOT5Z7fbaWpq4ty5c2p0jpew2+28/vrrHDt2TKtJheFk1s/Pj6lTpzJ37lymTJly0Y2jzWZj7969PPbYYzz//PPYbDZ1MzLChCU6ERERpKWlUVRURGBgIE6nk66uLt555x3+9re/0dvbi9PpxOVy4XQ62b59O4cPH8blcuHv78+UKVO4//77CQwMnKgiKxfodDqsViuFhYUUFRUBwyfWuXPnOHDgwGU7Mvb399PU1ITD4dAmh7RaraqD6wSJiIggISFh1Pwchw8fHnUhHUt0dDSRkZHAcI1Af38/dXV16ofRg86ePUtZWZnWcTUgIIClS5eycOFCZsyYQXR0tLbIp8ViISoqiqlTp/Lwww8THx+v/X+g1+u1dZHUDYh3cLlcdHR0sGnTJtauXXtRoqLT6dDpdBfF68MPP+SVV17hueeeo6qqSi3VcgkT1nQVHh5OQkKCVuXmXoRu06ZN7N+//6Ie4idOnKCwsBApJUajkaSkJJYuXcovf/nLiSqycoF7tFVmZibZ2dnAcE1NdXX1FefGcc/S6XQ6MZvN+Pv7Ex4eTnNz82VH/CjXRlhYGLGxsdrF0d109dEh5ZcSHR2tTUTmcrno7e2ltrZWJToeVFNTQ1lZGTabjZCQECwWC1OnTmXOnDnodDrKy8upqamhv78fq9VKXFwcU6ZM4Y477iAyMlKbINDdZ85kMmlJk+JZUkr6+/vZt28fQgjmzJmDn58fBoNBa8lw3ywODg4yODiojbo7cOAAhw4dUh2QxzBhiU5MTAyJiYkEBAQAUF9fzwsvvMCBAweor6+fqGIoV8FsNpOXl0dqaqr2w/f++++zfv36T/Q+AQEB+Pn58dnPfpbg4GDef//98SiuMkJGRgbTpk3TEh33RGQ6ne6KQ/wLCgq0icjsdjuNjY2qqcPD9u7dS2VlJcHBwdx5553k5+cjhOC+++7j7rvvpre3l4qKCnp6eggNDSU9PZ2goCBtnhW3trY2Ojo6MBqNqkbHyxw5coRjx47xzjvvMHXqVJKTk8nKygKGbz6WLFnC3r172b9/P2+88QYNDQ2j5r1SLjZhiU5gYCBBQUHa46GhIW2E1Vja29s5cODAqBkjlYlnMplITU3VklQYnk7+SqN2YHj18pSUFO2ORAhBfX39FYc2K9eGe84Nt8DAQG655RY2bdpEbW3tJV+j0+m0ScjcVeXd3d3YbDY1SsfDpJR0d3ezceNGiouLtfPSHTOdTkdWVhYOhwOTyURQUNCoETg9PT3U19fz2muvceDAAbq7u9UPpJdxdyy22+2Ul5dTXV3N4cOHgeGbxdWrV9Pc3ExraytNTU0qyfkYJiTR0ev1hIeHax1ZHQ4Hvb29NDY2XrYja1dXF6dOnSI3N1e7YLvvTFRV68RxNx2OnEG1paXlY81r5OfnR1JSEkajESklDoeDpqYmNTJggvT392vV2TqdjoCAABYvXkxVVRU2m00brSOl1M4vPz8/YmNjR827Mzg4qE1Gps49zxocHKSiooLKykpyc3NHdUQ2GAxav6qPstlsNDU1ceTIETZu3MiZM2cYGBiYqGIrn4CUksHBQRoaGjxdFJ8w7omOwWAgNDSUZcuWUVpaCgw3W5WVlbF69erLXjTd8+sMDQ1hMpmwWq2EhYVhs9lUh6sJ5Ofnx+zZswkLC9OeMxgMH2uuhrCwMObMmaOt29LW1kZtba1KdCbIkSNHCAwMZM6cOZjNZkJCQrj//vvp7u4mPj6ew4cPc/78efr7+7WJyAoLC/n6179OZmamNhGZex4dNRGZ57lcLm2ETk1NDT/96U8xGAxXbIL63//9X3bu3MmuXbvU7OTKdWXcEx13s0dcXJz2Q7lt2za2bt36ie4M3SMIFi5ciNFoZP/+/eNVZOUj3KscjzR37lz6+vr461//Oubr3OuwuJtOHA4HnZ2dNDc3q1WwJ8jx48fp7+8nLy+PefPmkZSUhF6vZ/ny5RQWFtLU1MTp06fp7u4mJCSElJQUYmJiyMnJGVWD19nZSU9Pz8f6QVUmRmVlJZ2dnXR3d5OcnKytgA3DTZSFhYVUVlZy9uxZtm3bxq5du6ivr6erq0slqsp1ZdwTHaPRSFxcHCEhIdrY/2PHjnHs2LErvlav12OxWBBCYDAYCAwMJD4+ntDQ0PEutjKC0+mks7OTgYEBbcRGQUEBnZ2dbN++nf7+fm0WZHcTo8FgICEhgZiYGGA4WXI6nQwMDNDT03PZJkvl2mlubmZgYIBt27aRlpZGQkICOp2OzMxMMjIy6O/vp7Kykt7eXm2hx5F9sVwuF319fdTU1FBfX6+arbxIW1sbNpuNuro6srOziY+PJy0tDUC7qTx69CgVFRW8++672Gw2dd4p16VxT3T8/PzIz8/HarVqzx0+fJgjR45c8bXBwcHk5eVpM/FKKTlx4gR1dXXjVl7lYt3d3XzwwQfExsYSGRmJyWRi8eLFJCcnc/78ecrKyqivr6e2thZ/f38CAwOJjo7m0UcfZdq0aej1eq0PyMh5dNQaOxOjq6uLN998k+LiYjIyMrQfQfeq5Pn5+WO+tqOjg/Lycp544gmOHz8+5gzYime4XC66urrYv38/Bw4cGPW3kX0ZVYKqXM/GPdGxWCzk5+ePmujPYDCg1+uv+NqQkBDy8vK0eQM6OztpbGxUzR4TzD1XQ2RkJO3t7dx4443odDpiY2P56le/SktLCy0tLZw8eVJbJiI5OZns7OxRs+gODg5qo60+TvyVa8P9Y7hmzRoGBgb4+7//+4/1/f/5z3+mrKyMvXv3cubMmY81947iOR9NZlRyoyjDJqQzclRUlFYrA8PVquHh4fT09Iz5Ove01zExMej1evr7+7Uhrpd7nXLtDQ0NcfbsWQ4cOIDVamXZsmXo9XoCAgKYPn06g4ODdHR0aHN2BAcHa4sHuvX19WnJUH9/v7oIT7DBwUHKy8vR6XTMnj1bq1Vzj6zS6/UEBQXR29tLb28vNpuNzZs3c+jQIY4cOUJvb6/q16EoyqTkkSVOb7nlFvz9/XnuuefG3MfPz0+7CAshtHl36urqPtb09cq1t2vXLnp7e3nooYcICQnRkleTyURkZOSYw1phuFPsmjVreOqpp7SZkpWJVVFRwYkTJ1i9ejWFhYWkpKSQk5ODEIKIiAhWrFjB3r17OXjwIL/73e9obm5Ws+YqijLpjXui09PTw5YtW4iJidEmr5ozZw4BAQFUVlZSVVWlraJrsVjw8/MjNDSUu+++m3nz5mkjdoQQ2hBXo9GoZmf1gN7eXmpqanj22Wf53Oc+R0ZGxqjJ6C6lqqqK999/n61bt1JVVUVnZ6dKcjzIvcZcWVkZlZWV7NmzBxgeIffGG29gs9mw2+20tLQwNDSkkhxFUSa9cU90ent7OXToEDNnztRGTcXFxeFwOCgpKSEmJobGxkZqamoIDAzU9lmyZAmZmZlahzopJU6nU5u/RSU6E8/pdGKz2diyZQvp6en09PQQGBiIxWLR+ny4Z7/u7e2lubmZsrIy1q5dy8GDB7Hb7SpuXsDhcNDe3q7mMlIU5bogLnfHJoS4Zrdz99xzD6WlpXzlK18Z9bx7ErmKigqt705qaupFr29sbKS8vJxvfetb1NTU+Hw/HSnlNZ+s5FrGMyAggIiICIqLi8nMzNQSnBUrViCEYN++ffz617+murqa9vb2675m4FrH81rGUvlkvP3cVD4ZdW76jrFiOWGJTkpKCnPnzuVXv/oVVqtVm1XX5XIxNDSkTUZmMplGTT0PcOrUKbZt28bvf/97Dh48SG9vr883f3j7xVSv12M0GgkKCsLf31+LZ3h4ODA8LLm+vp6+vj5Vi4O6mPoSbz83lU9GnZu+Y6xYTlhn5ObmZqqqqqioqCA/P5/g4GBgeHSV2WzGbDZf9Jquri4aGhrYvXs3u3fv5tChQ2qtHS/hdDpxOp0XzYVz5swZD5VIURRFUS42YTU6MDysvKSkhB/+8Ifk5+dfcS6PvXv38uyzz7Jhwwba29vp6+u7lsXxauqu0beou0bfoc5N36LOTd/h8aYrGJ5TJzg4mJycHOLj48nOziYpKUlrqpo7dy5Op5OTJ0/y3nvvcerUKU6ePInNZsPhcFxX83ioi6lvURdT36HOTd+izk3f4RWJjpvFYiEkJISMjAwSExOxWCzodDqKi4txOp2cPn2av/71rzQ1NdHV1TUeRfB66mLqW9TF1Heoc9O3qHPTd3hVoqNcmbqY+hZ1MfUd6tz0Lerc9B1jxfLys70piqIoiqJMYirRURRFURTFZ6lER1EURVEUn6USHUVRFEVRfJZKdBRFURRF8Vkq0VEURVEUxWepREdRFEVRFJ+lEh1FURRFUXyWSnQURVEURfFZKtFRFEVRFMVnqURHURRFURSfpRIdRVEURVF8lkp0FEVRFEXxWSrRURRFURTFZ6lER1EURVEUn6USHUVRFEVRfJZKdBRFURRF8Vkq0VEURVEUxWepREdRFEVRFJ+lEh1FURRFUXyWSnQURVEURfFZQkrp6TIoiqIoiqKMC1WjoyiKoiiKz1KJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rM8mugIIc4KIfqEEN0jtjhPlulShBBpQoi/CiG6hBCtQoifebpM3mYyxFII8b8fKd+AEKLL0+XyRpMknkII8YQQok4I0SGE2CyEyPN0ubzNJImlWQjxtBCiXghhE0I8K4Qwerpc3mCSxC9fCLHmwu/jRSOchBBhQoi/CCF6hBA1QojPTWT5vKFG51YppXXEVj/yj0IIg6cKduHzTcA6YCMQAyQAv/dkmbyYV8dSSvnVkeUDXgfe8mSZvJxXxxO4E/gSsBAIA3YBr3q0RN7L22P5PWAmkA9kAdOBH3i0RN7F2+M3BLwJPDTG338FDALRwH3AcxN5U+INic5FhBBSCPGPQojTwOkLzz0jhKgVQnQKIQ4IIRaO2P9xIcRbQojfX6h1KRNCZAkhvi+EaL7wuuUj9g8WQrwohGi4cDf4hBBCP0ZxHgTqpZRPSSl7pJT9Usqj43n8vsTLYjmyXAHA7cAr43DYPsvL4pkKbJdSVkkpnQzfgEwZx8P3KV4Wy1uBX0op26WULcAvGU5ilTF4U/yklCellC8CFZcop/ta+5iUsltKuR14D3jg2n4jY/PKROeCVcBs/u/CtQ+YxvCd22vAW0IIy4j9b2X4bi4UOASsYfj44oF/B54fse9vAQeQARQBy4G/H6Mcc4CzQogPxXC13GYhRMGnPLbrzSq8I5Yj3Q60AFs/+eFc91bhHfH8I5B+4WJtBL4ArP5UR3b9WYV3xBJAfOTfCUKI4E9+SNeVVXhP/MaSBTiklKdGPHcEmLhmZimlxzbgLNAN2C9s71x4XgJLrvBaGzD1wr8fB9aN+NutF95Xf+Fx4IX3DGG46mwA8Bux/73ApjE+Zy3D1XIrARPwHaAKMHnyu/O2bTLE8iOfuQF43NPfm7dukyGeF87HZy683gFUA6me/u68bZsksXwC2AFEMtxFYM+F94r19Pfn6W0yxG/EPhmA/MhzC4HGjzz3ZWDzRH2Hnm7XA1glpVx/iedrRz4QQjzKcPtfHMPBCAIiRuzSNOLffUCrHK7Odj8GsF54vRFoEEK7gdB99PM+8l7bpZQfXijHkwy3HecynJUq/8fbY+n+/CSglOGTTRmbt8fzh0AxkAg0AvcDG4UQeVLK3ise3fXF22P5Hwz/wB5m+Af2BYZrEZrG2P964+3xu5zuC+UYKQiYsIEg3pDojEXruX2hnfG7wFKgQkrpEkLYGF3V+XHVMnwiRUgpHR9j/6PA/Kv4HOX/eEss3R4Adkgpq67iMxXviec04A0p5fkLj38rhPgvhqvx91/F51+PvCKWUso+4OsXNoQQXwEOSCldV/HZ1xOviN8VnAIMQohMKeXpC89N5RL9ecaLN/fRGSmQ4arpFoa/sB9ycYb4sUgpGxhujvqFECJICKETQqQLIUrGeMnvgTlCiGUXOmJ9C2gFjl/N5ysejaXb5xluf1Y+PU/Gcx9wpxAi+sK+DzB8F3rmaj5f8VwshRDxQog4MWwO8Bjwo6s7jOuWJ+MnLvQFMl14bBFCmC+8Vw/wZ+DfhRABQoj5wGeYwBGSkyXRWcNwJ8NTQA3Qz9VVobl9nuGAHGO4DfNtIPZSO0opTzJcJf6/F/b9DHCblHLwU3z+9cxjsQQQQsxleIoANaz82vBkPH/KcPPxYYb7LjwC3C6ltH+Kz7+eeTKW6cBOoIfhkZDfk1Ku/RSffT3yZPySGW76ctfS9AEnR/z9a4Af0MzwtB4PSyknrEZHrV6uKIqiKIrPmiw1OoqiKIqiKJ+YSnQURVEURfFZKtFRFEVRFMVnqURHURRFURSfddl5dMQlViFVJoaU8mrmPrgsFU/PudbxVLH0HHVu+hZ1bvqOsWKpanQURVEURfFZKtFRFEVRFMVnqURHURRFURSfpRIdRVEURVF8ljcv6qkoiqIoyjVmNBoxm82YzWb6+vro7e31dJHGlarRURRFUZTrhNFoZOrUqXzta1/jpZde4t5778Vg8O06D98+OkVRFEW5zun1eoKCgoiKiqK0tJTCwkJmzJhBbGwsVVVV5OTkcPz4cZxOp6eLOi4mLNGxWq2YzWaMRiMulwuXy4XT6WRoaAiXywWAn58fQgicTiednZ0++6X7ssDAQEwm08eOc0dHh/a84t2MRiNWqxWTyQSgxdYdX/c+JpMJp9NJX18ffX19niyyolzXhBDo9XpCQkJISEggLy+Pz3zmM2RlZZGWlgZAcnIy6enpnDx50md/cycs0bnzzjspLi4mPz+flpYWOjs7aWlp4dixY3R3dwOwZMkSzGYzra2tPP300zQ2Nk5U8ZRr5P7772fatGnk5ubS3NxMR0cHra2tlJeX09fXhxCCG264AZ1OR0tLCz/72c+w2WyeLrbyMWRmZvLggw9SWFgIQHt7O42NjTQ2NlJVVQVAamoq06ZNo7Gxkc2bN/P+++97ssiKcl3z9/cnMjKSBx54gPnz57NkyRL0ej1C/N+8euHh4WRmZqLX67UbFl8z7omO2WwmISGB0tJS5syZQ2hoKCkpKQwODtLX18fcuXNxOBwAxMXFodfr6evrQ6fTsXPnTv7yl7+MdxGVa8DPz4+4uDiWLl1KYWEhISEhJCcnMzQ0RF9fH/PmzcPhcCCEIC4uDiGEdre/detWPvzwQw8fgXI5CQkJTJ06lZUrVxIeHg7AwMCA1pGxq6sLGK7RCw8Pp7e3l5SUFHJzc/mf//kfn+/s6EtSUlKYM2cOSUlJuFwuenp6CAgIoK6ujtOnTwPD1+q4uDg6Ojo4evQoFRUVHi618lFCCFJTU7n11lu5+eabSUxMvGRfnPj4eObNm8fevXvp7e3FYDAwdepUBgYGsNls/PWvf530NT3jnugYjUZiY2PJzs4mIyOD3t5e/Pz8Lrmv0+lEr9djtVoxGAw4nU6V6EwSJpNJi3NaWhp9fX1jxtnhcGAymfDz80Ov19PZ2akSHS8XERFBSkoK+fn59Pb24nK5CAwMvGg/d3NlcnIykZGRxMbG8pvf/EYlOpOE2WwmJSWFFStWkJubq3UjCAoK4vTp00RFRQHDNXeZmZm0tLSg1+ux2Ww0NDQgpVr9wFuEhYWRnZ3NkiVLKCwsxGKxjKrJcQsPD2fKlCnMnTuX/v5+jEYjJSUl9Pb20tTURFlZGc3NzVrLy2Q07omOwWAgNjYWs9mM3W5n48aNY+7b2NhIUlISt912Gzk5ORw+fHi8i6dcI+5Ex2Qy0drayrZt28bct7GxkaysLJYvX86UKVNITEycwJIqVyMiIoLQ0FAAduzYQUdHxyX36+npobOzky9+8YtERkbi5+fn8yM6fElOTg5LlizhC1/4gvajKKVECMHcuXN54IEHAEb9YJaWllJRUcGdd96pElovIYTgK1/5CiUlJSxZsuSSCY5bSEgIISEh/Od//ueo1wMMDg4yc+ZMfvGLX/CnP/1p3Ms9Xsb9CtTT08OePXuw2+0YDAb+67/+a8x9Z8yYQUhIiPb4csFRvEtnZyd79uyhq6sLm802ZpyFEBQXFxMXFzfqOcW7lZeXk5ycjJSS3//+91RVVWEwGFi0aBEJCQnExsbywgsv4OfnR25urtbBXKdTM1hMBiaTieDgYKZPn05GRsaoc9L976amJmpqagDo6+tjcHCQxYsXExkZSWZmpoq1l/D399dGV02ZMkWLX2trK3V1deTl5dHW1kZtbS15eXmYzWYADh8+jMPhQEqJzWYjOzub1NRUsrKytJucyWrcE52hoSHOnTuH3W4Hhu8Gx+KuXoPhu/6WlpbxLp5yjQwMDHDu3Dk6Ozvp6uoaM87uRMc9cqehoUF1Rp4E3J2Oe3p6OHbsGGfPniUsLAwhBH5+foSFhXHq1CliY2OZPn06Qgi6u7upq6ub9O3714PAwEDS09MpKioiOTlZe35kU5S7KeP8+fP09/ej0+lYtGgR/v7+2v8LiudZrVYyMzPJzMwkJiYGGK6ZqaurY8+ePWRkZFBfX8/OnTu1IedWqxWbzUZzczPt7e309vYSFhZGWloa4eHhY3ZDmCwmrE65uroaq9V62X1uuukm5syZg5SSp5566rLNH4p3On369GWrr4UQ3HbbbRQWFuJ0Ovnxj3/Mzp07J7CEytXq6OigrKyM9PR0iouLWbVqFfPmzSMgIACHw8GCBQvIysrinnvuwd/fn7Vr1/Liiy9O6rb964EQgtzcXP75n/+ZZcuWjXmdDg0NJTk5mR/+8IdER0czY8YMNTWEF0pLS+PBBx8kPDwcvV4PwLlz53j33Xf5xS9+wc0338y2bdv47ne/y+nTp7nppptYuXIlxcXFvPTSS7z22mvMnz/fp5ohxzXRCQwMRK/XY7fbeemll8Zsqw8JCSEvL4/ExEQcDgc7duxg27ZtnDx5cjyLp1wjQUFBwHDz1XPPPaeNovuoiIgIcnJyiI+Pp7e3l/LycrZt28bZs2cnsLTKJ2E0GgkKCkKn02EwGDh16hRf/vKXiYiIIDY2VquBFUKQkJBAfHw84eHhHDx4kG3btrFz506fHbLqK1atWkVJSQlz5szR5riSUmK32+np6aGvr4+UlBQCAgJISEhg+vTpZGZmsnDhQkwmEzt37mT9+vUMDg56+lCuewkJCeTm5jJr1iwsFguDg4N0dXXx3HPPsWvXLoaGhqiqqqKpqYmhoSE++OADkpKSWLFiBf7+/ixcuJDQ0FCSkpLIyMigu7ubF198kYMHD3r60D6VcU10IiMjCQ0NRUpJY2OjNgT1o0JCQli4cCHBwcHY7XZ27NjB2bNnVZPGJBETE0NgYCBSSurr6y+6gxdCEBYWRkZGBgsXLsRqtdLc3MyOHTuoqanRmjUV7+Pn50dKSgrh4eGkpqZiNBqZPn36qL50MBzj9PR0beqAffv2UVZWRkNDg2cKrlyRTqfDYrEwd+5cZsyYMaqZo7e3lxMnTtDR0UFfXx+xsbH4+/sTGBhISkoKmZmZZGVl0dXVRXl5OZs2bRrzBkeZOBEREcTExBAXF4fBYMBut1NTU8O+ffuorq7G4XBw4MABzp49i5SSs2fP0traipQSg8FAQkICJpOJqKgojEYjra2trF+/nnPnznn60D4dKeWYGyA/zfbggw/KV199VUop5X/+53/KxYsXX3K/FStWSCmlbGxslC+++OKn+kxf2S4Xl6vdxqusX/3qV+Wbb74ppZTyBz/4gVywYIH2NyGENJlM8qGHHpJ/+MMfpJRSNjQ0yKeeesrj3/FkjudElTs7O1v+4he/kI2NjVJKKV0u1yU3t66uLnn69GkZGxvr8e98ssRyIuM5cgsKCpJTp06VZWVlcnBwUItlbW2tfPfdd+XixYvljBkz5KJFi2RNTY0cGBiQg4OD8g9/+IPct2+fHBwclO+884684447PB4Tb4qnJ49l5cqV8pe//KUWy71798pvfvObMicnR4aGhl7yNd/5znfk0NCQdLlcsqGhQZaVlUmn0ymPHj0qf/3rX0uz2ezxGH3aWI5rjc7u3bvR6/Xcf//93H333RQUFBASEsL27du1jsYlJSXMnz8fgHfeeYdNmzaNZ5GUcbB9+3ZMJhN33nknn//855k2bRqRkZHU1tYSGRnJwoULWbp0KQkJCUgpeeutt9iyZYuni618DO4p5N0dTd3/HRgY0EbYWa1WYmNjAaiqqmL16tU+1b7vq+Li4rjjjjuIiIgYFeOGhgY2bNjAyZMn6e7uxmQy8cYbb7BgwQJmz55NaWkpOp2O+vp6nnrqKU6dOuXhI1HcQkJCtK4EAP39/dhsNpYuXUpKSgrZ2dk899xznDx5UpvN/Pz58+zatYu5c+cSGhqKv78/7e3tfPDBB/zhD3/wiSbJcR0P2NDQwMmTJzl16hT+/v5kZmZSWlpKeno6YWFhABQVFWlTyh85coTjx4+PZ5GUcXD+/HlOnTrF6dOnCQoKIjs7m9LSUhYuXMiiRYtYunQp+fn52pDyuro6WltbPVxq5UrMZjNBQUHExMRgNBpH/a2np4fq6mrKyspGVWv39vbS2NioRlp5OT8/P2JiYpg5cyYBAQEA2g+awWAgICAAq9WKEIL29nZ27tzJmTNntJnN/fz86Ojo4MiRI2qpHi8ghMBoNJKQkKDNXN7f34/dbqe+vh69Xk9aWhorV65k8eLFFBYWEhMTg06n05q3nE4nZrMZf39/Tp8+zdGjRykvL/eJSSDHtUano6ODiooKHnvsMRYsWEBeXh7/9E//hMlkYuPGjbz11lvceeedzJs3D4C9e/dy9OjR8SySMg7sdjsHDhzgBz/4AYsXL9biDGgnycihp7GxsdrJqHivhIQEioqKWLVqFUajUZs4DoZHcbz++uscPnyYxYsXM3v2bGD4jjIrK+uixEjxLsnJyRQWFjJ//nz8/f0ZGBigo6ODyMhI7ebT39+fzZs3s2HDBt555x2SkpK49957MRgMDAwM0NnZ6RM/gr7AaDQSGhrK8uXLtYqDuro6ysrKWL9+PRUVFQQEBPB3f/d3fOc732Hr1q28/fbbvPjii3R1ddHQ0KCNoOvv7+f555/n0KFDnjyka2rch5d3dXWxefNmDh48yPTp0ykoKODGG28kPz+f3NxcEhMTaWpqYtu2bcyaNYvi4mLS09N55plnqK+vV8MXJ4mOjg62bNlCcXHxJScbG2nevHl0dHSwa9cu2traVIy91A033EBpaSlGo1Fbm6y5uRk/Pz+ioqJ4+OGH2bhx46h5V2JjY7Vh5mfOnKGtrc2DR6CMJSYmhujoaPz8/NDpdJw7d44PP/yQ7u5uoqKiyMnJ4Y477iAlJYWgoCBWr16tNWMq3sc9d05cXBwhISFIKXnnnXfYvn07AG1tbWzatIknnniCWbNmER4ezle/+lW6uroumiNHp9ORkJDgU+uXjXui43A4aG5uprm5Gb1ez86dO5k/fz75+fk4nU6Cg4Pp7Oykra2NadOmERoaSnp6On/605/o6uoac6p5xbvo9XqCg4OJiIjQTrSxJhBLSEggOTmZ+Ph4Ojo6fKIN2Jfo9Xr8/f2ZMmWKNkuuw+GgpaWFvXv3YjKZSEhIYObMmdhsNoKDg4Hh2js/Pz/i4+MpKipiYGBAJTpeKjAwUJv+A4ZvSE+dOkVlZSWhoaE0NTXxla98hYKCAmw2G/X19cTGxqpJAb2UxWIhLi6OgIAAjEYjLpeL8vJybSbrwcFBzp07x8aNG+np6WH+/PmUlpayaNEienp6MBgMo2a29rWm5wldhKa6uppvfOMb/PGPf2TevHmUlJQAw7Mnp6amMnv2bIKCgpBSUlxczNDQEAcOHJjIIipXKT4+nn/8x39kxYoV2jDVscTExJCTk8PcuXOprKxUiY6X8fPzIysri+LiYqZMmQIM19jt37+ff/u3f6Onp4ebbrqJmTNnMmvWLO117kV5g4OD+cd//EesVqtar85LhYaGXtRptbW1lV27dtHV1YXBYGDp0qXk5ubyj//4j6Smpqo16byY1WolJydHW84Bhpd0OHPmjPa4vr6e+vp6Nm3axEMPPcS0adP4whe+QE1NDZWVlVqi43A4OHnypE/1o5zQxUmGhoZoamri+eef5+WXX9aeDw4OZtasWVqnOCEESUlJ2kq5ineLi4tj6tSprFq1SutkDsOdy0+cOKE9drlcDA4OIqUkKCiIzMxM1ZfDC1ksFpKSkggKCtIunKtXr+bDDz+kurqaxsZGdu7cyY9+9CNVYzPJGAwGQkNDWbZsGXPmzAGG+3JUVFRod/swnLT+67/+K3/4wx/Q6XTMnz+fzMxM7X2MRiMBAQGEhoZqk0YqnhMSEsL06dNHNUMZDIYxmxo3bNjAP/3TP9HV1UVcXBzFxcUYDAb6+vq0dbB8aUbzCU10pJTaTI3uEwqGAxISEjJq5uSkpCQSEhLGXFpe8R6pqank5ORoq5c7nU66u7s5ffr0JSeaEkIQGBhIWloaISEho+5CFM9zn48mk0k7986fP099fT19fX0MDAzQ3t7OqVOnRtXGCSG0/dUCj97JZDIRHh5OUlIS0dHRAJw5c0brT+XuLyel5OjRoxw8eJCjR49itVrx9/fX3sc9Y3ZqauqkX/DRFxgMBoKDg0clNikpKVqMP6qpqYl9+/Zx6NAh2tvbCQ4ORgih/T7bbDb6+vomqvjjbsKvRjqdjqKiIqZNm3bZ/WbNmsWMGTOIjIxUHeC83KJFi1i8eLGWqPb391NTU8OOHTs4cuSItp9Op8NsNiOEICoqivnz55OVlUVkZKSniq5cgslkIjIyUqttk1LS0dFBZ2fnZV+n1+vR6XTqxsSL+fv7k5GRQVxcHMHBwUgp+eCDD7ROqyO1t7ezdetWfvazn100q31AQADx8fGsWLFiVE2P4jkjR8AJIbj11luZO3fuJfft6+ujoaGB//qv/2Lz5s2jnrfZbNoCvr5iQhOd2NhY/vmf/5lbb711zETHfZGMjY0lNzeXBQsWTPqVU32Vn58fOTk5zJs3TxvS2NnZyf79+/n+97/PwoULue222wDYs2cP5eXl2muNRiPBwcE88sgj3HzzzR4pv3Ixd03b7bffTlhYGH19fVRXV7N169ZRSWt2djbf/OY3CQ0NpaGhgY0bN9Lf36/93d/fn6CgIEJCQlTi40WsViu5ubmjmpsOHTr0idcVdHdQP378OM3Nzde6mMon1NzczJo1a2hvb8fhcCCE4KabbuLOO+/kM5/5DFlZWVq3An9/f6Kjo8nNzeXv/u7vKCgo0N4nIiKC7OxsCgoKfOoGdMI6I/v7+xMbG8uiRYtISEjQVshta2vT+m247yKFEJjNZkJCQkhJSVH9OLyU0WgkOjqaiIgIrWNjdXU15eXlHDlyhMjISG2SwB07dhAUFERYWBhRUVEYDAZtbZWR/XoUzwoODiY6Oprk5GTMZjPt7e0cPnyYxsbGUW327uGsRqOR+vp61q5dS2xsrFZTYLVaiYmJISMjg8OHD6t1kLyExWIhNTUVk8mkPedeuPNSQkNDycvLG1W7NzJxHRwcVLH1Ah0dHRw8eJBjx44hpSQpKYnw8HBycnJYtmwZycnJNDQ0UFdXR3BwMGFhYcTFxZGfnz+qL6zBYCAoKIjly5eze/dujh49SlNT06SfL2nCEp2oqChyc3NZvnz5qJPs+PHjtLW1MTAwwA033DCqvddqtZKWlqYSHS9lMpmIi4vDarVqMd26dSubN2+mtrZWWwRQSsnLL79MUFAQwcHB3HjjjQQGBgKXnmdH8ZyYmBiSk5O1i19jYyNvvPHGRQvsms1mbdLH8vJynnzySRISEpg3bx7Tp08nIiKCgoICbrjhBo4fP65+DL2E1WolPz9/VH+by3VazcnJ4YEHHsDf3x+Xy4XL5dKaqPV6PQEBAaqPnRdoaWlh3bp1JCcns2zZMpKSkhBCkJOTQ05ODn19fdTX11NVVUV4eDjR0dHEx8ePuv66k1h/f3/+7d/+jddee40333yTv/71r5N+uPmEJTorVqxgyZIlWo2N2zPPPMP+/ftxOp08/fTTzJgxg5SUFGA4OVq2bBl//OMfEUKoqca9jNFoJCYmZtSFzmazjbka+eHDh/nOd75DQEAABQUFJCQkTFBJlY8rLS2N1NRU7bHNZmPbtm0X9dG4FH9//1E3MUajEX9/f5XMejEhBHfeeSfh4eG8++67F/3d39+fmJgY9Hr9RRN7WiwWHn/8cX7/+9/z+9//nuPHj6vJPz1s7dq1GI1Gli1bRkhIiDYowGKxkJiYSHR0tFabPvK8dDqdlJWV0dXVhcPhYNGiRdx8883k5+fT0NBAVVXVpB5uPu59dPR6PaGhoWRnZ5OZmXnRRa+xsZGamhpqa2spKyvTFhqD4eBEREQwZ84ccnJyxruoyifg7mOTm5uLn58fTqeTjo4OampqaGhouORrent7qa2t5ezZs7S0tGijr0YOY1Y8Kzo6etQ8SE6nk56eniv+gLk7mLsnDwQIDw9nypQpajCBF3EPFOjr69OaI4qKipgxY4Y2CtLdf8dgMGA0GrUanJGj6gYHB+np6SEhIYH09HQyMjLUSDsv0NraSmVlJXv27Bm1sK4QApPJhNVqxWKxjBrhDMNz52zYsIEPP/yQdevW0dTUhMlkIikpiezsbEJCQib4SK6tcf8/02w2k5aWRmFhIdnZ2QAjl7MftRbSrl27Rq2v4V5c7r777mPJkiXjXVTlE3CPurjhhhsIDw+nv7+f8+fPc+jQIW3uHJfLpcXXPRpHCMGZM2eoq6sDhmdJdvfrUBdKz0tJSdFqVOH/Fgu8VK2MO/kRQqDT6cjOztb6ZLnf68Ybb1RJrBex2Wxs376d9vZ2hoaGAJg/fz4rVqxg2bJlZGRkEB4ejk6nIyAgYFSnZXecpZSj1kdyz5KtElrP6+3tpaKigt/85je0trYyNDSkXYdH/u4Co25eBgYG+J//+R+eeuopfvWrX1FRUUFbWxsmk4lZs2ZdcRJYbzfuTVcmk4nU1NRRdwp//OMfkVLyuc99jptuuomsrCwA7rrrLu3findLSkoiKyuL+Ph49Ho9Z86c4dlnnx1Vm/P000+zdOlSvvSlL/GZz3yGGTNmAPB3f/d3o35M09LSuPPOO3nllVd8apIqX5CUlMTXvvY1XnzxxVGxPXToEI8++ijf//73SUtL4/Of/7zW72okd01PX1/fx2r+UsZXU1MTb7/9NqGhoSxYsIDbbrsNIQQFBQX827/9Gx0dHTQ2NlJZWUlYWBhpaWmXfJ/e3l5aWlpITU2lqKiIqKgofvrTnzIwMDDBR6R8VFNTE+vWreO2224jMTGRrKwsMjIyMJlM6PV6li5dSltbGzU1Ndx8883ajUh3d7c2L9brr7/OPffcww033MD999/P0aNHLzkFwWQx7omOXq+/aPKxkX1tZs2apZ1MOTk5REREAMMTlLnn81C8j7tDm7sKtLu7myNHjoyqLj169KjW4W3evHnY7XaEEKSkpIyqCpVSMjQ0NOl79vuChoYG6uvrKSgoQKfTaT+Iu3btwmg0Yrfb6e7upr29nQMHDtDf36/V7Pn7+4+qlWtvb6e6upq+vj7VGdlLOBwOOjo6OHToEGFhYSxfvhyz2YzFYsFisRAWFkZYWBjh4eEEBASMaop0a2lpob+/Hz8/P4QQWCwWQkNDCQgIYGBgQKspUjzD4XDQ3d3NmTNnaG9vp6WlhZqaGq1mtrW1lY6ODlpbWwkICNDmMsvIyCAqKgqTyURGRoY2NURISAhBQUH4+flN2kkExz3RMRqNREREaJ0UpZR0dnYipcTpdLJ06VItAXJXrQ0NDXH06FGCgoKIiopSnRm9UExMDPHx8dpjd6Iz8kSoqKggLS0Np9PJihUrLhlH92R0VVVV6sfQC5SXlxMeHs6iRYvw8/MjPDycZcuWcfDgQcLDwzl27BjV1dX09PRw4sQJBgcHSU9PH9WBGYbjWlVVxerVq2lqapq0F0hftW/fPkJCQrDZbERGRmo3LO7rtfuG86NcLhdVVVXaXCxCCO26HRoaSm9vr0p0vER/f7+2vtX+/fu15998801guBKisbGRu+66izvuuIMVK1bQ29uLxWLhnnvu0SoZXC4Xfn5+hISETNrzeFwTncDAQFJSUrjnnnuIjY3V+nG4hx+3tbXx+c9/nvT0dMLCwtixYwf79+/nrbfeoqSkhNmzZyOlxN/fXxv7b7fbVc9+L5Cbm0teXp722N2XY+SkcQBlZWU88sgjPPTQQyQnJxMSEqINVdTpdLS3t9PQ0MC5c+cm/RBGX7BlyxbOnz+PwWDgnnvuIT4+Hp1Ox8MPP0xvb6+W0LpcLoKCgi45xbzL5eLQoUP89a9/5dVXX520F0df1tXVxYEDB3j88cf513/9VxISEj5WHzm9Xk9RURFCCG0m7IMHD7J9+3Zqa2tH1egq3s3pdLJhwwaKioowm81885vf1IaYu1e27+vr480332T37t2TemLIcU10goODtTt/i8VCR0cHu3btorGxkaamJnbt2oXZbCYmJgar1cqJEyc4c+YMx48fp7i4WPvhCwwMJC4ujoKCAvbs2XPRj6ky8Uwm06hOpoGBgcycOZN9+/bR0dGhPW+z2di5c6d2BxgSEsJtt92mNV319PTQ0dFBe3u7SmC9QF9fH42NjezYsYMbbriByMhITCYTwcHBBAYGah1V3Xd5ZrN51CRy3d3d2Gw2PvzwQ/bs2UNTU5OKqxeSUtLe3s6+fft4/fXXSUpKIiIigrCwMPR6vdbE3N/fT3t7O42NjURFRZGSkkJAQAAdHR00Nzdz8OBBysvLOXr0KAMDA6r5eZLp7e3l5MmTbN68menTp+Pv749er+fcuXNUV1dTWVnJunXrqK6untQ3ouOa6ERFRZGYmKhNLNbe3s77779PW1sb3d3dHDhwgAMHDlzytS6XS7t4hoSEkJ6ezrx58zhy5IhKdLyAy+Ua9T9+REQEt912G9XV1XR1dWnV2R0dHRw4cICDBw9qP5jz5s0blejY7fZJPUeDr7Hb7WzdupXa2lri4+O181en02EymUhPT7/oNVJKHA4HbW1tVFRU8Morr1BfX6/u8L1YZ2cnhw8f5syZM8TFxZGXl8eUKVOwWCzodDpuueUW2tvbKS8vZ+fOncyaNYtbb72V2NhYzp07x/79+/nxj39MU1OT6mg+iR0+fJgXX3yRiIgIbV60vXv38t5777Fx40YaGxsnfQI7rolOcnLyqAXfOjs72bRp06g7/ksRQpCZmUlSUpL2XHt7u3bXoHje7t27MZlMFBQUYDKZiImJ4Qtf+ALNzc3aEPPz58/jdDrx8/MjOjqamTNncu+99xIXF6dVk5tMJiwWC1arlZ6enkl/QvkCh8OB3W7nf//3fzl58iTf/OY3rzh02Ol08pOf/ISDBw9y+PBh6urqVJ+rSaKnp4eqqirOnTvH+vXrtRvMZ555BpfLhcPhYGBggL/97W/89Kc/RafT4XA4GBoaoqura1Lf6StQWVlJbW0t69at02rz+vv7tc0XrsnjmuhER0ePmv1WSqmta3Ul7lkcYbhTVWdnJy0tLaoa3EucOnUKi8XCzJkzKSwsJCQkBKvVSmlpKampqZw/f54TJ07gdDq1vloZGRkUFBRoTV5SSvr6+nA6nRdNYKV4lsvl4sSJE7hcLsxmM3FxcdoSHgBBQUHExcVRV1dHQ0MDp0+fZsuWLZw9e5bGxkbVIXUScdfGORyOUbXlH12tvq+v74o3qcrk4469L9e+juuvS2xsLImJidpjnU6Hn58f/f39l70LEEKQnJxMbGwsMNxxrr29nebmZnX34CVOnDhBZ2cnKSkpxMXFaUMRlyxZgsvloq+vj/LycoaGhggODiYzM3PU5GPuUXetra10dXVpEwr6wt2Dr6isrKSmpoadO3cyc+ZMEhIStKkgkpKSmDt3Lrt27WL37t389a9/pbm5WdXiKIridSb0NjomJoZvfOMbvPzyy6OWehjJvVCcu2lDCIHNZqOhoYHa2lqV6HiR1tZWXnvtNUpKSoiMjNTu9t2zqk6fPh0YjuFHa2xaW1s5efIk3/ve96isrMRms6kkxws5HA46OzvZtm0bOp1Oa8LS6/UYjUaGhoYYGhpiYGBA1bYqiuKVxjXRqa2tpbKykqlTp6LX6wkKCqK0tJSysjJMJhMtLS10dHTgcrkwGo1YrVbi4+OZPXs2oaGh2h2+TqfTVthViY73cDgctLe3s337dvR6PTfccMOouXLGWnV+8+bNnDp1iiNHjlBdXU1HR4dKcryYu8lZURRlMhrXROfMmTNER0ezYsUKAgICCAwMZN68eRw+fBg/Pz8qKio4e/YsQ0NDBAQEEBcXx4wZM3jwwQeJiIjQfjTdd48Wi0XNoOtFXC4Xvb29bNq0CYfDQXFxMSaTCZ1Op9XIuZNUh8OB0+lkYGCA9957j/3793PkyBG6u7tVPBVFUZRxIy73IyOE+FS/QAaDgfj4eP7+7/+ee+65RxuWOjAwwMDAAL29vZSVlTEwMEBwcDBZWVlYrVbMZvOopo59+/bxt7/9jf/5n//BZrNdF1XkUsprPh30p43nWAwGg7bSfFFR0ai+HPHx8cyfP5/du3ezb98+3n//fWpqahgYGMDhcFw3Sc61jud4xVK5ssl0bipXps5N3zFWLMe1RsfdtLFt2zZKSkq0iQPNZjMmkwk/Pz9yc3NxOp1YLBbCw8NHJTg9PT20tLTwzjvvsG/fPnp7e6+bH8bJxN1j373oY3V1NeXl5cDwHEg7d+6kpqaGuro6zp07R29v73WRrCqKoiieN+6dkXt7e9m3bx81NTWkpqZq6yO5lwwYOfx8pL6+PpqbmykvL+fdd9+lpqZGTSXvxVwuFwMDA5w9e9bTRVEURVEUzbg2XY14H0pKSli4cCE//OEPrzj5GMATTzzB3r172b9/P62trdfdsFVVPe5bVPW471Dnpm9R56bv8EjT1YgP59SpU9osi4mJiYSGhmor5AYFBZGRkUFNTQ3nzp3j8OHDrF27ltraWtrb29VIK0VRFEVRrsqE1Oi4uefIKSwsJCEhgdTUVGB4YsEFCxawb98+Dh06xLvvvktra+t1Pbuqumv0Lequ0Xeoc9O3qHPTd4wVywlNdNzcs+COnBTQPUeOe7HI673TsbqY+hZ1MfUd6tz0Lerc9B0ebbr6KPeIG9UkpSiKoijKeNJ5ugCKoiiKoijjRSU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz1KJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rNUoqMoiqIois9SiY6iKIqiKD5LJTqKoiiKovgslegoiqIoiuKzVKKjKIqiKIrPUomOoiiKoig+SyU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz1KJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rNUoqMoiqIois9SiY6iKIqiKD5LJTqKoiiKovgslegoiqIoiuKzVKKjKIqiKIrPUomOoiiKoig+SyU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz1KJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rNUoqMoiqIois9SiY6iKIqiKD5LJTqKoiiKovgslegoiqIoiuKzVKKjKIqiKIrPUomOoiiKoig+SyU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz1KJjqIoiqIoPktIKT1dBkVRFEVRlHGhanQURVEURfFZKtFRFEVRFMVnqURHURRFURSfNaGJjhDirBCiTwjRPWKLm8gyXIkQIl8IsUYI0SqEuKgDkxDi60KI/UKIASHEbz1QRK8x2eMphDALIV4UQtQIIbqEEIeFECs9VVZPmuyxvPD33wshGoQQnUKIU0KIv/dEOb2BL8RzxH6ZQoh+IcTvJ7J83sIXYimE2Hwhhu7yn5zI8nmiRudWKaV1xFY/8o9CCIMHyjTSEPAm8NAYf68HngBemrASebfJHE8DUAuUAMHAD4A3hRApE1Y67zKZYwnwYyBFShkE3AY8IYSYMVGF80KTPZ5uvwL2jX9xvJovxPLrI8qfPUHlAryk6UoIIYUQ/yiEOA2cvvDcM0KI2gt3ZweEEAtH7P+4EOKtC3dwXUKIMiFElhDi+0KI5guvWz5i/+ALd+4NQog6IcQTQgj9pcoipTwppXwRqBjj73+WUr4DtF3L78CXTJZ4Sil7pJSPSynPSildUsq/AtXA9fzjOMpkieWFv1dIKQfcDy9s6dfoq/AJkymeF97vHsAObLhGX4HPmGyx9CSvSHQuWAXMBqZceLwPmAaEAa8BbwkhLCP2vxV4FQgFDgFrGD6eeODfgedH7PtbwAFkAEXAcuC6rdaeIKuYZPEUQkQDWXjpyepBq5gksRRCPCuE6AVOAA3A3672vXzYKiZBPIUQQRfe/5+v5vXXiVVMglhe8GMx3LS1QwhR+ine55OTUk7YBpwFuhnO0O3AOxeel8CSK7zWBky98O/HgXUj/nbrhffVX3gceOE9Q4BoYADwG7H/vcCmK3xexvDXM+bfnwB+O5Hfn7dtPhZPI7AeeN7T36uK5aeOpR5YwHBTpNHT362K59XFE3gG+JcR5fi9p79XFcurjuXsC+9vBr4AdAHpE/UdeqJdb5WUcv0lnq8d+UAI8SjD7X1xDH/5QUDEiF2aRvy7D2iVUjpHPAawXni9EWgQQrj3133085SrNunjKYTQMXyXMwh8/WrfxwdM+lgCXPis7UKI+4GHgV9+mvebxCZtPIUQ04BlDNckKJM4lgBSyj0jHr4ihLgXuAn476t5v0/K0x2YRtJ6al9oV/wusBSokFK6hBA2QIz14suoZTgzjZBSOq5JSZWPY1LEUwyfxS8yfAdzk5Ry6NO+pw+aFLG8BAOqj86lTIZ4lgIpwLkLP7RWQC+EmCKlnP4p39uXTIZYXork6sp1Vbypj85IgQy3DbYABiHEDxnOTD8xKWUDsBb4hRAiSAihE0KkCyFKLrW/GGYBTBceW4QQ5hF/N1z4u57hE88iPN/j3dt5bTyB54Bchkc19F3qPZRRvDKWQogoIcQ9QgirEEIvhFjBcFW76sR6eV4ZT+DXDCep0y5s/wt8AKy4mrJdJ7wylkKIECHECvdvpRDiPmARsPpqynY1vDXRWcPwl3AKqAH6+XTV2Z9nOADHGG6zfBuIHWPfZIar8NwdUvuAkWP+f3Dhue8B91/49w8+RdmuB14ZTyFEMvAPDF9IG8X/zfFw36com6/zylgyfIf4MHD+wvs8CXxLSvnepyjb9cAr4yml7JVSNro3hvuS9EspWz5F2XydV8aS4SawJxhOwFqBbzDcFHfqU5TtE1GLeiqKoiiK4rO8tUZHURRFURTlU1OJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rNUoqMoiqIois+67Pwv4hLLrSsTQ0p5zSdTUvH0nGsdTxVLz1Hnpm9R56bvGCuWqkZHURRFURSfpRIdRVEURVF8lkp0FEVRFEXxWT61RpPJZMJsNmMymejr66O3t9fTRVIURVEUxYN8pkbHaDQyffp0vva1r/Hyyy9z++23YzD4VB6nKIqiKMonNKkzAb1eT3BwMFFRUZSWljJt2jSmTZtGbGwsx44dIycnh2PHjuFyuTxdVEVRFEVRPGBSJjpCCPR6PaGhoSQlJZGbm8tnP/tZMjMzSUlJASAlJYXU1FROnDihEh0fYDabsVgsWCwWuru76enp8XSRFEVRlElgUiY6AQEBRERE8IUvfIGFCxeyaNEi9Ho9QvzfEPqIiAgyMjLQ6Xymde66ZTQaKS4uZuHChSxYsIBXX32Vt99+G4fD4emiKYqiKF5u0iU6QggyMjK4+eabufnmm0lMTLxkX5zExERKSkpwOp10dnbS3d1NbW0tTqcTs9lMQUEBfX19tLW18cEHHyClmuPJm7hr7GJiYli2bBlFRUXk5+cTFRVFQUEB5eXlqllSURRFuaJJl+iEh4eTm5vL4sWLKSgowGw2A+B0OnG5XLhcLsxmM5GRkeh0Ovz8/LDb7djtdq0Zy2KxsGjRIrq6uqirq6OsrIyWlhY1SssL6HQ69Ho94eHhpKSkkJubyy233EJmZiaJiYkAJCUlkZaWRktLi7a/0+nUtoGBAe29/P39cblcDA4OYrfbPXhkyidhtVrx8/PDbDZr57XD4WBoaAin0wmAn58fer0eh8NBR0cHQ0NDHi618kkFBgZqcXZfwx0OB4ODg9pNjJ+fHzqdDqfTid1uVzW5yic2qRIdvV7Pww8/TElJCYsXL9aaqqSUtLS00NHRQXd3N0VFRYSGhhIaGkp6err2+pG1Nu7X9vf3M2fOHP793/+dNWvWTOwBKRcJCAggKiqKBx98kEWLFjF//nyEEKOaJSMjI5k6dSoLFiwgLS2NiIgImpqaaG9vp7W1lbKyMqSUWK1Wli9fTnt7O2fOnOHpp5/24JEpn8SNN95ISUkJ06ZNw2az0dHRQWNjI2fOnKG9vR2AefPmER4eTlNTEy+88AKnTp3ycKmVT2rVqlXMmTOHwsJC2tra6OzspKmpiZMnT9LR0QHAokWLCAwMpKWlhf/+7//m3LlzHi61MtlMmkQnICCA6OhoSktLyc3N1X74WlpaOHv2LH/+859xuVyEhISQl5eHn58fDoeDw4cPa3eAbi6XC7vdTn5+PvHx8WRnZxMcHOyJw1JGEEIwZcoUVq5cyS233EJ8fPwl+1ilpqai1+uJj48nMDAQs9lMWloag4ODDAwMsGTJElwuFyaTiZiYGAYHB5kxYwYhISG89tprnDx50gNHp3yUXq8nJyeHrKwscnJy2LBhA0eOHCExMZGFCxeyYsUKQkNDGRwcZGhoiP7+frq6uujv7wcgKioKs9lMf38/QUFB7N69m5dfftnDR6V8HEajkeTkZEpKSigpKSEkJGRUnEtKSrSa2ZiYGAwGA/39/VgsFnbu3Mnrr7/u4SNQriQ8PJyVK1cSHx+PyWSis7OTjo4OOjo6aGhoACAkJITs7GzsdjvV1dVs3bp1XMoyaRKdwMBAMjIyyMzMJCoqCoDBwUFqa2vZtWsXa9aswWQyER8fr1VtulwubDYbTU1N2O12BgcHgeGaHYfDQVxcHImJiYSHh2tNYIrnREVFMWXKFEpKSpgyZQpGoxEAh8OB0+lESonFYiEyMhI/Pz8SEhIYGBhgcHBwVPwSEhKA/4tzTEwMCQkJWCwWNm7cqBIdD3NP7BkVFcX06dOZNWsWM2bMoL6+nrNnzxITE0NaWhoZGRl0dXVhMpm018bGxmr/djgc2hQTRqMRk8mkEp1JwmAwEBMTQ3p6OmlpaXR3d182zgaDgaCgIPR6PVJKleh4OZPJRHR0NDfccANpaWlYLBba29u1raqqChiunS8qKtJq4s+fP09tbe01b4aeNIlORkYGDz74IKGhoeh0OqSU1NTU8Kc//Yknn3xS+2KCg4O1fxsMBmbNmsX//u//8uqrr2p9dAIDA/niF79IX1+fJw9JGcFgMPDwww9TWlrKokWLtOellLS2tmKz2ejr62PatGmEhIQQEhKCEIITJ05w5syZS77n0NAQjY2NWh+fqVOnEhQUNFGHpFyC0WgkMTGRzMxMHn74YfLz80lNTQWgrKwMm82G2WzGz8+Pnp4e1q1bN+ZAgdbWVoKDg7n33ntJS0ujrq5uIg9F+RQMBgOxsbFYLBa6urpYt27dmPs2NzcTHR3N7bffTmZmprpRmQRSU1OZPXs2DzzwwKhuB26X6kbS1tbGzTffzAMPPMDZs2evaXkmRaKTmJhIXl4excXFmM1mBgcH6ezs5Nlnn2XXrl2jOqc5nU7OnDlDamoqYWFh+Pv7U1paislk4nvf+5426uqmm24iOTmZjo4OXnzxRY4dO+bBI7y+Wa1WYmJiWLp0KVlZWdrzjY2NVFdX8+abb9LX14e/vz8ZGRlYrVb0ej0A69ev54033hjzfefOnatVgSue4+/vT3BwMDfccAPFxcVMnz6dtLQ0rFartk9YWBhRUVGsWbOGVatWYbfbefLJJ8fsfFpUVMT06dO1x5e6oCreqa+vjx07dvD5z3+elpYWfv7zn485grK4uBg/P78JLqHyaQQGBhIWFoYQgmPHjo05EMT9W15aWkpQUBA5OTnj0royKRKdyMhIYmNjiYuLQ6/X09HRwdmzZ9mxYwdVVVVIKTEajbhcLpxOJ3v37sVgMBAaGorBYCAxMZHCwkJtFJZ75JbJZKKxsZF169ZRX1/v6cO8brnbadPT0wkPDwdgYGBAi/GmTZsYHBwkLCyM2tpa4uPjCQkJweVyUV9fT3l5udZvY6TIyEhWrFiB0WhkcHCQuro6NbLOQ8LCwsjMzKSkpITi4mLy8/Mv2ic8PJz4+HhaW1vp6OjAbrezf//+MROdvLw8/P39geGkWJ3D3sc9gtLPzw8hBDU1NVqTcn19PXa7ndbWVvbt2zdmzd2MGTO0ONfX19PU1DSRh6BcBYfDod1glpeXU11dfdmanTlz5hAUFERYWJh2E3steX2iI4QgLi6O6OhoLas/deoUb7zxBidOnKC7uxshBJGRkfT09NDR0cE3vvENfvSjH1FYWHjR+2VnZzN37lxiYmI4evQou3btYt26dRd1WFYmTnZ2Ng888ADBwcEXNUs+88wz2g+dxWLhhRdeYNWqVZSUlNDd3U1ISAgpKSmcPHnyogulu1kjKiqKxsZGvv/973P8+HFPHOJ1TQhBcXExX/rSl1i+fLnW9+qj3P2yfv/739PW1nbJmI60aNEiVqxYAcBLL73E+vXrx6X8ytVx95964IEHtBvNL3/5ywwMDGhxPXv2LFLKy8Z52bJllJSUAPDss8+yZcuWCSm/cvUOHz6s9bl68cUXWbt27SX3S0tL47Of/ey4Txng9YkOQGho6KgqbvdEf+6qTr1ez8qVK8nPzyclJYXnnnsOKSW7d+9m7ty5o95r+fLl3H///djtdv70pz/x7rvvqiTHg5KTk8nPz6e4uBiTycTAwAB2u52nn36aPXv2jIqNw+Fgx44dTJ8+HZfLhb+/P8uXLycoKIjvfOc7o06W7OxsZs6cSWRkJJWVlRw+fJitW7dqQ5OViWEwGLjvvvtYtmwZs2bN0ib3lFJis9no7u5maGiItLQ0QkJCSE5OZtasWWzZsoU//elPl2zOCAgIoKioiLS0NAwGA9u3b2fr1q0cOXJkog9P+QidTofJZCIjI4OZM2cydepU7Ry12+3MnDmT+vp6bDYbNpuNV199FYvFcsn3CgoKorCwkOTkZKSUbNu2jS1btlBRUTHBR6Vcjd7eXo4fP37Z5XqioqL4zGc+Q1BQECdPnuRPf/oTra2t17wsXp3oCCEwGo0kJCQQEREBDM97Y7fbqa+v134EhRCYTCays7NZsmQJx44dw2KxUFtby+zZs9HpdBiNRmJiYsjOziY7O5v9+/drs+sqnuGuiYuJiSEmJgadTkdHRwdVVVXs3r2bc+fOjXmn517vLCEhgdzc3IuGoWdnZ1NcXIxer+fEiRPs2bNHG9KoTAyDwUBgYCDz58+nsLCQyMhIYPgc7u7upry8nK6uLlwuF0lJSZhMJoKDg5k1axZ//etftbv9jwoICKCkpISIiAi6u7vZvHkzlZWVKon1MJPJREhICJGRkcyfP5+5c+cydepUcnJytGt5cnIyRqORiIgIdDodDQ0NYzZFBQcHU1paSmhoKB0dHWzZsoWzZ89is9km+MiUj8sd56GhIbq7u9m+ffuY8QoODiY2Npbs7GwGBgaorKxk/fr147OOobva8FIbID25mc1mGRMTIzdv3iybm5uly+WSp06dko899tio/YQQMi4uTv74xz+Wbps3b5ZPPvmk7O/vl21tbbKsrEx+97vfldu2bZOtra3yvvvuk2lpaR49vsttl4vL1W6ePqaPbkIIedttt8kXX3xRulwu6XK55ObNm+XXv/516efnd9H+/v7+8j/+4z/k3r17tTjX1tbK1atXS5PJNGrf3/3ud3JoaEjW1tbKm2++2ePH6uuxvNQWEREhZ82aJRsaGuTQ0JAW4xMnTsg33nhDzp49W86cOVOuXLlStre3y6GhIS2uzz//vFy5cqUUQlz0voWFhdLlcsmWlhb53nvvTfpYTpZ4Xm7T6XQyMTFR3nvvvfL555+Xg4ODWrzdW1tbm/zhD38of/zjH8uXX35Zulwu+dRTT8nly5df8j0XLFggpZSyqalJvvbaa5Mmnp6OhSc3o9EoExISpMViueK+S5culT/5yU+klFKuXbtWfvvb3x63WHp1jY577py4uDiCg4NxuVz8+c9/Zs+ePaP2kxeGIK9duxaXy8Xs2bOJiIjgrrvuwmg0EhgYSEpKCl/5yleIiIigp6eHrVu30tLS4qEjU2A4+w8LC7tks6S8xJ384OAg7733HklJSRQXF1/yPQMCArjxxhtJTk7GZrPx/PPPU1lZOW7HoIwtOzubVatWaaPkpJScP3+ev/zlL7z++utajU1DQwO/+93vWLJkCQUFBQDccsstTJkyRZsIsKamBhjutLhgwQKEEKxevZoNGzZ48hCVC/z8/Pjyl7/MrFmzyMvLu2SHUj8/P5YtW8abb77J0aNH+fznP88dd9xBYWEhwcHBbN++Xat1XbBgAYsXLwbgvffeY+PGjRN6PMrYdDodgYGB3HjjjaSlpeF0Onn66adxOBwEBwdz++23M3v2bJxOJy+++CJHjhy5ZK3OQw89xMyZM2lubuZXv/oVBw8eHLcye3Wi4+fnR3x8PAEBARiNRhwOB2VlZdpFb6TBwUEqKyvR6/V0d3ezdOlSbQZlo9GI0WjEarVit9s5f/48TU1N2gSCysRzt+UnJSVpzZI9PT20trZqi69+lNPppLKykurqas6fP098fDwWi4WgoCASEhJoamrCz8+P0tJSYmJitCGsbW1tE314172AgAASExMpKirSRkT29fVx8OBBDh48SHl5udb/ZmhoiG3btpGVlUV+fj5CCMLDw9HpdCxevJjOzk4GBgZobGzU+nMBHDt2jKNHj3ryMBWGR8slJyczZ84ccnNziY+PB4bPV/e6VRaLBaPRSGpqKkajkc7OTo4dO0ZISAhJSUksXryY1tZWnE4nzc3NTJs2TZs6oKysTHUx8AJ6vR6r1UpkZCSJiYmUlpaSkZFBb28vr776qtZ0LISgoKCAsLAwqqqq6O/vp6qqiubmZgBtstCcnBzCwsI4evQo5eXl1NbWjl/hvbkKLi8vT/7oRz+SLS0t0uVyyYGBATllypSLmikutT3yyCOyrq5OulwuOdLGjRvlY489Jg0Gg8er+S63+Xr1uMVikXFxcXLbtm2ypaVFOp1OefLkSfkv//IvV3zt8uXL5dNPPy0HBgaklFLabDb53e9+V+bn58u0tDStCeT48eNSp9N5/FjHI56ePp7LbUIImZ+fL3/84x/Lrq4u6XQ6ZVdXlzx9+rScPXu2jIiIuOTrnn76aa2J69y5c/LYsWNSSilfe+01+eCDD0ohhHzrrbe0c/nWW2/1iVh6ezyvtK1cuVI+//zzcmBgYFRTlc1mk2fPnpW7d++WTU1N2vOvvPKK/OpXvyrvuusu+dRTT8m1a9dKKaV88cUX5b333isBuWbNGi3OixYtmlTx9HQ8xmPT6/XSarXKRYsWyZ/+9Kdy69at0ul0aufqqlWrZGxsrNZ0tW7dOi1+zz//vLz77ru190pKSpKPPPKIrKmpkQcOHJB33XWXDAkJGddYenWNTmhoKEVFRaN65RsMho81zj4gIIDQ0NCLxu5v2bKFl19+Wa2A62FBQUFkZWWRkJBAcHAwTqeTN95446JmyY/DarXyta99jenTp2srmu/evZsdO3ZcsglMGV9CCBISErSlOtyThq1du5bTp0/T2dn5sd7HfXe/cOFC8vLySE9PJy8vD7vdzurVq9VMyB6m0+lISkpi3rx53HTTTdqIuqGhIQ4ePMjmzZs5evQoUkoefPBBbeLWmJgYIiMjefvtt9m7dy+5ubkUFhZyww03MHXqVKZMmUJGRgYtLS1s2LBBqwlQJp5OpyMyMpLp06czbdo07r77bsLDwwkKCtJ+W00mE+np6ZSXl9PY2EhzczMvvfQShw4dYsaMGSxcuJCsrCyEEGzYsIHExET+6Z/+iZiYGE6cOMGGDRvo6uoa1+Pw6kTHaDRqc6vA8AU0JSWFjo6OSzZfuen1egwGwyXn6xg5kZHiOf7+/sTGxuLv74/BYGBoaIjy8nLOnz9/xddaLBYCAwMRQgxn6wYDycnJDA4OYrfbEUJw/Pjxq0qalE9PCEFwcDABAQHauWuz2Th79iw9PT1j3mR0dXXR0tJCTEwMMNxfa9u2bcycOZPMzExKS0uJjIyku7ubTZs2jcswVOXj0+l05Obmkp6eTnR0NEII7RzctGkTO3bs4MSJExiNRo4dO0ZycjLZ2dlERUWRkJDA0NAQ58+fR0rJ1q1bWbBgAVlZWfT29hIWFkZraysbN24cc1ZdZfwZjUYKCgqYO3euNtHnR0e4uqcTCA8P59y5cwwODnL06FHsdjs2m43777+ftLQ0lixZQkdHB4mJiaSkpNDQ0MD58+cnpGuBVyc6H6XT6Vi1ahVms/myiY6/v/+oBeJGSk9PZ/bs2fztb38bc8pxZfwFBQWRnZ2tJaMul4uDBw9y7ty5K742PDyctLS0i064zMxM7d+bNm3irbfeuraFVj62sLAwAgICAJBS0tfXR3t7+2Vr2CorK9m7dy+33norMLz2zaOPPsqTTz7J7bffzoIFCwA4evQoL7zwgqqt8zCj0chnP/tZ8vPztdocu93OiRMn+M///E96enq0GK1evZr+/n6++93vkpWVhU6nIzU1lerqaurr6/nnf/5nXnrpJW644QYWLlwIDM+o+8ILL3js+K53QggCAgJ46KGHKC4uJi0t7ZL7+fv7s2TJEnbs2EFNTQ2NjY1UVFRQUVHBhx9+yJQpU1i+fDlf/vKXyczM1K7bmzdvZufOnRNyLLor7+I5DQ0NrFmzhvb2dhwOBzqdjptvvpk77riDz3zmM2RkZBAaGgoMf9kxMTHk5+fz05/+lJUrV16yieu2227jscceY9q0aYSFhU30ISkXhIeHM2PGjFG1biaT6aLk5VKSkpIoKipCp9PR09NDdXU1P/jBD9i3b5+2T35+PnPmzBmXsitjM5vNREREcMsttzB16lSklNTW1nLw4EE2bdp02VWJ7XY7DQ0NuFwubWHPoaEh3njjDZ5++mntR9NqtbJs2TKtE7sy8cLDw5kyZQoLFizQJvRrb2/nz3/+M//xH/9BX1/fqER09+7dvPPOOwwNDWmDEB5//HHy8vJwOBw0NTXxwgsv8Oyzz2qvCQkJYdmyZYSEhHjgCJWFCxfyT//0TyxZsoSEhATt+a6uLi2ZsdvtGI1GkpKSmDFjBjNmzLjofZ5++ml+8pOfAMPLebg7mb/++uu8++67E3IsXl2jY7PZOHjwoLbqeGJiIhEREUyZMoVly5aRlJREfX09DQ0NBAcHExERQVxcHHPnztV6/kspEULgcrloamoiMDCQ7OxsVq5cyfbt2zlx4oRaO8UDTCYTgYGBWjIqhCAjI4Oenp7L1tYZDAb8/PywWq1aVXlnZydVVVWj+n4UFBRgs9m0PiGX+4FVrh2LxUJERARJSUmEhobicrkoKyujqqrqik0Q7hE67vdxz5Tc3d09akRGYGAgK1asoKOjQ4u/MrH8/f2JiorS1rFyOp2cPHmSsrIyKioqLqot7+zspLm5GSklOp0Oi8VCSkoK/v7+SCkZGhrSmjLcQkJCWLFiBS0tLTidznHvx6EME0JgtVrJyclh7ty52vpTLpeL1tZWTp8+TX19PR0dHSxatIigoCDMZjPR0dHExsZe9H5nzpwhMDCQffv2kZubq00nMqLz9rjz6kSnqamJdevWkZaWxrJly0hMTEQIQV5eHnl5efT19VFXV8fZs2cJDw8nJibmoi/a3WFqcHCQXbt2UVBQQGZmJk888QQvvPAC7777Ln/7299UNfgE++j/5Hq9nttuuw29Xj9moiOEwN/ff1QtUG9vr/ZDN7Lj+cqVK5kyZQrbt2/n+PHjaoj5BAkKCiI9PZ2YmBisVisDAwO8++67n3h5hsDAQBITE1m+fPlFnY4jIyP59re/TXNzM/39/WqIuQcEBgYSHx+v9bHr6enh/fffZ9++fZddXPVK19mRNboJCQk8+uijVFVV4XA41NIPE0Sn05GcnExxcTGlpaXazejg4CD79u3jnXfe4cCBA5jNZiIjI0lKSsJisRAdHU1CQoLWd9Kts7OTiooKnnzySR5//HFyc3MBmDZtGna7ne3bt4/7MXl1ogPDJ8aHH36I2Wxm8eLFozonWywWkpKSiImJwWAwaO3EbiN/+Lq6uvj+97/PqlWruPnmm1mwYAF33HEH06ZNo6GhgerqajW1+ASqq6vjww8/JCcnB6PRiF6v1yaXg+G5M9ra2rDZbAQEBBAcHExUVBTf+MY3mDVrlnbyGY1GwsPDeeSRR0hJSaGvr4/t27eTn59PXFwcr7zyCr/5zW/YsmXLhLUHX8/CwsKYMmWKdi66XC52797N2bNnr/ja2NhYbXQGDF9Yy8vLWblyJbNmzUIIwZEjR+jt7WXu3Lk88sgjrFixgp/97Gfs379fJbMTyN/fX1vSA4av0y0tLfT29o75mv7+ftavX8/06dNHvdbts5/9LDfeeCMABw4cwOVyUVxczA9+8AMOHz7ML3/5S3bv3k1HR8e1PyBFYzabeeCBB5g2bZp2U9nW1saZM2d49NFHtTgLIXj77bdpb2/nwQcf1BZuzcrK4vz581dcyuHrX/86RUVFdHV1cfLkSfr7+8ftmLw+0QFoaWnhzJkz7Nmzh4ULF2qdHN1rXF2q43FdXR1NTU1aXw6n08n58+fZu3cvFouF7OxsrWo8Oztb+1FVJkZbWxsHDx6krKyM7OxsEhMTCQ0NJTc3lxUrVmi98hsbGwkODiYyMpK4uDiKi4u1Wjt3lbfT6SQtLQ2r1Up3dzcffvghLpeLqVOnkpaWpnViPXXqFB0dHaoZaxwFBgaSnJw8KtHp7e39WJNzhoWFaXeEDoeD3t5empubtQkhAQ4dOkR9fb02fD0vL4+VK1dis9kYGhpSzVgTwD1EPDs7G4PBoC3Ee6XmSYfDQX19vXZHbzQaMZvNmEwmBgcHiYmJ0boc7Nu3j+7ubmJiYoiKiqKgoICVK1dqN6WqGWt8uJueCwoKiIqKAmBgYIBjx45pNyyDg4NajU1FRcX/b+++o6M6zwT+f+80jTQjjXpvSKgAAmSa6DJgDMTYMUmcxEncNr/dnDjFySbr9R6vN5v6S5xtP3uzWSckG9ubeN2ya8fYxoDBmA4CgRASCNR77yNNe39/iLlBBgG21Riezzn3GGauxu/o4c489y3PS2hoKPfffz92u53k5GQKCwt5++23RyU6NpuN/Px8vZe3tbWVuLg48vLyuOuuu3j99dcndAXWDZHoDA4OcurUKX7zm9+Ql5eHxWLBaDSO6rHx/9k/JHL48GF27drFv/zLv4yqw7Nnzx7OnDnDmjVrmDVrFlarlaVLl1JRUXHVuSFifPnrLWRlZbFhwwZ9WHLu3LnMnTsXp9NJXV0dtbW1REVFkZiYSFxc3GWv09/fT09Pj15Rt6GhgaeffpqhoSF8Ph8bN27kE5/4BNnZ2ezdu5czZ85IQjuB/Mnqpb2r/h67a0lISNA3gBwcHKSrq4vm5maMRqM+IXXbtm0cOXJET2CTk5N55JFHqK6uZnBwkNOnT0/UWxMXhYWFkZuby5o1azCbzbS3t1NTU8ORI0euehfvr4vkdDrRNI3g4GDCwsIIDQ2lo6OD0NBQHA4HAP/7v/9LbW0tKSkprF27lpSUFB555BFKS0txuVyUl5dP1tu9qURGRpKZmcmCBQv0OXZdXV28/fbbvPzyy6OSHIDi4mKGhobwer1YLBaSkpJ4+OGHKS8vH7WCNi4ujvvuu4/Y2Fi6uro4cOAAt912G9nZ2fzgBz/A7Xazb9++CRvGuiESHRhZgfXOO++wefNmUlJSmDlzJjNnztSTnvXr19PS0sLZs2d57rnnqKmpweVy8eSTT172WgMDA/z+97/ngQceYPny5dx///0cOHCAY8eOTcE7u3n5fD62bduG3W5n5cqVhIeHjxqWnDFjBklJSVcclnS73ZSUlPD8889TWlrKtm3bRvXsvfDCCxQVFREXF0dGRgahoaHcfvvttLe3S6IziSwWCw8++CDvvPMOu3fvvuI5/rlX/hhrmqbX1Kmrq7vsy9O/HPl73/sea9asITs7m4ULF9LT0yOJzgQzGAzk5OSQmZlJQkICBoOBo0eP8sc//vFDbaljNptJTk5m3bp1wMj1+kGVlZV8+9vf5sknn2TZsmV6aZD+/n5JdCaIf5TDv+3SwMAAzz33HHv37qWmpuYjz2U1m83Ex8djNBqpqKjg29/+Nn//93/P0qVLWbBgAd/5zndYuHAh/f39lJWVjXutuxsm0fF4PPT19XHu3Dk6OjpoaWmhtrYWk8mEwWCgo6OD7u5u6urqOHXqFL29vZjNZt5//33y8vIIDg5m1qxZOJ1OQkJCyMzMJCwsDIPBQHh4OKGhoQQHB+N0Oqf6rd5U2tvbOXfuHAcOHGDdunUEBwcDjNqj7INqamq4cOEC+/fvp6ioiLa2tssuQP+/hePHjxMZGUlUVJReP0lMnL6+Pqqrq7nlllv0cgEFBQX6Hmbt7e04nU6Gh4f1oQu73U5BQQHp6emXVTK/0gerx+OhqamJ0tJSfV5Pbm6urJ6cBJqmkZCQQEREhJ6YNjc3U1JScs26ZEajkcjISIKCgoCRFZRKqSvuawcjc7SampooKSkhOjpar4wtFbEnTnBwMOHh4XoPrNfrpaGh4apD/m63m5qaGhITE8fsudU0Tf/3Mjw8TFNTE++++y4ej4eUlBQiIyNJTU0lJyeHysrKmzfR8RsaGqKhoYGGhoZRPTAvvvjiZed6vV6eeeYZHnroIdauXcvGjRtxuVzY7XbuvfdeoqKigJGehZCQEMLCwiTRmWSDg4OcPHmS5557jltuuYWYmJjLhiUNBoM+JOnz+Thw4AD/93//x86dOxkYGCA2Nlavz6Fpmr4U0ul0smvXLubOnUt6ejobNmzgF7/4xRS+28DX3NysJ63++ReFhYUMDw/T29vL0aNHaW5u1ocqIiMjSUlJ4Vvf+hY5OTl6rE0mExaLheDgYH2OndFoxGAw6L1+p06dwuFwcNddd7Fo0aIJncwoRvhX5Pg/O2Ek5mfOnBkzYfEzmUx67+qlP+sf4vB6vfh8Pj3G/jgfP34ch8PBxo0bWbp0qVTEnkDBwcFERkbqK6e8Xi+dnZ1XvbacTidHjhyhsLBQn2T+wRuWK3n11VdpamrSt5eIjIykoKCAPXv2jPtcuxsu0fkwXC4XO3bsoLCwkLvuuovvfOc7eh0Hu92O0Wikr6+PV155haKiIrmApkh9fT1tbW2cOXOG1NRUZs6cqU90NJlM3H777TQ2NlJeXs7vfvc7ampqaG9vZ3BwEJ/PR3d3N48++ihf+tKXyM7O5oEHHsDr9RIZGckXvvAFZsyYof+//L07skJnYly4cIHm5mbi4uJYs2YNt956K5qmsXr1ahYuXEh3dze1tbU0NjYSERFBUlIS8fHxhIeHj+q96+3tpb29HbPZzB/+8AcqKyt5/PHHWbNmjf5FuXnzZubMmaP/jMViISEhgY6Ojg81jCKun8FgYOHChaSkpOiPGY3GK/a8fpB/PmRoaCher5euri4aGhpobm4GYOvWrfrKnttvv12fmPzpT3+anJycUa+TkJBAW1ub7Fk4TjRNIzw8nIKCArZs2YLZbKazs5OKigrefvvtq650c7vd+hBzbGwsdrudiIgIHA7HNVfI1dfX89xzz5GWlkZ6ejoPPvggzzzzzLj3zgZ0ogMjPQZnzpxh79693HLLLfodYm1tLefPn6eyspJdu3ZRV1d3zTsSMTE8Hg8ej4fKykp6enpoa2ujpqYGo9GI0WikqamJzs5OGhoaKC0tpb+/f9QdxvDwMAcPHmT9+vXMmzePDRs2oJQiJCSEtLQ0QkJCGBoa4ty5c7S3t8uX4ATyr3w6cuQIycnJLF26FKvVSnBwsD751G63k5iYiM1m04eN/Xw+H62trRw5coQDBw7gdDo5e/YsVqsVpZTe6wcwZ84cfV+sqqoqzp07p09CFxND0zSsVuuoOXOJiYnk5+ezb9++MT9DjUaj3kNnNBr1qQhdXV36Sq3y8nK9p2jx4sWkpqYCkJubq8f8/PnzXLhwgaGhIal9No40TSM2NpaEhAQSExPRNI2amhqOHj1KX1/fNRNKj8eDUgqj0YjD4WDmzJnU1dVRVFQEjEwl2LFjB4sXL8ZutzNv3jwAUlJSmDNnjv5vyuFwYLfbCQoKGtfhq4BPdGCk/LjH4yE2NlYfGjl8+DAvvfQSBw8e1O8oxNS6dFjSf4HASBfn1bjdboqLi2lpacFqtfKpT31Kf87n8+H1emlvb+ftt9/mwoULsjR1gvl8Pg4fPkxOTg5dXV3ExcXpwxD+pcn+BOWDPzc4OEhZWRmvv/46O3bsoK+vj76+PkwmEy6Xi8WLF1NQUACgD2UODw9z+PBh9u/fLxPNJ4HX6x2VZOTm5rJp0yaOHj2qJyCXPu9fYeWvkeUfFunr66Ozs1NPdC5cuEBERARut5vly5fr/2Z8Ph9KKYaHhzlw4ACHDh2SOI8zg8FASkqKPv8KoKysjB07dlxXB4B/qMpoNBIVFcX8+fPp6OjQP8ebmpp45plnSE5OJioqSq+XNGPGDDZv3kx4eLg+VBYWFobNZpNE58MqLy+nsrKSt956C4PBgKZpDA0N6ZMiRWB44YUXqK2t5eGHHyYqKgqv18uePXt45ZVXOHHiBDU1NdcsYiXGR09PD7t27WJ4eJif/OQnhIeHX3Pc/rXXXuOdd95h165dtLa2jkpIm5ub+da3vsU999zDvHnziImJ4dixYxw/fpytW7fS0NAgNXQmgcfjYfv27RiNRlJSUrBYLOTn55OamsrZs2epqKigvr6empoavQcnMTGRLVu2UFhYqE9EhpEhqJCQEEJCQvRCg7W1tXzzm9/ki1/8IrNmzSIqKorDhw9z7NgxnnvuOerq6uRGZQIYjUbmzJkzqoSHf8HHtRKdoKAg5s6dq5cGAKiurqaiokL/e1dXF2+++Sbf+ta3WLZsGY8//jgwkmD5e/mqqqp45513OHfu3LgnsjdFouMfGrla1U5x46uqqsLj8WAymbDb7SilKC8v5+jRo/IBOcmUUrS0tHD06FF+85vfkJCQoM+PMhgMGI1GMjMz6enpob29neLiYvbt28eJEydoaGi4rF6H0+nk0KFD+mT00NBQqqqqqK6u5vz58/T398t8jUng8/k4ceIE0dHRxMTEUFBQgMViISIigs2bN9PY2EhLSwtlZWVYrVbsdjsZGRksXLhwVNVrpZR+03HpSp3+/n4OHTqEpmkkJiZit9v1KQbnz5+nr69PphhMAIPBQHp6ut6bAyM9d9dTXNVisegFW5VSDA4OXlaA17845MCBAxgMBubNm6cnuJWVlRw/fpyKigqOHj1Kb2/vuA9L3hSJjrg51NXVUVdXJ1s9TBPt7e36JoD+CuT+7SEsFgubN2+murqa0tJSfvnLX9Le3j5mj9vw8DAnT5780HtmifHl8/koKirSY5ifn4/JZCIoKIgtW7bgdrsZHBzkxIkT+krWnJycUb15/mGolpYWXC7XqP2tBgcHKS4upri4eAre3c3LYDCQkZFBZGSk/pjZbMZqtdLf33/Vn7VYLGRnZ2M2m/F6vfT29o6508C2bdtob28nKiqK2NhYOjs7OXToEE899RSVlZV0dnaO+3sD/lxJ+EoHoOSYmuNqcfmox1S/p5v5uJljqWmaMplMKigoSNlsNmWz2ZTdbldRUVEqPDxc2e12ZTAYlKZpU97WqYjljRZPQIWGhqrc3Fx1/vx5NTAwoHw+n354vV41PDyshoeHldvtHvWcz+dTFRUV6uWXX1aZmZnKbrdPedxv9lgCymazqddee01VVVXpcdq1a5f627/9W2U2m8f8OavVqhYsWKCGhoaUz+dTTqdTnTp1Sq1Zs0YZDIbLzjebzSokJERFRUWpmJgYFR0drcLCwpTJZBqXfwdjxUR6dIQQE0oppQ8fXzon7lp3imL6cjqdtLa28s4777Bs2TLmzZun99r4i31+0MDAAHv27KGkpIQzZ87Q3Nwsq6emCa/XS3l5ub4DudFoJCMjg9WrV7N7925aWlro6emhu7sbk8mE2WwmNDSUBQsWsGjRolHDj/5aZv56Zpdyu916r99kkkRHCCHEh+LxeOjt7eW1114jKCiI1NTUy/YgNJlMaJqG1+vF5XLR2trKiy++yLFjx664tYeYOl6vl+PHj5Oamkpubi5hYWGkpqYSHh7O6tWrOXv2LLW1tXg8Hn0SeUpKCnfccQerVq0alej4hzItFsu02UBZu1o2fbErSUwBpdS1S0t+SBLPqTPe8ZRYTh25Nv/Mf2cfGRnJ0qVLSUlJ0Xe9XrBgAcnJyRw4cIA333yToqIiamtrcbvd02pCsVybIywWC7feeisbNmzga1/7GhaLRZ9cPDw8TF9fH8ePH8dut+NwOMjNzSUoKAiTyaQnOgMDAxw7doyf/vSnHDp06JoFA8fbWLGURGeakg/TwCIfpoFDrs3R/BOTU1JSCA8PJyQkBIDk5GQcDgc1NTWcPXuWxsbGaTlcKdfmn2VmZpKfn88vf/lLHA6HPgTpX4HV1NSkT1KOjo4e9bNtbW1UV1fz29/+lt27d1NTUzPp5VvGiqUMXQkhhPjI/POvzp49O9VNER9TQ0MDXq+X5uZmzGazXhvHP+fm0u10/Py9PlVVVRQVFfHyyy/T19c3bYatQHp0pi25awwsctcYOOTaDCxybY4WFBTEnXfeyZe+9CXuuOOOMXck92tubuaHP/whhw8fpra2lo6OjimbYC49OkIIIYS4KrfbzYkTJwAoLi5mxowZREZGYrPZAEhNTcXhcFBZWUlpaSlnz57l/fffp6mpaUKK/Y0H6dGZpuSuMbDIXWPgkGszsMi1eWVBQUGEhoayePFiUlJS9A1XFy1aRHx8PIcOHeLNN9/k1KlTtLe3T4sERyYj32DkwzSwyIdp4JBrM7DItXl1/pIB/rIB/v0i/Rsm3wgr6GToSgghhBBXNJ0SmY/KcO1ThBBCCCFuTJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJpSaqrbIIQQQggxIaRHRwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJrUREfTtGpN05yapvVfciROZhuuRdO0PE3Ttmua1q5p2hVnamua9nlN08o0TRvQNO2CpmmrJrud00EgxPMDbe/XNM2radrTU9HWqRQgsUzXNO1NTdO6NE1r1jTt3zVNM01FW6dagMRzlqZp72qa1qNp2nlN07ZMRTun2g0Sywc0TSvSNK1X07R6TdOevPTa0zQtUtO0/734nVmjadoXJrN9U9Gjc6dSyn7J0Xjpk9Pgg8kNvAR8+UpPapq2HvgZ8BAQCqwGKietddPPDR3PS9sOxANO4OVJbN90ckPHEvgPoBVIAPKBQuDhSWnZ9HTDxvNi214D3gAigb8C/lvTtOxJbeH0Md1jGQJ8C4gGCoB1wHcvef4XgAuIA74I/FLTtDmT1bhpMXSlaZrSNO1rmqZVABUXH/v/NE2ru5ghFl3aa6Jp2j9qmvaypmn/rWlan6ZpJZqmZWua9neaprVe/LnbLznfoWnabzRNa9I0rUHTtB9pmma8UluUUmeVUr8BSsdo7veBHyilDimlfEqpBqVUw/j9Nm58N1g8L/VpRr4o3/9Yv4AAcoPFcgbwklJqSCnVDLwNTNqH6Y3gBopnLpAI/KtSyquUehfYD9w3jr+OG9o0i+UvlVLvK6VcF78Pfw+suPg6NkY+W59QSvUrpfYBrzOJsZwWic5FdzOSCc6++PejjNyVRQJ/AF7WNM16yfl3As8DEcAJYDsj7ycJ+AHwzCXn/g7wADOBW4Dbgf/nwzbwYpAXATHaSFdqvTbSPR78YV/rJnA30zyeV/AA8JyS4lIfdDc3Riz/Dfi8pmkhmqYlAZsYSXbEaHdzY8TzgzQgb5xeK1DczfSM5Wr+nMBmAx6l1LlLnj/JZN6EKKUm7QCqgX6g++LxfxcfV8Daa/xsFzD/4p//EdhxyXN3Xnxd48W/h158zXBGusqGgeBLzr8X2H2N/9/MkV/PqMcSL77uMUa6x6MZucv48WT+HqfLcaPH8wPPpwFeYMZU/14llh8tlsAsoIiRD2fFyAe1NtW/W4nnR/qsNTMyJeDRi3++nZGhj+1T/buVWF6zvX8B1APRF/++Cmj+wDl/CeyZrN/hVIzr3a2U2nmFx+su/Yumad9lZOzWn1yEMZJY+LVc8mcn0K6U8l7ydwD7xZ83A02apvnPN3zw/3ed/K/7tFKq6WI7/wX4e+Dxj/B6geBGjuel7gP2KaWqPubr3Mhu2FhqmmZgpPfmV8Dyi6//W0bm0z36YV8vQNyw8VRKuTVNuxt4GvhbRm4uX2Lky/dmdEPE8mLM/l/gNqVU+8WH+y+241JhQN/VXms8TfUEpkvpwwUXxxUfZWRCU6lSyqdpWhcjXZcfVh0jF0e0UsrzsRqoVJemafWXtvUDfxZ/Nu3j+QH3Az8dx9cLJDdCLCOBVODflVLDwLCmaf8F/IibN9EZy40QT5RSpxiZUO5v6wHg2Y/7ugFm2sRS07SNwK+BO5RSJZc8dQ4waZqWpZSquPjYfK5v3uS4mE5zdC4Vykj3cxsjv6B/4PKM8Lpc7Hl5B/hnTdPCNE0zaJqWqWla4ZXO10ZYAcvFv1s1TQu65JT/Ar6haVqspmkRwLcZWRkgxjad44mmacsZGaO+WVdbfRjTMpYX7x6rgK9qmmbSNC2ckTlXpz5K224i0zKeF/8+7+JjIRd7KhIYGY4UVzaVsVzLyATkTyuljnzgtQaAPwI/0DTNpmnaCuCTjMwVmhTTNdHZzkg39DmgBhji4w1N3M/IxXSGkTHLVxi5aK4kjZEuPH+26QTOXvL8DxmZ8HUOKGNkQtePP0bbbgbTOZ4w8oX4R6XUpHWl3sCmcyw/BWxk5IP+PCPLl7/9Mdp2M5jO8bwPaGJkJeQ6YP3F3jpxZVMZyycAB/Cm9udaP29d8vzDQDAjsXwB+KpSatJ6dGT3ciGEEEIErOnaoyOEEEII8bFJoiOEEEKIgCWJjhBCCCECliQ6QgghhAhYV62jo42xe7eYeEqpj1L74KoknlNnvOMpsZw6cm0GFrk2A8dYsZQeHSGEEEIELEl0hBBCCBGwJNERQgghRMCSREcIIYQQAUsSHSGEEEIELEl0hBBCCBGwJNERQgghRMCSREcIIYQQAUsSHSGEEEIELEl0hBBCCBGwJNERQgghRMCSREcIIYQQAeuqm3qK0dasWcPMmTNJTk6mt7eXwcFB+vr6qK+vZ2hoCIC8vDxMJhN9fX288cYb9PT0THGrxcqVK8nKyiI9PZ2+vj6cTic9PT00NDTgdDoBmDVrFlarlb6+Pt5++23a29unuNVCCCHGgyQ618FgMBAUFMSSJUtYvHgxM2fOpKuri/7+fjo7Ozl//jyDg4NomsbSpUsxm810dXVx/vx5qqqqaG1tneq3cFPSNA2r1crChQtZsWIF2dnZdHd309fXR2dnJ1VVVfT19QGwePFibDYbnZ2d1NbWcu7cOZqbm6f4Hdy8wsLCsNlsBAcH4/V68Xq9eDweXC4XHo8HAJvNhtFoxOPx0NnZicvlmuJWCxj5vIyJiSEoKAiDwaDHz+v1MjQ0hFIKo9GI3W7H6/XicrnkxmKKaZqmx8xsNuN2uy+LmcFgIDQ0FK/Xi9vtpq2tbaqbfd0k0bkOISEh5OXlsWXLFgoKCi57Ximl/1nTNP2xefPm8dprr/H9739/0toq/sxqtTJ//nzuuusu1q5de9nzV4obQH5+Ptu3b+fRRx+dlHaKy91+++0UFhaSn59Pd3c33d3dtLS0UFFRQWdnJwArVqwgKiqKlpYWfvWrX3Hu3LkpbrWAkQT0kUceIScnh5iYGJqbm+no6KCzs5OTJ0+ilCIsLIz169fT2dlJRUUF//qv/zrVzb6pBQUF8fWvf52cnBwSExNpamqiq6uLzs5OiouL8fl8hISEsGHDBnp6eqitreVnP/sZPp9vqpt+XSTRuQ4mk4mYmBgsFgt9fX2UlJSMeW53dzexsbEsWrSIjIwMEhMTJ7Gl4lJGo5Ho6GgsFguDg4MUFxePeW5PTw/h4eEsW7aM9PR0UlJSJq+hQmcymcjIyKCwsJA77rgDh8OB2+3G7XYzPDxMf3+/3nMTFRWFxWJheHiYqKgoDh06xDPPPDPF7+DmFhMTQ2ZmJnfeeSdRUVEEBQWRmZmJy+XC5XKxfv164M+fqR6PhyVLlhAXF8fvfvc7ysvLp/gd3HwiIyNJTU3lzjvvJDY2FqvVSkZGBm63G5fLxW233ab3wsXGxuLxePTPyxdeeOGqn6vThSQ618Hn8zE0NITP56Onp4d9+/Zd8Tx/D0FOTg6LFi3C4XBgt9sns6niEkopvdt1YGCAffv2oZRC07Qr/jctLY1ly5YRFhYmcZsi/g/T9PR00tLS6O3tJSgoiKCgIOx2O1FRUfq5Ho8Ho9FIcnIyBoMBTdMk0ZliNpuNhIQEsrKy8Pl8DA8PExISQkhICACxsbHAyLXpdruJiYkhPj4ei8XCW2+9JYnOFPDHLDMzE7PZzNDQkB4vGEle4c8xi46OJjExEYPBwL59+yTRCRS9vb3s2LGD7373uzidTv72b/92zHPvu+8+4uPjJ7F1YiwDAwPs3LmTr3zlKzgcDh577LFRw1WX+uxnP4vD4ZjkFooPMhgMxMXFERwczODgILt27Rqze7y9vZ3w8HDuvfdeZsyYQUNDwyS3VnxQWFgYMTExaJrG2bNnqaiouOJ5Ho+H5uZmNm/eTFZWFnPnziUsLGySWytgJNGJi4tD0zTOnz9PWVnZFc/zer00NTVx2223MXfuXObOnUt4ePjkNvYjkkTnQ6itrcVqtV71nDVr1rBkyRKUUmzdupVdu3ZNUuvEWOrr6zGZTGMmOQCrVq1ixYoVADz33HMStykyPDzMvn37uPvuu+nu7uanP/2pPvn4gxYuXMjChQsnuYXiaqqqqoCRL8V33nmHF1544Yrn2e12Vq1axfDw8GQ2T1xBXV0dPp8Pj8fDvn37xuwVtVqt3HrrrfoK4xuJJDrXYDKZ0DQNt9tNaWkpZrP5iueZzWbCwsLIzMwkOjqajo4O9u/fz+nTpye5xQJGx628vJyurq4xz3M4HGRkZBAfH09HRwcHDx7k5MmTk9xiASPDxC0tLXR1ddHV1UVxcfGYic4tt9xCaGgoMJLM1tXVTWZTxRX09fXR0tJCX18flZWVYw5rxMbGcuedd2KxWHC5XNTU1NDf3z+5jRXASM93c3Mzvb291NTUjBkzh8PBJz/5SYKCgnC73VRXV+urVqc7SXSuITw8HIPBQGtrK//2b/825nnR0dGsWrWKtLQ0hoeHOXDgALt27aK+vn7yGit0YWFhWCwWmpubrzpvIzw8nLVr1zJjxgyUUrz77rvs3LmT8+fPT2JrxQc1NDRw7ty5a/bC3X777cBIL9zOnTsnq3niKvw3hR0dHWOeExYWxuc+9zliY2NpamriiSee4OzZs5PYSnEpr9dLWVkZLS0tY54TEhLCPffcQ1xcHF1dXXzve9/jxIkTk9jKj0EpNeYBqJv9uOuuu9Q//uM/ql27dqmHHnpI5efnX/G8wsJCVVJSohobG9Urr7yi5syZo4KCgj7y//dqcfmox1T/Lifz2LBhg/r7v/97tXPnTvXVr35VLVq06IrnLViwQJWUlKiGhgb19ttvq7y8PBUcHDzu7ZFYXvuw2+0qKipKASotLU3l5eVd8TybzaYKCwvVnj17VHt7u9qzZ49av369ioiImJR2yrV5+aFpmoqOjlbBwcHKZDKp/Px8FRMTc8Vzc3Nz1X333acGBwdVSUmJevbZZ1VcXJyyWCxT0vabOZZRUVHKZrMpo9Go5s+frxISEq543syZM9VnPvMZ1dfXp86cOaNefPFFlZCQoKxW65S/h+uJpfToXAeHw8HatWtpbGzEarXS0dFBa2urPr4cGxvLjBkzyMvL49ixY5w+fZrS0tIpbrWw2WysXbuWrq4uLBYLLS0ttLW16WPMMTExpKWlkZeXx4kTJzh9+rQMNU4h/2oOi8VCY2MjjY2NVzzPbrezZs0aoqKi6O3tZffu3VRWVo45PCkmntFoJCMjA4vFAkBFRcWYQ1GzZs1iyZIlaJrG6dOnOXjw4FV7EsTEMBgMzJgxA6vVisFg4Ny5c/T29l7x3KysLJYvX47BYODs2bPs37+flpaWG6aOTsBkphN1REdHqzvvvFP5VVZWqm9/+9sqKSlJP+fee+9VW7duVUop9eijj6rly5dPWGZ6s9xpfNwjMjJSrVmzRnm9XqWUUo2Njeo73/mOysjI0M/ZsmWLevrpp5VSSn3ve99ThYWFE9YeieW1jy1btqhf/epXyuPxqGeeeUZt2rRJaZp22Xnz5s1TPp9PtbW1qddff33S2ynX5uVHSEiI+vGPf6yOHDmiurq61H333admzpx5xXOfe+455Xa7VV1dnbrjjjumvO03aywtFov6/ve/r95//301MDCgHnroITV79uwrnvvUU08pj8ej6urq1L333jvlbf+wsZQenWvo7u7m1KlTPPHEE+Tn55OYmMg3v/lNrFYrhw4dYvfu3Xz2s59l+fLlABw+fPiqBQXF5Ojt7aW8vJx/+Id/YO7cuSQlJfH1r3+dsLAw9u3bx44dO9iyZYtewOz48eM3znhzgDp+/Dgej4cHH3yQT37yk8yfP5/w8HAOHjxIdXU1MFINeeXKlWiaxrZt22R13DThcrn44x//SEpKCgsWLOCJJ55g27Zt7N69mzfeeAOfz4fNZuOOO+4gPT2drq4u/v3f/13mwk0hj8fD//7v/xIdHc3y5ct5/PHH2blzJ9u3b+dPf/oTHo8Hq9XK5s2byc7Opr+/n//4j/+4IUcrJNG5SNM0zGYziYmJhIWF4fV6OXPmjL6Pzt69e+no6GD+/PnccsstFBQU6HtaZWZmEhoaSnV1tb7iQEwtj8dDd3c37733Hm1tbcyZM4dFixaxePFiDAYDbW1tzJw5k4iICD1uY3XbisnR0dHBhQsXKC4uJjo6mpiYGNauXUtfXx8ul4vGxkby8vJYvHgxAOXl5XJTMU14vV6qq6spKyvjzJkzxMTEkJeXh9frpbS0lJaWFqxWK2vWrCE+Ph6n08nhw4evOmFZTCyfz0ddXR1lZWWcPn2amJgYcnNzGR4eprS0VN/rr7CwkKSkJIaHhzly5MiNuXdjIHTBjcdhMplUfHy8evTRR9Uf/vAHtXXrVmWxWC7rOl+0aJGqra1VQ0NDqqWlRb300kuqo6NDXbhwQf3TP/2TSkxMnNAuuJuhS3UijtzcXFVTU6OcTqfq6OhQL730kmpublZ1dXXqn//5n0cNaU3EIbG8viM4OFh9+tOfVj/96U/Vtm3blM/nU3/4wx/Ugw8+qDRNUy+//LLyu/POO6ekjXJtjn3MmzdP3X///eoPf/iDqqioUF1dXerRRx9VeXl5KiMjQ7ndbqWUUmfOnFEGg2HK2zsR8Zzq9/Nhj9zcXPXFL35RPf/886q0tFQNDAyov/u7v1OLFi1S8fHxamBgQCmlVG1t7cdaYDOVsQyogH3Yw2AwKJvNphYsWKC+/e1vq2effVbV1taqjo4OdfLkSXXrrbfqq0D8R3h4uFq/fr06deqUcrvdqrOzU3k8HrVz506VnJyszGbzhAbsZroAx/Ow2+3qtttuUwcPHlQej0d1dnYqt9utDh8+rJKTkyd8xYfE8voOTdNUeHi4SkpKUitXrlQNDQ2qoaFBlZSUqJ/97GeqvLxcdXV1qd///vdjroCc6EOuzbGP4OBgFRUVpdLT09XTTz+t30y88sor6j//8z+V1+tVBw4cUE8++eQV518FQjyn+v182MNqtarIyEiVnp6ufvKTn+gxe/3119XTTz+t3G63Onr0qHrqqaeUyWSa8vZ+lFjelENXmqZhtVqJi4sjMTGRwsJCCgoKyMnJITk5GYD+/n5SUlIuG0Pu7+/n+PHjHDt2DIvFQk5ODsCl/8jFNOR0Ojlx4gTHjh0jLCyM2bNn689J3KYPpZS+W7nb7Wbnzp2sWrWKzMxMVq1aRXR0NH19fezcuVOGPaYhp9OJ0+mko6ODo0ePkpyczF133UV+fj49PT1omkZpaSkHDx6c6qaKi4aGhhgaGqKzs5OioiKysrK4++67mTdvHgkJCRgMBsrLy9m3b9+Ns8rqgwIpM73ew2g0qrS0NPXlL39Z/fa3v1Uej0f5fL5RR1NTk3riiSdUdnb2FV9jzZo16oc//KHyKyoqUp/73OdUeHj4hGamN9OdxkQcK1euVH/3d3+nx62srEx97nOfG7Pmx3gdEssPfxiNRpWcnKxeeeUVdamTJ09OaW+AXJvXd4SHh6slS5aooaGhUfG7//77p7xtExnPqX4/H+cICwtTeXl5qre3d1TMvvGNb0x52z5OLA3chBwOB3/913/NX/3VX3H33XdjMFz+awgLC2Pz5s3k5uaO2jF5LLNnz+bJJ5/k1ltvJS0tbSKaLT4i/47YDz30EPfeey+33Xab/lxGRgY///nPue2228jIyJjCVooP8nq9NDc381//9V/8/Oc/13veQkND2bBhg76rspieent7qaio4LHHHuPw4cP643PnztX3lRPTS39/PzU1NTz++OPs2bNHf3zWrFkUFhZe8bvyRnDTDV2lpKSQk5PDokWLmDFjhr77qtvtxuVyMTw8jN1ux2w2k5KSQlpaGpWVlZd1k8+cOZPMzEwAWltbMRgMpKamsn79esLCwti9ezdNTU1j7tMjJpamaZhMJsLDw0lLS2PGjBncdtttzJgxg7i4OADa2tpQSpGSksJtt92GzWbD7XbT0tKCy+Wa4ncgYGT1XFtbG01NTfpjoaGhbNq0ie7ublwuFz09PVPYQjEWn8/H0NAQdXV1o4oHzps3j56eHs6ePUtvb69ca9OIz+djeHiY+vr6UatQZ8+ezbp16ygvL6e7u/uG24z1pkt0CgoKuOOOO1iyZAlGoxEApRS9vb309vbS0tJCVlYWUVFRxMfHM2fOHJqbmy+rmLthwwZWr14NwKlTpwgKCmLlypU8/PDDLFq0iOHhYd5++235EJ4iJpMJu91OXl4eW7ZsYfHixRQUFKBpmn6Ov3zA2rVr+Yu/+AuWLFlCf38/O3bskPkf04imaaPuJKOjo/nmN79JY2MjTqeTU6dOjTr3hp1HEID8sfNfd0opbr/9dnJycti7dy9nzpyhvb19ilspPuiDMSssLGTWrFns3r1b3xPL38N6QwjUscYPHkajUc2cOVP9x3/8h2pra9Pn4gwODqo9e/aov/mbv1F33HGHuvPOO9Xu3bvV0NCQ8vl8atu2bepv/uZvLnu9d999V3k8HqWUUnfccYfauHGjeuutt1Rvb69yOp2qrq5O3XXXXSotLW1cxxpv1rHjDxPnhIQE9dnPflY9+eSTqqamRnV2dqrBwUHl8/lGjTvfe++9qrCwUL311luqs7NTDQ8Pq8bGRvX5z39+3JebSyw/+vGDH/xAlZaWKqWUOnHihHr//feVUkq1tbWp9957T23atEndd9996jvf+Y569tln1ezZs5XRaJyw9si1ef1HXFycOnjwoGpvb1eDg4Pq7bffVg0NDcrtdqva2lr1+OOPqxUrVkxpGyWWow+Hw6H27t2rmpub1fDwsHrnnXdUTU2N8ng8qra2Vv34xz9WhYWF02bV3PXE8qbp0TGbzSxcuJD09HR9uMrpdNLS0sIbb7zBoUOHqKurw2QyUVxcTEREBPPmzSMpKYmMjAwiIiLo6+vTh6KMRqPeI9Te3k5zczNvvPEGSUlJpKWlkZSURHZ2Nq2trdTU1EzV277pWK1Wli9fzqpVq8jPzyclJWXMcwcGBqirq+ONN94gOjqarKwsEhISmDlzJo2NjVRWVk5iy8VYoqOjSUpKAqCoqIj6+nqSk5OJi4sjNzeXzZs3ExYWRnh4OJmZmWRkZNDR0SH7J00DRqORtLQ07HY7/f39bNu2Da/Xq1+bq1atwmg0cu7cOXp6emQYaxowGAykpaXhcDgYGhrirbfeor+/H4PBQEpKCsuXL8fn891Qw1g3TaJjtVrZtGkTmZmZeoLS2dlJWVkZTz/9NC6XS++K27VrFx6Ph3nz5pGZmcnQ0BAzZsygoqJizKrHNTU1/OIXv2DRokWYzWZycnKYN28ezc3NHDp0aNLe583MaDQSERHBF77wBRYvXqyXCvBTSo0aunI4HAwODvKLX/yC3NxcrFYrDoeDvLw8Wlpa2Lt372S/BXEFdrsdh8MBwPbt2zly5AizZs1i5cqVJCYm8vDDDwPo1+/cuXPp7OyURGcaMBqNREZGEhQURENDA7/85S/1m8X4+Hg2bNhAZmYmu3bt4syZM5LoTAMGg4GIiAisVivd3d0888wzdHZ2YjAYSEhI4NZbbyU7O5sdO3ZQVlZGW1vbVDf5mm6KRCcuLo6cnBzWrFlDdHQ0Pp+Pzs5Ofve73/HGG2+MSnIA3n33XTo7O3nkkUcIDg4mJyeHn/3sZzz22GMUFRVd9f/1+uuvMzQ0RG5uLlu2bGF4eJj//u//nui3KIBNmzaxdu1a1q9fT3BwsP54T08PfX19dHR0kJGRQVhYGAD5+fm0t7fz1ltvsX37dlwuF3l5edxxxx1omsavf/3rqXorYgwRERFERETQ3Nw85p1kamrqVXvyxNT6/e9/z5EjR4iLiyMzM5OwsDA2btxIe3u77EA/Tb366qscPXqU+Ph4Zs6cSUhICOvXr6enp0cSnekiNDSU2NhYHA4HFosFl8vFiRMnOH36NJWVlZdNqhocHKS3t1fvATCZTERHR2M2m/Vzjh07ht1uZ8GCBWRlZeF0OtE0jby8PL0nwW63ExYWhs1mY3Bw8MaavHUDMRgMhIeH6/sg2Ww2NE3D4/HQ2NjIyZMnaWpqYmBgAJvNhs1mw2g0EhMTQ2ZmJvPmzSMvL4/09HRgdNycTqdMbp1GZs+ejdlsZs6cOdjt9lHPaZqGUooZM2ZQW1uL3W5ncHBQ4jfN9Pb20tDQwNGjR4mIiCA2NpZly5axbdu2y841GAxkZGToe5/t37+frq4u+SydZP39/TQ1NXH06FEcDgdpaWksX778hun1vikSHbvdTkxMDFarFaPRSF9fHzt27KC0tPSq2aj/A/JKtQNef/11+vv7WbBgAQUFBSQmJqJpGp/61Kf0u0mfz4fRaCQ8PJzh4WFZaj5BjEYjqampLFiwgCVLlujDU4ODg5w4cYIXX3yR8vJyLBYLeXl5JCQkYLfbiY+PZ/bs2YSEhLBlyxa9jo7P59O7b10ul3xRTjGPx4PH48FkMrFixQrmz59PYWHhmOfPmTOHnp4eoqOjaWpquiHmEAQqpRRutxuz2azfNCqlGB4eZu/evSxYsICMjAzWrVvHU089pf+cpmkYjUZ9NevcuXNZsGABtbW19PX14Xa7p/BdBTZ/zHw+nx4Ho9GIx+Nh//79zJkzh9zcXNauXcuzzz471c29LjdNohMXF6d/AXq9XlpbW3E6nWP+TH9/P2+99RbLli3ThzoudfDgQUJCQgB48MEH9S/D4OBgfQ7Qq6++yjvvvENzczNer3e835a4yG638+Uvf5m8vDy9162lpYWSkhK++tWv0tvbq38wPv/889TV1fHlL3+Z1atXs2zZMnw+36i4vf766+zatYumpiaJ2zTw/PPPU1tbyz/8wz8wb968a97Nx8fHM2vWLNatW8frr79+Q3StB6quri7++q//mvvvv5/c3FweeughvF4vERERfPGLXxxVXDUiIoKYmBi6u7vJzs4mNzeXT3/60yxdulTvUV+9ejWaplFcXDx1byrADQwM8N3vfpfPf/7zLF26lAceeACXy4XNZuOBBx4gNTVVPzc8PJyYmJhpf40FfKITHBxMeno6eXl5GAwGBgYGaGtr48yZM3R3d4/5c263m+bmZoaGhnA4HAQFBREcHExQUBDDw8O4XC4aGxt58803yc/PJzIyEqvVSm1tLQ0NDZSWlvLee+9RVlYmX5YTyG63k5CQwPz584mKikIpxeDgIIcPH2bfvn20tbWN+v0XFxcTGhrKQw89RFBQEEFBQQDU19fT1NTEqVOn2Ldvn8RtGvGvXFRKYbFYrnjO+fPn8Xq9+mIDm81GSkqKHl8xNVwuF0eOHGHjxo0sWLCATZs24fP5CAkJITk5meDgYJxOJ+Xl5fT39+uLAVauXEl2djYLFiwgLi5On3MXGxsrFbEnmMfj4ejRo6xevZqgoCA2bNiA1+slKCiIlJQUbDYbLpeL0tJSmpqaGBoamuomX1NAJzqaphEWFkZOTg4FBQUYDAa6u7upqanh1KlTV53h7/V6aW9vx+VyYTAYCA4OxuFwEBoaqneFNzY2snXrVh5++GG9yODJkyfZt28fv//972lpaZHhqgkWGRlJWloac+bMITQ0FJ/PR1dXFzt37uSNN964LFk5ffo0VqtVf9w/r8O/0eDWrVtpa2uT1R/TyMDAwBVXO/p8PrxeL263myNHjuB2u4mPj8dms2G1WklPT8dqteoxFpPP7XZz8uRJmpubMZlMbN68eVTPutvtpq2tje3bt9Pd3U18fDyf+tSnuOuuu644oTwhIYHo6GiJ6QTyer2cPn2axsZGAH1xhv85j8dDZ2cnO3bsuOpK5GsxmUwYDAYMBgPDw8MTGs+ATnRMJhOzZs0iMzOThIQENE1jz549/OlPf/pQCYjFYiElJYVPfOITBAcH88ILLwDQ0dHBm2++yZ49ezAajRgMBlwuFy6Xi6GhIZnbMQkiIyNJT0/HbrdjMpno6upi69atvP/++9TV1V3z5wcGBqiuruYnP/kJRUVFMvl4GlqzZg2f+MQnLnv82LFjFBUV8atf/YrGxkYiIiKoqqrioYceIiEhgY0bN+qrKmtra6eg5cLvhRdeoKamhm984xtERUXh9XrZvXs3L774IidOnKC+vp6vfOUrrF69mrVr147ZE7d69Wp8Ph979+6ltbVV5upMoNdee4329nYeeeQRoqKiMJlM7Ny5k9dee41Dhw5RU1Nz1ekfY/HP1dqyZQuzZ88mLy+Pxx57jKqqqgnrRQ/oRMdgMJCcnEx4eLg+obixsZEzZ85cM3s0mUwkJCRgtVr11+rv7x+Vvfr3BZHJjlPHZrPhcDj0Ow6Px0NLSwsDAwNjXjRDQ0OUl5czY8YM/Wf6+/sZGBiYtHaLazMajURHR5Obm0tOTg6apjE0NKSXBCgpKeH8+fNUVVUxMDDA0NAQu3bt4pOf/CRJSUmEhYWxdu1aDAaDJDpTrKqqCrfbjVIKm82GUopz585x/Phxent7Wbp0KYsWLWL27Nn6MJXX68XpdDIwMIDJZCIqKoqYmBhSU1PJzs6mp6dHEp0JVFtbqy+osdlsGAwGysvLKSkpoaam5kP35BgMBmJiYoiLi2Pu3Lls3LiRtLQ0EhMTycrKYnBwUO9FGm8Bn+ikpKQQGhqqP9ba2nrFJeUfZLFYSEtL0y86pRQtLS00NzdPaJvF9dM0jdDQUKKiovQ9jlwuFx0dHVdNPgcHBzl58iTR0dGEhoaiadqoQoJiejCZTKSkpIzaQLevr4+Kigr+5V/+hfr6+lGbRfb29rJv3z66u7vRNA2r1cptt92Gx+PhpZdemqq3IYCGhgYaGhpG7WIOI9dwcnIyd999N0uWLNEnJ/uTnKamJtrb27HZbERFReFwOEhKSiIvL4+SkpJR8Rfjq7m5mebmZo4dO/axXse/ciskJISsrCzmzp3LZz7zGRYuXKgv9MnNzaWjo0MSnY/CZDJRUFAwqkKu0WjEZLr22w4JCWHFihUEBQXpY5L19fWS6EwTmqYRGRnJihUr2LJlCwaDgdbWVsrLy9m2bdtVEx3/UIbT6SQ8PBy73U5kZCQOh0M2YZ1GTCaTXkPFf8OxY8cO3n33XSoqKmSyeABISkpiwYIFfPGLX9RXsQKcPHmSEydO8Oyzz2Iymbjlllv48Y9/TFBQEKGhocyZM0fvbRfTW3R0NGlpaWzZsoVPfepTJCcnExQUpK9yBZgxYwbV1dUT1obLC8QEEH8meWkdnKysLJYtW3bF2jh+JpOJoKAgfbKU1+vVK+vKF+H0YDQaSUhIIDExUZ+cWFZWxv79+xkeHr7qPBullP682WwmMjKSvLw8cnNzJ6v54jr4C0FeutKqt7eXzs7OqyY5VVVVVFdXSy/dDWDOnDksWbKEkJAQvVZLW1sbb775Jn/84x+pqKjg3LlzlJSUsGvXLnp6eggLC2PevHn6tAQxfWmaxpIlS/jEJz7B2rVrSUxMxGazYTKZRl2f/uFph8Nx1e/mjyqgEx1/4aNLJx7n5uZy6623EhwcrCcyfv7EyOFwEBERoQfC5/MxMDBAb2/vR55hLsaX0WgkJSWFmJgYvfvTn+hca1jSPxnOH+/w8HBmzZqlFwwU04PZbNYLfcLIXKqenp6rloWAPyc6gD4sKUnP9GM0GvVq5kajEaUUTqeTqqoq3nzzTbZv305LSwuNjY2Ul5fz9ttv093djd1uZ/bs2WRlZREXFzfVb0OMwWAwYLPZWLFiBRs3bqSgoECfRuJfMem/4fQnOtHR0aN6esatLeP+itOIy+Vi27ZtlJeX68uFCwoKuP/++7n33ntZunSpXvwoODiYyMhIZs2axWOPPcYPfvADfYjLP95vs9lGda+KqWMymcjLyyM6Olp/7OzZsxw6dOiaiU5ISAh5eXmjthA4f/48Fy5cmLD2ig/HbreTkpLCF77wBTIyMnC5XFy4cIH33nvvmmXnm5ub9Q09rVYrYWFhREVFTcgHqPhogoKC9Ho5BQUFwEhvXXFxMV/72tc4c+bMqF7ZhoYGfv3rX9PU1ITBYCA0NJTvfve7PPDAA1P1FsQ1JCUl8cQTT3DPPfewePFi/XGXy0VLSwulpaVUVlbq586dO5d169Zhs9nGvS0BPUfH4/Fw+PBhoqKisFgs3HrrrZhMJiIiIrjnnntobW3ViwfabDZCQ0PJyMjQu0X9vF6vvveVfFhODyaTiaysrFFd10qp66rFYLVayc3NxWaz6ZMe29rartlTICZPREQEiYmJxMXFYbVa6e/vZ8eOHddVrdo/NKmUwuFwkJqayrJly3jvvffo7e2dpHcgrsZkMhEfH4/D4dDnX5WUlHDw4EGqq6svW7aslBq1HYumaQQFBY1ZQFJMrYiICGbMmEFhYSExMTH692ZtbS3V1dW8//77DA8PM3PmTNLT0zGZTHqRz0v3lBwvAZ3o+AsfhYeHY7VaWblyJUajEavVyvr163G5XAwMDFBSUqJv5Dhz5sxRr+HxeBgcHKSuru6GqAB5s/APXV26oi44OJjQ0NBrrsSwWq2kpaVhNBpxu9309PTQ2dkp86+mkYiICJKTk3E4HBiNRgYGBti9ezetra3X/FmTyaT3xvr3NJszZw6HDx+WRGea8G+q65+vAVBeXs6JEyfo6OgY8+fcbjcul0smIk9z/p3pb7nlFj2+Ho+H8vJyjh49yv/8z/9gNptZtmwZmzZtIjIykpCQEH2ls8FgGNd6ZgGd6PgVFxfT1dXFl7/85VErOCwWCxaLhZUrVwJccRy/oqKCI0eO8Pjjj19z2bKYWmvXrkXTNH7+85+PeZEEBwfr8dc0DbfbTUdHB/X19df1JSomR1JSkl47B0ZKAuzevfu6lhNnZGSMmm/V29vLyZMnP1JxMzEx/D06lyYsXV1dV01yYGSPQbPZrH9mi+lp48aNrFu3Tu+dcTqd1NTU8KMf/Yhjx44xPDyMpmn09/cTHh7O17/+deLi4ti4cSMvvfQSSqnrKvh6vW6KRGdoaIjW1lZefvll1q1bx9y5c0dNQr7SLO/u7m62bdtGUVERZ8+epbOzU4pTTSNut5vjx48TFRVFXFycXgXbYDCwf/9+mpqa6O7upqOjA7PZTFBQEA6HQ9/I09+VajAYMBqNmM1mTCaTxHiaiI+PJzMzc9TNx/VOKE5LS9O3DxgYGKCrq0u2Y5lGrFYrMTExrFy5kujoaDweD+3t7Zw5c4azZ89e9Wfb29vp6uoC0PcftNvtDA4OSkXzacBsNus9qP5VrP7q87/97W+pqanRt3tQStHa2sr27du57777iI2NJTQ0lC1bthAaGqrvQDAebopEx79aY/v27URFRendZJeuugoKCtL33HA6nVRXV/P6669TVFSkb+4ppg+3201xcTHZ2dnMmDGDqKgokpOTCQkJYdWqVZw7d46GhgYMBgMhISHY7XaSk5PZtGkTCxcuHPWlaTAYCAoKwmw2S6IzTURGRhIfH6//3b8acnh4+KoJi6ZpxMbGEhsbi6ZpOJ1Oenp66OjokERnmggODiY6Opr8/HzCw8MZHh6murqaCxcuXPMufmBggMHBQZRS+kTz6OhoGhoaJNGZBsxmM4mJiaSnp5OUlASMdBpUVFTwpz/9ifb29lHzKHt7ezl+/DgDAwP6vKvly5fT0tIiic5H4XK52LVrF4cOHSIiIoJly5aRnp5OVFQUAMuWLSM2Npb9+/fz6quvcvLkSZqamvRJjWJ6GRoa4tVXX6W/v5/a2lq++c1vYjQaiYqK4vvf/z5DQ0P09fVx/PhxHA4H4eHh5OTkYDQaRyU5/hUAXq/3ugpJiqkRERHBN77xDZ599llOnTp1xXP81VcvXTDQ3d1NS0sLNTU1k9VUcQ1JSUnMmjWL5ORkfXuOp59+mqqqqg/1OnFxceTn53Pvvffy61//mvb29glqsbheFouFGTNmEBERoQ9LvvXWW+zevZsLFy5M2XfpTfXJ7vP5GBwc1FdjlZaW6sHYu3cvwcHBNDU1UVVVdc2iZGLq+Xw+zp49i9Vq5YEHHiA0NFQfgvL32OXn5+tDVx+czd/Q0EBZWRlbt26lqqpK5nBMI5WVlRQXF3PLLbdgNpux2WysX7+empoarFYrtbW1dHV16RNTw8LCSE5OZuPGjSQnJ+vJrMlkwmKxYLVaJ3yHZHF9YmJiRsXI6XRy4sSJ61oMkJCQQGxsrP53p9NJXV2d9MROE0ajkYiIiMuKfHZ3d1/12isrK8PhcJCVlTUh7bqpEh348x4qE1luWkyepqYmTCYTtbW1pKWlERERAYwMR1mtVr379FIej4euri7Kyso4fPgw77zzDn19fZLYTiN1dXWcOnWKtrY2IiMjCQ4OZs6cORQUFGAwGAgLC6O2tpbBwUHsdjtJSUlkZ2dz9913ExMTg6Zp+gerwWDAYrHgcrkk0ZkGoqOjSUhI0P/udrupr6+/rhuN+Ph4YmJigD8Xcm1oaJBEZxrwTwFITEwkKChIL9jb0dGhz6saS01NDampqWRlZWEwGPRjvIYjb7pERwQW/x3dD3/4Q77yla+wbt26a9Y6qqur40c/+hEHDx6ksbFRlhxPQ0VFRVRWVhIZGclnPvMZ5s+fj6ZpfP7zn+eee+5hcHCQsrIy+vr6iIiIIDMzk9DQUAwGw6ihSX/ZALPZLNWRp4nMzEw9njAyr8pisTA8PHzNm41Lt2rp6uqiubmZ2tpaSXSmAbvdTnp6Ovfeey9xcXEMDw9TVVXF3r17L9vM9YOam5v1+TshISF6kc/xGlmRREfc8FwuF0ePHsXpdPLaa6+Rm5tLTEyMXvnYXxzw3LlzHDx4kPLycvbv309ra6sMV01TSikGBgbYuXMnCxYsYObMmdhsNn37DpvNRlZWFm63G4vFgt1uH5XgDgwMUF9fz7PPPktRURH9/f0yWXUauTTpdDgcfPKTn2Tnzp1jTkb29xb459j5lyZ3dnbqc+zE1IqNjSU1NZXY2FisVivNzc388Y9/pKWl5Zo9qZfOhY2MjCQ7O5u1a9eybdu2cdmhXhIdccPzer3U19fT3t5OUVER+fn5ozb86+vrIywsjBMnTrBt2zYqKiro7Oyc2kaLa3K73ZSXl3PhwgXq6+vJzs7WvyCNRiORkZFX/LmOjg6am5spLi7m/fffp6KiQupfTSNOp5O+vj58Pp++H9Ktt95KRUUFPT09DA0N4Xa7UUphMBj0xDYxMXFU3R2Xy8XQ0JAsLZ8mwsPDiY+P128wBwYGOHDgwHVVnLdarfq8Hv92TMnJyeO2QEQSHREwhoaGGBoaYseOHVesv3K9W0SI6cHn89HT08NLL71EXV0d//RP/3TZrsdXsnXrVvbt28f+/ftl7tU0dPLkSUJDQ1m2bBlBQUFERETwhS98gZ6eHpKSkiguLqauro7h4WFsNhsJCQnMnz+fr33ta2RmZmIwGFBKYbFYCA4OxmazMTAwIMnOFEtLSyMzM1P/e19fH++///519ZpnZGTota9gZLVkSUmJvkflxyWJjghIlyY0ktzc2C5cuEB3dzfd3d2kp6cTGxtLUlISmqYRGhpKfn4+Fy5coLKykj179nD48GFaWlpkuGqaKi0tZXBwkOzsbFavXk1qaipGo5FNmzaxaNEiWltbOXfuHIODgzgcDtLT04mPj2fmzJl6VXMYWc0zMDAgZSGmCf9kYj9N0y4r5zGW7Oxs0tLSgJEEqb29nebm5nGrfSX/QoQQ01pXVxc9PT00NzeTnZ1NYmKivsVDeHg4Pp+P06dPU1ZWxmuvvUZ3d/e43QmK8dfW1obb7Wb//v3k5uaSlJSE0WgkMzOTjIwMhoaGyMjIwOl0EhYWRmpq6qgEx+v1MjQ0xIULF2hoaJAbmWkiLCxs1HCy2WwmISGBurq6qyYs/vpnDocDGNnupbe3l87OTll1JYS4efh8Pvr7+zl+/DjHjx8f9dylS8nFjaGvr49XXnmFFStWkJmZqZeF0DSN4OBg8vLyxvzZnp4eTp8+zU9+8hPOnj1LX1/fZDVbfAixsbF85Stf4T//8z/H3NrDX/PMv0OBpml0d3fT2tpKfX39uLVFEh0hxA1Nkpwbj9frpbe3lzfeeIP+/n7+8i//8pplIQBefPFFTp06xdGjR7lw4QKDg4OT0FpxPc6cOUNcXBzz5s3DbDYTHh7O5s2bqa6uJiYmhqqqKtra2vB4PFitViIjI8nKymLz5s0kJibqc6/8BV6Dg4MZGhoal+tbEh0hhBCTzu12c/r0aYxGIwsWLCA0NBSr1aqvrDKbzTgcDvr7+xkYGKC9vZ09e/Zw8uRJSkpKcDqdMgdrGqmqqiIqKor6+nri4uKw2WxkZGRQUFBASEgIcXFxXLhwAbfbjd1uJyUlhdmzZ7Nu3TrCwsL01/HH1F9baTwSHe1qL6JpmtwqTRGl1LhXN5N4Tp3xjqfEcurItTm+jEYjoaGhzJ8/n/T0dL0gYGxsLLfffjuHDx+mqKiI559/nra2tnEvFSDX5viJjY3lL//yL/nSl75ETk6O/rjP58PpdFJSUsLQ0BDh4eFkZWVhs9kue40jR46wfft2nnrqKbq6uj5UMjtWLCXRmabkwzSwyIdp4JBrc/yZTCa9R8f/5WexWIiMjKS3t5fe3l6ampomZBsPuTbHj9VqJScnhx/96EcUFhbqNXVgJNnx108ym82j5ubAyCq66upqfvrTn1JSUsK5c+c+dMXrsWIpQ1dCCCGmlH//OXFjc7lcVFVVce7cOVJSUpg7d66+vNxgMOgrqz6otrZW39/u2LFj475/mSQ6QgghhPjYfD4fvb29vPzyyzQ3N/PjH//4umrp/OY3v+HQoUMcPnx4QupfydDVNCXd44FFuscDh1ybgUWuzfEXGhpKZGQks2fPJjs7m/j4eJKTk4GR3esXLlxIaWkpZWVl7Nq1i+LiYjo7O+nt7f1Ylcxl6EoIIYQQE66vr09fKdfY2EhcXBxJSUkAREVF0dXVxZkzZzh79izvvfce3d3d41YF+UqkR2eakrvGwCJ3jYFDrs3AItdm4BgrloYrPSiEEEIIEQgk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbA0pdRUt0EIIYQQYkJIj44QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWP8/T7k0ltqqQmQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" ] - }, + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Construct a figure on which we will visualize the images.\n", + "fig, axes = plt.subplots(4, 5, figsize=(10, 8))\n", + "\n", + "# Plot each of the sequential images for one random data example.\n", + "data_choice = np.random.choice(range(len(train_dataset)), size=1)[0]\n", + "for idx, ax in enumerate(axes.flat):\n", + " ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap=\"gray\")\n", + " ax.set_title(f\"Frame {idx + 1}\")\n", + " ax.axis(\"off\")\n", + "\n", + "# Print information and display the figure.\n", + "print(f\"Displaying frames for example {data_choice}.\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jPQQIUm6x66P" + }, + "source": [ + "## Model Construction\n", + "\n", + "To build a Convolutional LSTM model, we will use the\n", + "`ConvLSTM2D` layer, which will accept inputs of shape\n", + "`(batch_size, num_frames, width, height, channels)`, and return\n", + "a prediction movie of the same shape." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "D3OvRaVpx66P" + }, + "outputs": [], + "source": [ + "# Construct the input layer with no definite frame size.\n", + "inp = layers.Input(shape=(None, *x_train.shape[2:]))\n", + "\n", + "# We will construct 3 `ConvLSTM2D` layers with batch normalization,\n", + "# followed by a `Conv3D` layer for the spatiotemporal outputs.\n", + "x = layers.ConvLSTM2D(\n", + " filters=64,\n", + " kernel_size=(5, 5),\n", + " padding=\"same\",\n", + " return_sequences=True,\n", + " activation=\"relu\",\n", + ")(inp)\n", + "x = layers.BatchNormalization()(x)\n", + "x = layers.ConvLSTM2D(\n", + " filters=64,\n", + " kernel_size=(3, 3),\n", + " padding=\"same\",\n", + " return_sequences=True,\n", + " activation=\"relu\",\n", + ")(x)\n", + "x = layers.BatchNormalization()(x)\n", + "x = layers.ConvLSTM2D(\n", + " filters=64,\n", + " kernel_size=(1, 1),\n", + " padding=\"same\",\n", + " return_sequences=True,\n", + " activation=\"relu\",\n", + ")(x)\n", + "x = layers.Conv3D(\n", + " filters=1, kernel_size=(3, 3, 3), activation=\"sigmoid\", padding=\"same\"\n", + ")(x)\n", + "\n", + "# Next, we will build the complete model and compile it.\n", + "model = keras.models.Model(inp, x)\n", + "model.compile(\n", + " loss=keras.losses.binary_crossentropy, optimizer=keras.optimizers.Adam(),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Nd0VLhrvx66Q" + }, + "source": [ + "## Model Training\n", + "\n", + "With our model and data constructed, we can now train the model." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "4Xx9qttUx66L" - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import tensorflow as tf\n", - "from tensorflow import keras\n", - "from tensorflow.keras import layers\n", - "\n", - "import io\n", - "import imageio\n", - "from IPython.display import Image, display\n", - "from ipywidgets import widgets, Layout, HBox" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mnouamanetazi\u001b[0m (use `wandb login --relogin` to force relogin)\n" + ] }, { - "cell_type": "markdown", - "metadata": { - "id": "w-uOOdg1x66M" - }, - "source": [ - "## Dataset Construction\n", - "\n", - "For this example, we will be using the\n", - "[Moving MNIST](http://www.cs.toronto.edu/~nitish/unsupervised_video/)\n", - "dataset.\n", - "\n", - "We will download the dataset and then construct and\n", - "preprocess training and validation sets.\n", - "\n", - "For next-frame prediction, our model will be using a previous frame,\n", - "which we'll call `f_n`, to predict a new frame, called `f_(n + 1)`.\n", - "To allow the model to create these predictions, we'll need to process\n", - "the data such that we have \"shifted\" inputs and outputs, where the\n", - "input data is frame `x_n`, being used to predict frame `y_(n + 1)`." + "data": { + "text/html": [ + "\n", + " Syncing run dry-wave-1 to Weights & Biases (docs).
\n", + "\n", + " " + ], + "text/plain": [ + "" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "H6_vt6q4x66N" - }, - "outputs": [], - "source": [ - "# Download and load the dataset.\n", - "fpath = keras.utils.get_file(\n", - " \"moving_mnist.npy\",\n", - " \"http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy\",\n", - ")\n", - "dataset = np.load(fpath)\n", - "\n", - "# Swap the axes representing the number of frames and number of data samples.\n", - "dataset = np.swapaxes(dataset, 0, 1)\n", - "# We'll pick out 1000 of the 10000 total examples and use those.\n", - "dataset = dataset[:1000, ...]\n", - "# Add a channel dimension since the images are grayscale.\n", - "dataset = np.expand_dims(dataset, axis=-1)\n", - "\n", - "# Split into train and validation sets using indexing to optimize memory.\n", - "indexes = np.arange(dataset.shape[0])\n", - "np.random.shuffle(indexes)\n", - "train_index = indexes[: int(0.9 * dataset.shape[0])]\n", - "val_index = indexes[int(0.9 * dataset.shape[0]) :]\n", - "train_dataset = dataset[train_index]\n", - "val_dataset = dataset[val_index]\n", - "\n", - "# Normalize the data to the 0-1 range.\n", - "train_dataset = train_dataset / 255\n", - "val_dataset = val_dataset / 255\n", - "\n", - "# We'll define a helper function to shift the frames, where\n", - "# `x` is frames 0 to n - 1, and `y` is frames 1 to n.\n", - "def create_shifted_frames(data):\n", - " x = data[:, 0 : data.shape[1] - 1, :, :]\n", - " y = data[:, 1 : data.shape[1], :, :]\n", - " return x, y\n", - "\n", - "\n", - "# Apply the processing function to the datasets.\n", - "x_train, y_train = create_shifted_frames(train_dataset)\n", - "x_val, y_val = create_shifted_frames(val_dataset)\n", - "\n", - "# Inspect the dataset.\n", - "print(\"Training Dataset Shapes: \" + str(x_train.shape) + \", \" + str(y_train.shape))\n", - "print(\"Validation Dataset Shapes: \" + str(x_val.shape) + \", \" + str(y_val.shape))" + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" ] - }, + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import wandb\n", + "from wandb.keras import WandbCallback\n", + "\n", + "wandb.init(config={\"hyper\": \"parameter\"})" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "v9U57leux66Q", + "tags": [] + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "wJhm7oM7x66O" - }, - "source": [ - "## Data Visualization\n", - "\n", - "Our data consists of sequences of frames, each of which\n", - "are used to predict the upcoming frame. Let's take a look\n", - "at some of these sequential frames." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "180/180 [==============================] - ETA: 0s - loss: 0.1426" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "jFE2fY1xx66O" - }, - "outputs": [], - "source": [ - "# Construct a figure on which we will visualize the images.\n", - "fig, axes = plt.subplots(4, 5, figsize=(10, 8))\n", - "\n", - "# Plot each of the sequential images for one random data example.\n", - "data_choice = np.random.choice(range(len(train_dataset)), size=1)[0]\n", - "for idx, ax in enumerate(axes.flat):\n", - " ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap=\"gray\")\n", - " ax.set_title(f\"Frame {idx + 1}\")\n", - " ax.axis(\"off\")\n", - "\n", - "# Print information and display the figure.\n", - "print(f\"Displaying frames for example {data_choice}.\")\n", - "plt.show()" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-02-13 20:41:53.410735: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:828] layout failed: INVALID_ARGUMENT: MutableGraphView::SortTopologically error: detected edge(s) creating cycle(s) {'model/conv_lstm2d_2/while/body/_97/model/conv_lstm2d_2/while/Relu_1' -> 'model/conv_lstm2d_2/while/body/_97/model/conv_lstm2d_2/while/mul_5', 'model/conv_lstm2d_2/while/body/_97/model/conv_lstm2d_2/while/mul_2' -> 'model/conv_lstm2d_2/while/body/_97/model/conv_lstm2d_2/while/add_5', 'model/conv_lstm2d_2/while/body/_97/model/conv_lstm2d_2/while/convolution_7' -> 'model/conv_lstm2d_2/while/body/_97/model/conv_lstm2d_2/while/add_6', 'model/conv_lstm2d_1/while/body/_49/model/conv_lstm2d_1/while/mul_2' -> 'model/conv_lstm2d_1/while/body/_49/model/conv_lstm2d_1/while/add_5', 'model/conv_lstm2d_1/while/body/_49/model/conv_lstm2d_1/while/clip_by_value' -> 'model/conv_lstm2d_1/while/body/_49/model/conv_lstm2d_1/while/mul_3', 'model/conv_lstm2d_1/while/body/_49/model/conv_lstm2d_1/while/clip_by_value_2' -> 'model/conv_lstm2d_1/while/body/_49/model/conv_lstm2d_1/while/mul_5', 'model/conv_lstm2d_1/while/body/_49/model/conv_lstm2d_1/while/convolution_6' -> 'model/conv_lstm2d_1/while/body/_49/model/conv_lstm2d_1/while/add_4'}.\n" + ] }, { - "cell_type": "markdown", - "metadata": { - "id": "jPQQIUm6x66P" - }, - "source": [ - "## Model Construction\n", - "\n", - "To build a Convolutional LSTM model, we will use the\n", - "`ConvLSTM2D` layer, which will accept inputs of shape\n", - "`(batch_size, num_frames, width, height, channels)`, and return\n", - "a prediction movie of the same shape." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "180/180 [==============================] - 132s 732ms/step - loss: 0.1426 - val_loss: 0.3393 - lr: 0.0010\n", + "Epoch 2/20\n", + "180/180 [==============================] - 133s 736ms/step - loss: 0.1070 - val_loss: 0.2899 - lr: 0.0010\n", + "Epoch 3/20\n", + "180/180 [==============================] - 131s 730ms/step - loss: 0.0473 - val_loss: 0.2707 - lr: 0.0010\n", + "Epoch 4/20\n", + "180/180 [==============================] - 133s 739ms/step - loss: 0.0317 - val_loss: 0.2118 - lr: 0.0010\n", + "Epoch 5/20\n", + "180/180 [==============================] - 132s 731ms/step - loss: 0.0292 - val_loss: 0.1803 - lr: 0.0010\n", + "Epoch 6/20\n", + "180/180 [==============================] - 133s 737ms/step - loss: 0.0281 - val_loss: 0.1553 - lr: 0.0010\n", + "Epoch 7/20\n", + "180/180 [==============================] - 132s 735ms/step - loss: 0.0274 - val_loss: 0.1472 - lr: 0.0010\n", + "Epoch 8/20\n", + "180/180 [==============================] - 132s 735ms/step - loss: 0.0270 - val_loss: 0.1390 - lr: 0.0010\n", + "Epoch 9/20\n", + "180/180 [==============================] - 133s 739ms/step - loss: 0.0267 - val_loss: 0.1250 - lr: 0.0010\n", + "Epoch 10/20\n", + "180/180 [==============================] - 132s 733ms/step - loss: 0.0264 - val_loss: 0.1163 - lr: 0.0010\n", + "Epoch 11/20\n", + "180/180 [==============================] - 133s 741ms/step - loss: 0.0263 - val_loss: 0.1003 - lr: 0.0010\n", + "Epoch 12/20\n", + "180/180 [==============================] - 131s 730ms/step - loss: 0.0261 - val_loss: 0.1040 - lr: 0.0010\n", + "Epoch 13/20\n", + "180/180 [==============================] - 131s 730ms/step - loss: 0.0260 - val_loss: 0.0865 - lr: 0.0010\n", + "Epoch 14/20\n", + "180/180 [==============================] - 131s 730ms/step - loss: 0.0259 - val_loss: 0.0881 - lr: 0.0010\n", + "Epoch 15/20\n", + "180/180 [==============================] - 133s 737ms/step - loss: 0.0258 - val_loss: 0.0695 - lr: 0.0010\n", + "Epoch 16/20\n", + "180/180 [==============================] - 133s 737ms/step - loss: 0.0257 - val_loss: 0.0521 - lr: 0.0010\n", + "Epoch 17/20\n", + "180/180 [==============================] - 132s 734ms/step - loss: 0.0255 - val_loss: 0.0302 - lr: 0.0010\n", + "Epoch 18/20\n", + "180/180 [==============================] - 133s 740ms/step - loss: 0.0254 - val_loss: 0.0261 - lr: 0.0010\n", + "Epoch 19/20\n", + "180/180 [==============================] - 132s 733ms/step - loss: 0.0253 - val_loss: 0.0255 - lr: 0.0010\n", + "Epoch 20/20\n", + "180/180 [==============================] - 133s 741ms/step - loss: 0.0252 - val_loss: 0.0254 - lr: 0.0010\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "D3OvRaVpx66P" - }, - "outputs": [], - "source": [ - "# Construct the input layer with no definite frame size.\n", - "inp = layers.Input(shape=(None, *x_train.shape[2:]))\n", - "\n", - "# We will construct 3 `ConvLSTM2D` layers with batch normalization,\n", - "# followed by a `Conv3D` layer for the spatiotemporal outputs.\n", - "x = layers.ConvLSTM2D(\n", - " filters=64,\n", - " kernel_size=(5, 5),\n", - " padding=\"same\",\n", - " return_sequences=True,\n", - " activation=\"relu\",\n", - ")(inp)\n", - "x = layers.BatchNormalization()(x)\n", - "x = layers.ConvLSTM2D(\n", - " filters=64,\n", - " kernel_size=(3, 3),\n", - " padding=\"same\",\n", - " return_sequences=True,\n", - " activation=\"relu\",\n", - ")(x)\n", - "x = layers.BatchNormalization()(x)\n", - "x = layers.ConvLSTM2D(\n", - " filters=64,\n", - " kernel_size=(1, 1),\n", - " padding=\"same\",\n", - " return_sequences=True,\n", - " activation=\"relu\",\n", - ")(x)\n", - "x = layers.Conv3D(\n", - " filters=1, kernel_size=(3, 3, 3), activation=\"sigmoid\", padding=\"same\"\n", - ")(x)\n", - "\n", - "# Next, we will build the complete model and compile it.\n", - "model = keras.models.Model(inp, x)\n", - "model.compile(\n", - " loss=keras.losses.binary_crossentropy, optimizer=keras.optimizers.Adam(),\n", - ")" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define some callbacks to improve training.\n", + "early_stopping = keras.callbacks.EarlyStopping(monitor=\"val_loss\", patience=10)\n", + "reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor=\"val_loss\", patience=5)\n", + "\n", + "# Define modifiable training hyperparameters.\n", + "epochs = 20\n", + "batch_size = 5\n", + "\n", + "# Fit the model to the training data.\n", + "model.fit(\n", + " x_train,\n", + " y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " validation_data=(x_val, y_val),\n", + " callbacks=[early_stopping, reduce_lr, WandbCallback()],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RxB7zZIxx66R" + }, + "source": [ + "## Frame Prediction Visualizations\n", + "\n", + "With our model now constructed and trained, we can generate\n", + "some example frame predictions based on a new video.\n", + "\n", + "We'll pick a random example from the validation set and\n", + "then choose the first ten frames from them. From there, we can\n", + "allow the model to predict 10 new frames, which we can compare\n", + "to the ground truth frame predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "qsujRd4Ex66R" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "Nd0VLhrvx66Q" - }, - "source": [ - "## Model Training\n", - "\n", - "With our model and data constructed, we can now train the model." + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAADzCAYAAADekfCeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eXxbV5n//znad8nyvtuxYzuxY8dZncTZ2rRNtzQtUFpaCoVSClMYYJjCTIcZhm3KDwYKhU4HvlCgtEwLLQ0NbdK0SbNvduLEseMk3rd432QtliWd3x/yvb1WJG/xIjvP+/XSy/LV1b1H93PPued5znOewzjnIAiCIAiCIAiCIAiCIOYe2VwXgCAIgiAIgiAIgiAIgvBDjhqCIAiCIAiCIAiCIIgwgRw1BEEQBEEQBEEQBEEQYQI5agiCIAiCIAiCIAiCIMIEctQQBEEQBEEQBEEQBEGECeSoIQiCIAiCIAiCIAiCCBPIUUMQBEEQBEEQBEEQBBEmzKqjhjFWzxhzMsYGJa+E2SzDeDDG8hhjexljXYwxHuTzJxljJYyxIcbY7+agiHPOfNeRMaZmjP2GMdbAGLMxxsoYY7fPVVnngvmu4cjnf2SMXWWMDTDGLjPGHpuLcs4lC0FHyX6LGWMuxtgfZ7N8c81C0JAx9sGIdkL5L81FOeeShaDjyD4PMMYuMsbsjLEaxtjG2S7nXLEQNAwo+yBjzMsYe24uyjpXLBAd0xhjbzPGehljbYyxXzDGFHNR1rlggWi4hDG2nzHWzxirZozdOxflnEvmiY6fYoyVjtgSzYyx/09a1xhjVsbYX0eeiQ2MsU/MZvnmIqLmbs65QfJqlX4YBg3RMIDXAHw2xOetAL4H4LezVqLwZD7rqADQBGAzADOAfwPwGmMsbdZKFx7MZw0B4L8ApHHOTQB2APgeY2zlbBUujJjvOgr8EsDpmS9OWLIQNHxSUv7sWSpXuDGvdWSM3QLghwAeBWAEsAlA7ayVLjyY1xpKyw4gDoATwJ9nsXzhwrzWEcDzADoAxANYDn9/9YuzUrLwYd5qOFK2XQB2A7ACeBzAHxljWbNawvAg3HXUAfgKgCgAawHcDODrks9/CcANIBbAQwD+hzGWO1uFC4upT4wxzhj7B8bYFQBXRrb9jDHWNOLhKpWO6jDGvs0Y+zPzj6jbGGPljLEsxti/MMY6Rr53q2R/M/NHUFxljLUwxr7HGJMHKwvn/BLn/DcAKkJ8/gbn/E0A3dN5DRYC80VHzrmdc/5tznk959zHOd8NoA7AjWjkj2K+aDjyeQXnfEj4d+SVMU2XYl4zn3QcOd4DAPoAvD9Nl2DeM980JIIzz3T8TwDf4ZyfGHk2tnDOW6bvasxP5pmGUj4Cv7F/+LouwAJhnumYDuA1zrmLc94GYA+AWTMOw5V5pGEOgAQAP+Wceznn+wEcBfDJabwc85Yw0/F/OOeHOefukefdywA2jBxHD387+i3O+SDn/AiAv2EWdQwLR80IO+H3ZC0d+f80/F5kK4BXAPyZMaaR7H83gJcARAA4C2Av/L8nEcB3APyvZN/fAfAAyARQCOBWADfcNIlZYifmmY6MsVgAWSAjRGAn5omGjLHnGWMOAFUArgJ4e6rHWoDsxDzQkTFmGjn+16by/QXOTswDDUf4L+YPAT/KGNtyHcdZiOxEmOs40oldBSCa+cP0m5l/uoV2ssdaoOxEmGsYhE8B+APnPOSU0xuQnZgfOj4L4AHGmI4xlgjgdvidNcT80TAQBiBvmo61ENiJ8NRxEz60B7MAeDjnlyWfn8NsOk0557P2AlAPYBD+kdM+AG+ObOcAbhrnu70ACkbefxvAPslnd48cVz7yv3HkmBb4Q5WGAGgl+z8I4MA458v0X56Qn38PwO9m8/qFy2uB6agE8B6A/53r60oaTllDOYBi+KewKef62pKOk9MRwM8AfENSjj/O9XUlDSet4dqR46vhNw5tADLm+tqSjhPXEf7RXw6gBP7pFlHwjwB/f66vLWk4MQ0DPk8F4AWQPtfXlXScvI4AlgAohd/Y5PAbnmyury1pODEN4bctagE8NfL+Vvinz+yd62tLOo55zs8AaAYQNfL/RgBtAft8DsAHs3UN52Je2E7O+XtBtjdJ/2GMfR3+eX9C58EEf8dBoF3y3gmgi3PulfwPAIaR7ysBXGWMCfvLAs9HTJp5ryNjTAa/d9YN4MmpHmceM+81BICRcx1hjD0M4AsAfn49x5uHzFsdGWPLAWyDf8TjRmbeaggAnPOTkn9/zxh7EMAdAG6oJKaY3zoKx32Oc351pJw/gd8B/vQUjjdfmc8aSvkkgCOc87rrPM58Zd7qONI33QPgVwDWjxz/t/Dnj3pqssebx8xbDTnnw4yxnfA/A78BvwP8NfgdCDca80LHEb3+C8A2znnXyObBkXJIMcE/GDUrzHUCHylceDMyL+0p+BP6VHDOfYyxXvjDxiZLE/wVI4pz7pmWkhJjMS90ZP7a+xv4Pa93cM6Hr/eYC4h5oWEQFKAcNVLmg45bAKQBaBx5oBoAyBljSznnK67z2AuB+aBhMDimVq6FStjryDnvZYw1S8sa8P5GJ+w1DOARAM9M4/EWCvNBRyuAFAC/4P48fEOMsRfhj+S/kRw1oZgPGoJzfh7+JNBCWY8B+P31HncBETY6Msa2A/g1gDs55+WSjy4DUDDGFnPOr4xsK8AspsoIpxw1Uozwh/t1wn+B/h3XerQmxMjI0LsA/psxZmKMyRhjGYyxzcH2Z340AFQj/2sYY2rJ54qRz+XwGxQaNvcZq8OVsNURwP/AH1p6N+fcGewYBIAw1ZAxFsP8y8gaGGNyxtht8Ic2UjLa4ISljvCPGGbAPy95OYAXAPwdwG1TKdsCJyw1ZIxZGGO3Cc9CxthD8M/xpnwKwQlLHUd4EcCXRtrXCABfhX/VEmI04awhGGPr4c/bcCOu9jQZwlLHkdH8OgBfGGlTLfBPKT0/lbItcMJSw5H/80e26Zg/WiQe/ilsxLXMpY43wZ9A+COc81MBx7IDeAPAdxhjesbYBgD3wD8bY1YIV0fNXvg7eZcBNABw4frCQB+BvyJVwj/n7S/wV5hgpMIfQiV4y5wALkk+/7eRbd8E8PDI+3+7jrItZMJSR8ZYKoDPw28YtjHGBkdeD11H2RYqYakh/J74L8A/l7QXwI8BfIVz/rfrKNtCJix15Jw7OOdtwgv+MFMX57zzOsq2UAlLDeEPMf4e/B2sLgBfgj/U+XLgQQgA4asjAHwX/oSOlwFchD9h4/evo2wLlXDWEPAb9W9wzmctPH+eEs463gdgO/ztajX8S0F/9TrKtlAJZw0/Cf8iFx3wR4rcwj9cqZQYzVzq+C0AZgBvS+zBdySffxGAFn4d/wTgC5zzWYuoYSOJcQiCIAiCIAiCIAiCIIg5JlwjagiCIAiCIAiCIAiCIG44yFFDEARBEARBEARBEAQRJpCjhiAIgiAIgiAIgiAIIkwgRw1BEARBEARBEARBEESYQI4agiAIgiAIgiAIgiCIMEEx1oeMMVoSao7gnLPpOhbpOHdMl46k4dxBdXFhQHVx/kN1cWFAdXH+Q3VxYUB1cf5DdXFhEEpHiqghCIIgCIIgCIIgCIIIE8hRQxAEQRAEQRAEQRAEESaQo4YgCIIgCIIgCIIgCCJMGDNHDUEQBEEQBEEQBEEQAGMMOp0Oer0ecrkcw8PDsNlscLvd4JzSvMxnNBoN1Go1DAYDhoeH4Xa70d/fP2e6UkQNQRAEQRAEQRAEQYyDxWLBo48+irfeegvl5eV49dVXsXHjRuj1+rkuGnGdbNu2DU8//TSqq6vxzjvv4Lvf/S5MJhPkcvmclIciagiCIAiCIAiCIAhiBLlcjuTkZJhMJkRERGDFihWQyWQwGo3YunUr0tPTYTKZkJOTg5ycHFy9ehUVFRVzXWxiAkRHR8NsNiMyMhI5OTmIiooCAKxduxaZmZlQq9VITU1Fb28vcnJyUFlZCZvNNuvlJEcNQRAEQRAEQRDENKPRaKDRaGA2m+HxeDA0NISenh74fL65LhoRAsYYNBoNTCYTli9fjujoaMTHx+Ouu+6CTCaDWq1Gdna2GGURFxeHxMRExMTEkKMmzJHL5TAYDFi8eDGSk5ORkJCAjRs3IiUlBQBE5xvnHBEREYiPj0dSUhJqamrIUUMQBEEQBEEQBLEQWLduHbZs2YKnnnoK1dXVKCsrw5e//GUMDg5ieHh4rotHBEGtVuOmm27C5s2b8cQTT0ClUkEmk0Em+zBjCGNsDktITAWlUonIyEg8+uij2LlzJ/Lz8yGXy8EYE/UMN13JUUMQBEEQBEEQBDFFIiMjERkZCavViuzsbCQkJAAACgoKkJWVBZVKheTkZAwNDWHp0qWoqqpCd3f3HJeakCKTyaDX6/GJT3wCxcXFWL58ObRaLWQyGTjncLvdOHr0KDo6OlBcXAyr1QqdTgcAMJlMsFgsc/sDiJDI5XIUFxdj7dq1+MhHPoLU1FSoVCoAwPDwMLq7u7F7926sXLkSSUlJiI6OBuB37kRHR0OpVM5JuclRQxAEQRAEQRBzBGMMJpMJRqMRGo0GLpcLfX19cDgck5oio1QqYbFYxKSmAwMDsNvt8Hg88Hq9M1X8GxqZTAaz2YzMzEwsWrQIiYmJWLlyJbKysgAASUlJsFqtAACj0YiYmBgkJCSgvr5+3GNbLBZotVro9XoMDAzA5XLB4XDA4/HM5E+6IVEqlTCZTIiPj8dtt92GgoICpKamwufzYWBgAA6HA52dnTh8+DAaGhpgtVqxfPnyUY6ahIQEZGZmwmazweVywW63w+v10kpQc4hcLodSqURMTAyKioqwbds2FBQUgHMOr9cLhUKBgYEBNDQ0YN++fWCMYXh4mBw1BEEQBEEQBHGjo9Vq8fDDD+NjH/sYVq9ejdLSUvziF7/AO++8M6m8CMnJyfjSl76Ej3zkIxgaGsJLL72Ev//972hsbERnZ+cM/oIbE4VCAaPRiMcffxzbt2/HunXrrplKcT08/PDD2LJlC3bu3Inf/va3OH78ON5//31cvXqVpk1NIzKZDCkpKdixYwe2b9+OLVu2wOfzwW63Y2BgAHv27MGRI0fw9ttvw2azgXOO06dP47//+79x6623AgAyMjKQlJSEn/3sZ3j55Zdx7NgxvPPOO2hvb8fQ0NAc/8IbF6vVitTUVPzrv/4rCgsLkZSUJDo8OeeIjY3FwYMHcfToUZSUlKC8vBzLly/HK6+8AgAwGAwoLCzE66+/Pifln5eOmqysLGzYsAEbN25Ec3Mzzpw5g5MnT6K/vx8Oh2Oui0dMEYVCgfvuuw9Lly5Feno69uzZg8uXL6Ourg69vb3kkZ7HqNVq3HfffcjLy0N8fDz27t2LqqoqNDY2ore3d66LR1wnOp0O9957LwoKChAREYF3330XlZWVaG1tJX3nMcXFxVi2bBmKi4tx6tQpXLp0CSUlJRgYGIDb7Z7r4hHXydatW7Fs2TIUFRXh8OHDuHLlCsrKytDX10cj9jOETCZDeno6jEYjIiIisGHDBigUCqjVamzZsgXp6elQq9XIycnB0qVLUVNTgzNnzkyo/7No0SKsXLkSmzZtEqdgfOQjH0F6ejoqKiqwb98+XLp0CS6Xa4Z/5Y2BXC7HmjVrsHHjRnzsYx9DUlKSOOru8XjQ39+P119/Hbm5ucjIyEBcXBwAf183JiYGarU65LH1ej0yMzOxYcMG5OfnQyaTYevWrcjMzMTy5cvx5ptvoq6ubkJROcTYCNOd7r33XmzevBl5eXkYGhrC+++/jxMnTuDSpUtobm5GV1cX+vv74fF4oFKpoNPpoFB8aEYnJyfD6/VCJpOhuLgY6enpWLp0Kd5++21UV1ejpqZmDn/ljYlSqRTbxJUrV8JgMKCtrQ0vvfQSNm/ejJycHHDOsXr1aiQkJCA9PR3Hjh2D2WwWjzEwMICjR49iYGBgTn7DvHPU6PV6ZGRk4KabbsJ9992H6upqWCwW2O12NDQ0oKWlBXa7fa6LSUwSIeRw48aNWL9+PfLy8uDxeGCxWKBUKnHx4kU4HA4aQZiHqFQqWCwWbNmyBevXr8eiRYvg8XhgMBig1WpRWVkJp9NJ2s5T1Go1IiMjcdNNN2Hjxo2IjY2Fx+OBVquFVqvFpUuX4HQ6yfCbRzDGoNfrsWzZMtx2223YsWMHoqKiEBMTg8HBQdF5TgMjc4NWq4XBYEBMTAyGh4fhcrnQ2to64RB7mUwGnU6HlStXYuvWrbjjjjtgNBpx5swZuFwuVFdXo7+/H06ncxZ+zY0BYww6nQ5msxkrV65EdHQ0oqOjcccdd0CpVEKhUCArK0uMxoiMjERMTIwYfj8Wgp5Lly5FYWEhMjIyoNFoIJfLkZubC5PJJNZdm82Gjo4ODA4OzsKvXpgIUykSEhKwatUqbNu2DXl5eZDJZHC73ejp6UFfXx9aW1uxd+9eDA4OwuPxIDY2FowxyOVyREdHQ6PRBD2+VqtFdHQ0Vq9ejezsbMTHx4NzjkWLFiEmJgZxcXHo6uoSp0P19/fTtLbrQKPRwGq1Yt26dViyZAkiIyNRVVWFo0ePYs+ePaioqLimXVWpVFi8eDEMBgMAwOv1is5RzjnS0tIQExODqKgoDAwMQKfTobe3l7SaRYTppEuWLEFRURHi4+PR1taG+vp61NfXY+3atVAqleCcIzk5GTExMYiIiIDL5RL1drlc6OrqQnl5+dz5FjjnIV8AeDi9GGN88+bN/Ec/+hHv7u7mHo+He71e7na7+blz5/hPf/pTvm3bNq5UKue8rNf7GkuXyb7m+rdM5JWamsrvueceXltby+12O/d6vdzj8fCmpiZ++PBhfs899/C0tLQ5L+dc6TjXv+N6XpmZmfyjH/0ob2pq4g6HQ9S2oaGB79+/n9911108KSlpzss50xrOdx1DvXJycvhDDz3E29rauNPpFPWtra3le/bs4bfffjuPi4ub83KShhN/abVaftttt/E333yT9/b2iprabDZeWlrKv/KVr/CioqJ5q+F817GoqIg//fTT3OFw8NraWr5r1y4eGxvLVSrVhL5vNBr59u3b+b59+3hfX5+ob19fHy8tLeVPPPEEX7VqVdjrONc6TOal0Wj4li1b+Pe//33e19fHh4eHxT5sqNfzzz/Pt2/fzhljYx7bbDaLenZ1dY06rsfjEV/Dw8P8u9/9Lr/11lvDRsP5piMAHhERwfPz8/mrr77Kq6qqxLaxs7OTV1VV8X/8x3/kRUVF3GKxcMYYj4+P57fccgt3u93c6/Xy/v5+/uabb/L169cHPf6qVav4l7/8ZX716lXxmRqo5/DwMD99+jT//Oc/zyMiIuZcx7nW5HpeWVlZ/IEHHuA2m40PDQ3xlpYWvm3bNp6QkBDyO5mZmby+vp7bbDbudrt5e3u72L8NplV5eTl/4okneExMzLSX/0aui2O91Go13759O9+1axf3eDzc6XTyn/zkJ/xTn/oUb2pqEm3NYHoJbWhpaSn/2c9+xnU6HZfJZDNa3lCazJuIGqvVikWLFuHxxx9HXl4e9Hq9OP9TmFt45513Ij8/H0ajEefPn6cws3kAYwy5ubnYsmUL7r77bkRFRYmho4wxWK1WaDQafOMb38C+ffvwwQcf4ODBg5NKrkfMDTKZDHl5ebjttttw6623itFRwGht/+Vf/gW7d+/G0aNHcfjwYeFhQYQ5CoUCeXl52LFjB7Zs2QKTySSGATPGEB0dDa1Wi3/913/FG2+8gVOnTuHo0aNzXGpiPFJSUrB48WI8+eSTWLZsmZgokTEGtVqN9PR0PProo1i/fj1++9vf4vTp07RyyQwRERGB2NhYxMTEICMjA4sXLwZjDIsXL0Z2djZUKhWio6OxdOlS5Ofno6KiAq2trWMeMy0tDUuWLMGXvvQl5OTkQKvVAvDrq9VqkZ6ejscffxwbNmzAyy+/jOPHj6O/v382fu6ChDEGjUaDz3zmMygqKsLq1auh0+nEZX5dLhdOnjyJqqoq3HrrrYiOjhZH6c1mM6KiosY9R3R0NB577DFkZ2eL3w1Vlg0bNsDhcOD48eOw2+3Ul5okSqVSjDRcs2YNjEYjuru78dxzz6GhoQGtra1ixOHg4CA451Cr1aN0cTgcOHjwIDo6OoKe4/bbb8fWrVthNptHTa2RwhhDXFwcbrvtNhw8eBBOp5OmtE0Rq9WKjIwMMZpNJpPBaDSKKwIFkpmZiZUrV8JisUCtVov7h0o2K/SHbrvtNpw4cQI2m42iFWcBuVyOzMxMREREiDmjiouLkZOTA6vVOqZegn+hsrIS5eXlGBoamrO2ct44aqKiorBq1SqsWbMGcXFx11xgo9EIo9GIxMREnDx5Er29vaivr6cQszBHJpNh2bJlWL16NVatWiUugyegVquhVquxZs0aDAwMoK+vD8ePH8fQ0BAZ9GGOQqHA8uXLsXr1aqxcuRJarXZUcj1hakxkZCQ6OzsxODiIEydOYHh4mLSdByiVShQWFmL16tVYvnw5VCpVUH2jo6PR3NwMh8OBkydP0goIs0hUVBTMZjOMRiOcTie6u7vR09MzZocjJSUFq1atwtq1a2E0GkcZCjKZDCaTCbm5ubBYLCgvL0d1dTX6+vroWTuNyGQyREVFYdGiRViyZAkSEhKQk5ODZcuWAYA4JUaYTmO1WhEVFSU6XcYiMzMTq1evxpo1a2AwGEbpK5fLYTKZxAGvy5cvo7KyEjabjQz6KaBSqWA2mxEfH4+tW7ciLy8PGRkZ8Pl86O3txcDAANra2nDkyBGcO3cOMTExWL58uWjUG41GREZGgjEWss2Mi4vD4sWLsWrVKkRGRoY07AWEvBlZWVmoqKgg436SmEwmZGRkYO3atYiLi0NnZyeqq6vx3nvvoba2NqjzJS4uDhkZGWCMweVyoaenBxUVFdfkvFCr1UhMTERBQQGWLFkS0lEgLcuSJUuQlZUFl8tF+WqmAcYYVCoVsrOz0dTUhNbWVjEfm+CQyc3NxYoVK6DRaCCTycTvjIVer8eSJUuQnZ2NwcFBVFdXz8bPIQCx7ZTJZEhLS0N8fPyY+aGk/dihoSFx5a45Y76EQN1777388uXL3OVyXRMuKg3tdLvd/Pz58/wrX/kKt1qt44aMhuvrRgllU6vV/ODBg7y9vV3UMJS2TU1N/P333+eJiYlco9HMedlnU8e5/h1TeRmNRn7q1Cne2dk5rrYNDQ387bff5rGxsVytVs952WdCw/mqY6hXdHQ0LysrE6ehjqVvbW0tf/3113lUVNSEp2eEq45zfd0n+lIoFPzzn/88f+utt/jw8DA/fvw4f+KJJ7jJZBrze9/97nd5bW3tuJrabDZ+9uxZftttt3Gz2TyvNAxnHeVyOTcYDPyrX/0q//vf/y5Olxjr1d3dzR988EGekZEx7vF/9rOf8bq6unH17evr42fPnuXFxcXj3jNzpeNcazXWizHG09LS+GOPPcbfeecd7nQ6ucvl4gMDA7ylpYW/8sor/LOf/SyPiYnhGo2GKxQKnpWVxf/whz+Iepw5c4a/8MILXC6XhzzPU089xfft2zdKu1BTn4TtLS0tfNeuXTw5OXnONQx3HaUvuVzOb7nlFv7iiy9yr9fLnU4nf+GFF/jatWvH1OiHP/whv3r1Kvd6vby8vJz/9re/5QaD4ZrvZGZm8tdee423trYG1TJQT2HbgQMH+D/90z9RXZziKzo6mq9fv5739/ePmub7rW99i6elpYl2pE6n4zt37uR79+4dNc1pMlodPnyY//u///u0lv9GrIsTeSkUCp6Tk8NfeumlcXWRbpduO3HiBH/mmWdmpbyhNAn7iBqZTIbPfe5z2LJlC+Lj4yGXy8fdPzU1FXfccQcMBgN+9KMf0bJoYcqKFStw5513IjMzEyaTadz9IyMjsWTJEvzjP/4j3njjDZw4cWIWSklMhaKiItx+++1IS0uD0Wgcd/+oqCjk5eXhK1/5Cl599VWUlZXNfCGJKbN161Zs27YNKSkp4tSYsYiOjsby5cvxta99DX/4wx9QVVU1C6W8ccjMzITFYkFERAQ2bdoErVYLhUKBjRs3IiEhATKZDNnZ2Vi2bBmWLVuGEydOXDNCZDKZ8MQTT2DLli0TSmAqTIN6+OGHkZqail/96lcz9fNuGORyOQoLC3H77bfjvvvuQ0JCgtjn8Xg8sNvt+OMf/4iMjAzk5uYiKSlJTE4aFxc3ZkRNVFQUHnvsMaxbt25C02mEaVCPPvooDh48iD/84Q/T9jsXOjKZDGq1Gh/96EexYcMGrFixAm63G0eOHMHevXtRWVmJzs5OdHd3iytsCdFM0pHeqqoqHD9+fMxopqVLl6KgoOCa7ZcuXcKVK1ewf/9+qFQqLF26FJ/85CcBQIyaysvLA+cczc3N038RFiCMMWRkZIj1R5guaDabgy7FrVKpsGrVKqSnp4tRUleuXEFpaSlcLtc1bbDBYMCGDRvEpLQCAwMDuHz5Mt5991309PRArVbjH/7hH5CQkADAvxLusmXLkJubiytXrtCKfJOkv78fdXV1eP/991FQUIC0tDRoNBrccccdiI6OxvPPPw+z2YyUlBR8/etfR3p6eshpM3a7HRcvXsSBAwfQ3t4OlUqFz33uc0hPTwfgf1a3tbUhLy8P1dXVFNE2g3i9XjQ1NeH06dNISkpCcXGxGAEFAJxzOBwOXLx4Eenp6bBardccIy0tDcuWLUNeXh5qa2vnZAGFsHfUMMawbt065OXljeqEcM5hs9nE6TAymQyRkZGIjY2FwWDA4sWLMTQ0BIvFgt7eXmq4wpDExERs3bp1VO4SwD9n2+l04urVq35vokKBzMxMqNVqMTP72bNnceHCBVq5IExJT0/H5s2bR+UtAfxzs51OJ9ra2gD4OzLCChWRkZHYsGEDTpw4gStXrtDqbbOITqeDxWJBQkICOOew2+2oq6uD2+0WRllGkZmZiU2bNsFgMIyaquhwOOBwONDW1ibmZli0aBF0Oh2io6NRXFyM/fv3o7GxkVYMuk6k017Wrl2L6OhoREZG4pZbbhGnkC5evFisf2azGVarFVarNahRodFosHXrVqSlpY161nq9XthsNnR3d8PpdEImkyE5OVmcblxQUACbzQaj0QiHw0FToKaAXC6HSqVCamoqVqxYgc2bN4vPPLfbjba2NvT29qKjowP79+/H1atX4fV6ER8fD4VCAZlMhpiYGOj1+pDn0Ov1uOmmm5CcnDxKX4/Hg8HBQXR2dmJoaEgc7NLr9TAajSgsLERvby+MRiPlNJkgwkp4q1atQk5ODiIiIlBWVoZTp05h//79uHjx4jX1RK1WIzc3F1arVezfNjQ04MqVKyHPo1QqERERMcrAGBoaQnd3N06fPo2ysjLs27cPWq0Wg4OD2L59u5gbLioqCjk5Oejt7SVHzSSQTt0V6l1OTg5OnDgxaoqETqcT+zRJSUlQqVQYGhpCQ0MDqqurr1kFUS6XQ6PRIDY2VtzGOUd3dzeamppw+PBhvP/+++jp6YFGo8Hdd98NvV4Ps9mMiIgIJCcnIzc3Fw0NDWTvTBK3242+vj6cOXMGFosFMTEx0Ol0yMjIgEqlQnl5OcxmM5KTk1FYWBg0YIBzjp6eHly9elXU6urVq9BoNLjlllsQEREBi8UCi8WCxMRE5Obmorm5mRw1M4jQl62pqcG5c+ewYcOGUZ8L/aDAdAv9/f3w+XyIiIiA2WxGQkICcnNz0d7eTo6aYDDGsGbNGmRlZY3a7vP5UFpaioMHD+Ldd9+FTqfDAw88gMceewwAEB8fD5VKheXLl6OiooIeRGFIQkICNm3adM321tZWnD9/Hs899xw8Hg+ioqLw0ksvQafTiXlPVqxYgdraWpw6dSqoIUnMLSkpKSguLr5me1NTE86fP49f/OIXAPzOut/97ndQqVRQq9UoLCxEYWEhWlpaUFJSMtvFvmHJzMzEbbfdhqeffhp2ux2VlZV47LHH0N7eHrQjkZGRgXXr1l2zvba2FufPn8cvf/lLqFQqLFq0CL/61a8gl8uh1WqxfPlyLF++HF1dXRQ1dZ2oVCosWbIEO3bswBNPPBHSATNR1Go1Nm3adM3cbafTiRMnTuDPf/4zqqqqoNVq8Z3vfAfr168H4L8X7HY7CgsLce7cOUo8OwX0ej0SEhLwr//6r1i+fDlyc3PhcDgwMDCAgYEBPP/88ygpKUFZWRn6+/tx5MgRHDhwAFu2bIFCoYBCoUBubi4OHToU8hxarRZbtmwZ5VgFgMHBQRw7dgyvvPIK6urqoNVq8ZOf/AT5+fkAgOzsbPT29qKgoABnz54lB/oEiImJwYoVK3DTTTfBYrFgcHAQ//mf/4kLFy6goaEh6HcMBgOefvppxMXFwe12o7S0FCdPnsSZM2eC9nHkcjnMZvOoQS6Px4PW1lb83//9H37zm9+IOUs0Gg0YY9i9ezd27twJq9UKrVaLO++8EwAoOnmCeL1eHDp0CDk5OQD8Ggi5hw4dOoSGhgb09vYCABYvXozVq1fj6aefhk6nA+ccLS0tIZPq6/X6UZHlnHMMDw9jz549OHjwIF588UXxnBqNBu+++y4cDgduuukmqNVqZGZm4v7778ehQ4doAHMKuN1uvPHGG1AqlbBYLFi2bBkiIyMRGRmJF154Ieh3hHopaLV//34cPHhQ3F8mk0Gr1WLfvn1wOp244447RIf8xz/+cZw8eRJ9fX2z9RNvWM6cOYOhoSE8/vjj1zjZdDodioqKRm07deoUnE4nduzYAZVKhcTERDzwwAMoLy9HZ2fnbBYdQJg7apRKJYxG46gL6/V6UV1djdOnT+PXv/41Wlpa0NPTA51OhxMnTiA1NVXsvBiNRuzcuRMej4ccNWGG0Wi8JkLK5XKJD6UPPvgAzc3NkMvliIiIwJ49e7B8+XIsWrQIarUaK1euhMPhQGlp6TUjE8TcYjKZoNFoxP99Ph9cLhfefvttvPfeezh+/Diam5uhVCrR09ODPXv2oLCwEMnJyVCr1SgqKsLQ0BBKS0vJCTfNmEwmJCcnIyYmBmlpaVi+fDkYY0hKSsLSpUuh0+mgVquRl5eHFStW4Ny5c6itrRW/zxi7Jjzf5/NhcHAQe/bswTvvvIPS0lI0NzdDrVaL21euXIm4uDhoNBps3LgRnHNy1EwRxhgUCgU+97nPYfXq1SguLh4Veu9yuXDmzBkcO3YMd911F2JjYxEREQHAbwzGxsZe49DRarUwGo2jtns8Hpw6dQpnz57Fiy++iPb2djidTmi1WtEhsH79eqhUKiQkJOCjH/0oWlpayFEzSZRKJbKyssRpMhaLBX19ffjxj3+MmpoaNDY2orW1FQMDA+IqMhqNZpTmbrcbBw4cQFNTU9Bz6HS6a1YD8ng8OHr0KEpLS/HHP/4R7e3tGBoaglarxYEDB+ByubBmzRqoVCqkpKTgYx/7GOrq6shRMwEsFguys7OhUCjEqWkREREhp6alpaWhoKAAVqsVarUaDocDR48eRVNTU8joiIiICDz88MNISkoSt/X29uLixYt48cUXxahVwH9/XLp0Cf/93/+N9evXixE4WVlZaGxsRF5eHi5fvkyRGOPAOUdTUxNKSkrw3nvvYfPmzVAoFLBYLPiXf/kX7NmzBydPnkR8fDzuu+8+bNmyBTqdDnK5HN3d3fjlL3+Jc+fOBV3xZ8uWLdiyZYv4//DwMNrb2/Hmm2/i5MmT4nav1wun04nf//736OnpwU033QTAf8/l5+cjPz8fCoWCbJ5J4vV60dDQgGPHjolTBQOd2j6fDwMDA6isrITD4cDNN98MwN+WdnR0YPfu3fjggw9G7e90OvF///d/aG9vxx133AHgw6mH+fn54JyHdN4S00Nubi5uuummMVOn2O12dHR04J133sHevXthNBqxY8cOAH4nqqCXw+GY9aTdYe2oMRgMyMzMHDVi4HQ6UV9fjwMHDuDs2bNiGNLQ0BAuXbqEw4cPY8OGDVAqlVCpVMjNzcWpU6dgMpmuybBOzA2MMaSmpiImJkbcNjw8DIfDgSNHjuDEiRO4cOECAP/KQcIohrBEu1wuR2JiIpYuXQqLxYKBgQHqYMwScXFxsFqtiImJgc1mQ1dXF5qbm8VwX5lMhvT0dERGRorfGR4eRn9/Pw4ePIgTJ06goqICAMQpGQcPHkRcXBySk5Mhl8uRnJwsajs4OIjh4eHZ/6ELDJlMhri4OKSkpGDlypWIjY1Feno6li9fDsDfyYuLi4NMJhNHai0WyzX5ZwR9BcMfGK3vqVOncOnSJQB+A1ShUODAgQNISUkRj5+Wlob29nZRX3K0Thy1Wg2LxYLk5GQUFxcjNzcXKSkp8Hg86O7uRnd3N5qbm3Hq1CkcOXIE0dHRKCwsFPUyGo2Ijo6+pgMaHR2N9PT0UXO3nU4nLly4gEOHDuHcuXPgnIurlpSUlECv12P9+vXiShjLli1DbGws2trayJifBBaLBYsWLcKaNWsQExODvr4+VFVV4fDhw6ipqcHVq1ev+U5cXBzy8vIgk8ngcDjQ1dWFyspKcTQ/EMExKyAYEGVlZTh8+DDOnz8PAKK+p0+fhk6nw5o1ayCTyWA2m7Fs2TJER0ejt7eXpi2Og9frhcvlEuuMTCZDbm4uOjo6UF9fL0YpMsZgtVqRl5eHdevWQavVwufzwWazoaKiAt3d3SGnmqlUKqSlpYnRGm63G1VVVSgrKxvlXAcgHrOqqgpXrlwR23th+fekpCTU1tZSP2oCOBwONDY2orS0FAUFBTCbzdBoNFi9ejXsdjs0Gg0SEhKwevVqMfKmo6MD1dXVKCkpQWdnZ9DpoTExMYiPjwdjDG63G93d3SgpKUFVVdU1bYDP50N9fT0uXbqE6upqpKSkQK1WIyoqComJiWhtbSVHzSRQKpXQaDSwWCwwmUzQ6XRBo1N9Ph+6urrQ1tYmOtuGh4fR19eH06dPo6qqCi0tLdd8p6GhAVVVVaiurhanwQlaNTY2kqNmhhCmh0dFRQUdoJJis9nQ3NyM/fv3o6ysDDExMaiurkZCQoJYt+Lj4xETE0OOGimpqal46KGHRoUDdnV14dSpU/j9738/at+hoSEcO3YMFy5cwFe+8hXRi52bm4v8/HxcvHgRp06dovnVYYBMJsO9996LNWvWiNscDgdaWlrw0ksvoaenR9zu8XjQ19eH5557DomJieKIg5BEraCgABUVFaNGj4iZgTGG7du349Zbb8UDDzyA0tJSvPHGG3j++ecxMDAg5hP66Ec/isLCQvF7drsdzc3N+MMf/jDKgPN4POjq6sKzzz6LJUuWiPdDcnIyPB4PCgoKcOHCBXR1dc36b11ICIkt77nnHmzZsgX33XffNYb6RFGr1XjggQewdOlScdvAwADq6+vx4osvjuroDw8P4+rVq/jpT3+KoqIicWnhtLQ0OBwO5Ofno7y8PKRxSVxLXFwcioqK8Mgjj2Djxo1Qq9VwOp2w2WwoKSnB3//+d+zevRu9vb1wuVy4cuUKnnjiCXEaS0xMDJYsWXKN/itXrsSdd94pbvd6vWhvb8fevXuxa9cucT8h8vGvf/0rmpqa8KUvfQmAf8Rp2bJlyM/Px8DAgOhoJ8YnNzcXRUVF2Lx5M9xuN44fP46f/OQnOHPmTEjDefPmzfja174GtVqNmpoaMf+JzWYLuv+GDRtw6623ih1Vj8eDtrY27N69GwcOHBD3E/T905/+hI6ODnzuc58D8OEIcEFBAVwuFyUDH4eWlhZ88MEH+Od//mfR4f3kk09Cr9ejuroa9fX18Pl8UCqVWL9+PR5++GHcdddd0Gg06OrqQkNDAw4cODChaRGMMXg8HrS3t+P//b//hyNHjoy5/6uvvoru7m58+tOfFnOHpaen4/jx49P06xc+ly9fxvDwMIqKirB48WIkJCQgNTUVn/rUp/CpT33qmv3fe+897Nu3DxcuXAjpxGaMifWzr68PZWVl+Na3vjWmEV9TU4Pnn38e3/jGNxAbGwuj0Yi0tDRapnuSWK1WJCUlYcuWLdi+fTuKi4uDLnMvRKb19/eLy3ELETbf+ta3xnSOtbS04Je//CW+8pWvIDU1FUajESkpKaivr6fo4hlCLpcjPT0dZrN53H1bWlpQVlaGv/71rwD8/ddf/vKXeOKJJ5CdnQ2DwYCUlJRrnOCzQVg7aoAPGy+n04ne3l4888wzOH36dMj93W43XnjhBWzbtg1r1qyB0WhEfHw80tLSxvweMbsIujLG0NnZiX379uG1114bcyT2yJEjiIiIwKc//Wkx9DsjIwNNTU3kqJlmMjIyEBERgejoaGzZskUMsy8qKhKT3WVnZ6OwsBArVqzAsWPHgq6u1tnZibfeegt//etfx1x97f3334dCocAjjzwCrVYLi8WCjIwM1NfXk6PmOpDL5cjJycEDDzyAu+++W1wBCPgwhPq3v/0tYmNjsWbNGqSkpEAul4Mxhri4uKCrsQn1lnOOzs5OvPbaa3jnnXfGjIx5++234Xa78YlPfEJMgJuRkYHq6mpy1EwAxhhUKhXuu+8+bNiwAUVFRfD5fDhy5Aj+7//+DxUVFejp6UFvby96e3vh8XjAGIPFYhk13aK6uhr79++/RithJQTGGGw2GxobG/Gd73wHZ86cCVmmjo4O/OxnP8O9996L5ORkmEwmpKSkICkpiRw1E4QxhszMTHHgQSaTiYnVgzlT5XI51q1bh5ycHJhMJjDGUFtbi2PHjsHhcISsg9LnbX9/P2pqavBf//VfuHjxYsiyNTQ04Oc//znuv/9+0QhMTU1FY2MjOWrGwWazoa6uDu+++y5WrVqFpUuXQqPR4Oabb4bFYsGzzz4LlUqF+Ph4fOtb30JSUpI4nfTAgQN4++230d/fP6FoQ8G5VldXh7q6ugn1haRTitPT0/HpT38au3fvpmmLE6S3txfDw8PYtWsX7rrrLrH+SnE4HOjp6cGbb76JPXv24Ny5c7DZbCEHiyXLI6OtrQ11dXVoaGiY0Kq1wvcYY7jvvvswPDw8ygFLBEcmkyErKws7d+7E3XffLUaZhVrRSVglyOPxiI6a9vZ21NXVobGxcczEwFJ9BXbs2AGZTIZ33nln+n4UAcA/qJWRkYHvfOc7iI+Ph9VqHXPq09DQ0DX6BWp2++23Q61Wjxq8mg3C3lEj4Ha7xQSUjY2NIffz+XxoamoSO/9yuRwJCQniKCKtSDE7aLVaxMbGIi0tDYwxMUFpYMg05xy9vb2or6/H2bNnx5zm0tvbi8bGRvh8PigUCmi1WuTl5Ylh28T1IYQJxsXFYePGjYiLi0NkZCSKi4tFoyAtLQ0qlQqcczH5ndlsDmpUCFnwa2pqcP78+THrXmdnpzgaIZPJxBF6Sig8NeRyuZhgcOXKldi4caO4ms/Q0BCamprQ09ODtrY2HDx4EPHx8eCcIzY2Vgz7FVbQC4XP50N3dzcuXbqE8vLyMaMVOzo6xJBgYapMfn4+jh07Nu2/fSEihN4WFhYiOzsbJpMJJ06cwIkTJ3Ds2DFxhFeKQqFAQUEBEhMTwTlHX18fGhoacPny5TG1GhwcRHt7O0pLS9Hd3R1yv6GhIdTX18PpdIp5ODIzM0PmSSGCY7fbRWOMMYaYmBgUFhaipKQEXq9X1FVYRWbjxo3iaiQOhwPNzc2oqqqa8BRCm82Gq1evorS0dMyIjaGhIdTV1WFoaEjMi7R48eIx+1+EH2ElrbNnz8JsNiMpKQlGo1F0lN98881Qq9VihJtKpRLzL547dw7nz5+/ZiWSYAif+3w+ccW98Qx7aQJUwJ9iID09fUwjhvgQvV4PvV6PiIgIREZGjsrHJ8Vut+Pq1av44IMPcOnSJXR0dEzI/hAcb8IKmRPZX/o3OTkZ0dHRk/hFNyaMMajVaqxevRqrVq1Cfn7+qKneQo6ggYEBpKWlQa1Wi31kIVcY5xxDQ0Ni3ZsIUuM/KSlp1CpfxPQgl8uRmpqKNWvWYPny5TAYDGKElNfrxdDQEGpraxETEwOz2Qy1Wg21Wh0yh5igV0JCAuLj42ftdwiEvaNGuKntdjsaGhpGOWHG+o707/Lly2GxWPDMM89QvotZIiEhATt27MA///M/Q6lUorKyEl/84hfFjp+gq8/nQ3NzMxoaGsadUyvttHDOodVq8fGPfxynTp2iVQumASEb/f3334/PfOYziI+Pn/IUGcDfIDY1NaGhoeGaebvBEO4JzjmMRiMefPBBvP/++zh37tyUy3CjolarkZSUhC9+8YtYuXIlVqxYAYfDgcHBQQwODuIPf/gDSktLceLECQwMDMBkMuHo0aPYunUrdDqdONJUWlp6zbEFjQR9m5qa0NraOm6ZpB0Uq9WKBx98ELt27RJz2hChMZvNKCwsRHFxMZKTk+FyufCLX/wCpaWlqK6uDvodpVKJJ598Eunp6fD5fCgvL8eZM2dw9uzZawwGn88n6tPd3S0+a8czLKR1FgBuvvlmMMbwP//zP9Pzwxc4nHOcPn0aaWlp4JxDLpejsLAQixcvFg08YZWJpKQkrFmzBl/5yldgsVggk8nQ3t6O8+fP49ixY2NqJdWps7MTDQ0N4zpcpN8R9L399tvhdrvxu9/9btquwULF5/Ph3XffFfOu5efnw2QywWQy4Zlnnrlmf7vdjl/96lc4cuQIampqZi2RvlKphMlkIkfNBBCWrs/KykJBQQH+4R/+AUajMei+7e3tuHDhAnbv3j2rdofBYAhpcBIfolAoYDKZ8NhjjyErK2uUk0bI6fTOO+/g3Llz+NrXvoaYmBio1WpkZGTA6XROy7Laer3+mjyAxPWj0WiwadMmPPLII6OS7gP+xRZaWlrw4x//GPfddx9WrVqFhIQEMU+mEC0eDJ1OB71eP1s/QyTsHTXTQeAKCcT0odfrkZGRgZiYGCQnJ2PDhg1gjCEqKgr5+fmwWq2QyWQoKCjAqlWrAGDawqZlMhksFkvIMEViYgij4Z/5zGdQVFSEm266aVTCUZfLhYqKCuzevRs7duxAYmKimAhar9cjMTFx2jt5QkLbYPOEibFRKBRYtGgRHn30Udx8882IiorCwMAAfvzjH6OiogLV1dXo7u6G3W6H3W6Hz+eDWq1GRETEqGlR77///ow5UYSVMkjfiWE0GpGbmysusyusIhMq4ik5ORl5eXmIiYmBVquFx+PB4cOHceXKlWnpYIbCYDCMGYVFXEtTUxNKS0uxe/du3HzzzeIKTU8//TTef/99vPPOO0hKSsJtt92GHTt2iPXGbrfj5z//OQ4fPjxryZuNRiMZFhOEc476+nocP34cGo0GWVlZ19QNIdLt9OnTOHnyJP7617+ip6eHknGHIVFRUUhLS8MPfvADxMfHw2KxXLMqrRS32w2n00krV4YpQn6mzMxMWK1WMenvpUuXUFVVhd27d6OpqQmccxQXF2Pt2rVIS0tDcnIyamtrZ/Q5SkwdmUyGyMhIJCcnY9GiRWCMoaurC3a7HSkpKWIumj179iAqKkpM/i3U79zc3LBL7nxD9JJlMhkZBNOMTCZDUlISUlJSsH79ejEj9sqVK8EYg16vHxWRIUyTmW5Pv1wup5Gg60DIdJ+ZmYn169ejoKAAsbGxYqLf1tZWNDY2iqu/WCwWrFixQnTUCFOlrifyJhQKhWJGjrvQsVqtSE1NxerVqxEdHQ273S4u13z58uWg0U2xsbFYu3atOJ2ip6cHVVVVaG9vn7FyCkvXEuMjrCwhTG+Ry+UoKChAX18frly5AofDIRoEsbGxyMvLw0033QS9Xg+v1wubzYbKykq0tbXNqOFA7fHkGRoaQmtrK06fPo38/HxER0dDp9MhLy9PnHYUFxeH1atXIz09HYB/tF5IItze3j5riySQvhNDqVSKq40kJiaOyg0mhXOOrq4uXLhwAUeOHEFbWxuGh4cnrKfQfiqVSsTFxYk5NsaKOhe+I217pYlsiWuRy+VISkrChg0bsGzZslF5TISpFJcvX0ZUVJRo/Gk0Guj1+klfV8YYIiIiEBcXh5iYGDEfzlj7S/8SE0OwC7VaLRQKBdxuN86dO4czZ87g/PnzOHPmDBwOBwwGA2w2G4aHh8EYE/cX6oywglpsbCx6e3tDJoCX6kRazSxKpRJqtVqcltjX14eOjg4kJydDrVZDr9eLmtvtdnDOoVKpoNVqYTKZrvEXzLVeYeW9kF6MYJ3Jub5YhB8h4eHNN9+MTZs24aGHHrquzhs1XHNHVFQUCgoK8MUvfhFFRUUwGo1wOp0YHBzExYsX8Ze//AV79uxBZ2cn7HY7Ghsb8bGPfQwbN24E4F9aNisrK2RUE2k7+yxevBgrV67Ehg0bMDw8jNLSUjzzzDM4e/ZsyHnUBQUF+NKXvgSj0YiWlhaxozJeImfSd3bo6enBkSNHxJF2IfG2xWJBSUkJGhoaMDw8DLlcjhUrVuDee+/FQw89BI1Gg76+PjQ3N+Po0aPo6OgY91yk6ezT3NyMv//97ygqKkJubi5SU1ORkJCAhIQE3H333dfsX1JSgl27dqGioiLkSk+hkCYWptH+mcFkMiE5ORlbtmzB5s2bsX37djH5qBSv14srV67g2LFjeO+996Z0LmFgbMWKFSgsLERvby9Onjw57neIiaNWq1FYWIjPfvazsFqtowy5oaEhdHZ24he/+AW2bNmCrVu3IiEhAZGRkUhJSZnwtZa2u4sXL4bb7cbKlStx4sSJcdM9kJ7Xz9DQEF577bUxpxMDfvtH6nQVojZWrFiB0tLSMZ+xwXQi7Wae1tZW1NbWYu3atUhNTYVarcbKlSsRGRkp7iNEKiuVyrBzqoWFoyYhIQE333wzHnnkEWg0GnFFAiGppTCitHHjRhQXF6OsrAw1NTUhj0ce5plDLpcjLS0NX/jCF7Bt2zYkJyeLThqv1wuXy4UXX3wRSqUSN998M1JSUqBSqUQNIyIiAHxYAeRyOdasWYOWlhaUl5ejtLQ05OhBuFWe+QxjDEqlEvfeey+Ki4tRXFwMzjlKSkrw/PPPo7KyEj09PRgYGIDNZhNH8k0m06jw7YaGBrzzzjtBk94plUqsW7cO1dXVqK2tFZNjjlWmQG1J58mzaNEipKWlAfhwtaDIyMigUYWMMWzYsAHLly8Xpyk2NjbiwIEDGBgYCFoXBY1UKhXWr1+P8+fPi8lJxzL8qN5OHbvdjurqauzZswf9/f1YvXo11Go11q9fjx//+Mf48Y9/DI/Hg/j4ePz7v/+7OHIEAMeOHcOrr76Krq6ukKN90lWfFi9eDLVajeLiYlRWVoo5UoIRrM4Sk2dgYACXL1/Grl274HK5kJqaes0+LpcLPT09eO2113Dw4EGcOHECfX19E4q+kOq0ZMkSyOVybNiwQWznx/sOtckTgzGG7OxsbN++HY888giio6NhNBrHXEXG6XReVw4TaZt77733Ii4uDo2Njeju7g5Z3wPb6WAr0hB+GGPiVIrMzEwoFAr09vaivb0dhw4dQmlpKcrKysRle81ms9jXTU9PR35+Pmpra0PWM4FADRISEvDlL38ZTqcT58+fD/l90m56kMvlyM7ORn19/bg5oqR5UIVUD1/+8pfx85//HKdPnw46wBWY7yvwWMTMI1xrk8mEJ598ctJ1cq6YVUeNQqGA2WwWE/IkJiYC+NBRU1hYCLVajcjISKSmpo56uCkUChiNRqxatQoOhwNXr16l+Z+ziLASz+LFi7Fs2TKsW7cOSUlJ0Ov1cLlcqK2tRXd3N5qamvDBBx9ArVZDJpPhIx/5CKxWKwAgJiZGdNRI0ev1SE9PF436/v7+MTsupPn1o1QqER8fj2XLlmHp0qXQ6XQ4duwYTpw4gZKSEtTX118zB5cxhtWrVyMrKwsA0NXVJS7VGmrFEb1ej8zMTKxduxaXLl3C4ODghFcnIaZGX1+fuMyqTCZDdHQ0NmzYgIqKCrjdblFXITR/69atyM3NhVKphN1uR2trKyoqKsY1HhhjMBgMyM7OxurVq3Hp0iU4nc4x9RU6NsTk8Pl8cLlcOHfuHMxmMzIzM2E2m2G1WpGfn48777wTHo8HUVFRWLRoEQwGg5hAuKysDBcuXIDb7Z5Q2yk8g9etWwebzQabzRZyPj61xdeP0WiEwWCA1WpFenr6qFE+KXa7He3t7Thy5IjoYJnoKpZSnTQaDaKiorBhwwb09vbC4XBQvoVpQBj8WLt2LVauXInFixdDq9WK7d3w8DDa2trQ1taGnJwcMd+UyWQSnaqTYWhoCNXV1WLoPuDPTdXb24vs7GxUVFSgr69PnLKhUCig0WiQmpqK2NjYUStGCQs8EMERRtoFna5evYqSkhJ88MEHuHjxImpqamC322Gz2cSoR6VSKU5/mkgexba2NjQ3N4s6aLVaZGdnIysrC319fbDb7WIbLkS1R0VFiSvACd9zu920aMoE8Hg8cLlcGBgYgEajgUKhQGFhIfr6+uD1enHhwgUA/j5sdHS0OI3G6/Wio6NDXPyEcw61Wo3s7GxkZ2ejs7MTNpvtGq0iIyORmZkJjUYjajU8PExazQAul0usj0ajEVFRUWLfk3MOpVKJ7OxsNDU1wePxgDEGn88nrrKo0WhgMpmQkZEBnU43Sq/xVtWbCWbNUSMsa7ZkyRIkJiZi0aJFuOuuu8AYg9lsRlZWlhhOlpWVhdzcXDgcjlGrUchkMuzYsQMAUFlZiebm5ms6KqGmT83WHO6FilKpREJCAh566CEUFRWhqKho1Coyb775JkpKSnDw4EHYbDZotVqUlZVh8+bNsFqtYIyJHQRg9CojgF/z+++/H/v374fX6w0Z6inoS52K60Ov1yM/Px9r1qzBkiVL4Ha78fLLL+PIkSMhkz3LZDI8/PDDyMvLA+ccly5dwrlz53Du3LlRD5vAkYO8vDxotVq8++67uHr1quhECDy29LvSYxGTo7y8HHFxcfD5fJDJZFi0aBG+8IUv4NChQ3A6nWhtbRWXAS4qKsJnP/tZMc9QR0cHqqqqcOLEiZAdiMC6u2LFCuj1euzbtw/t7e3jTsUgTafOkSNHwBjD0qVLsWzZMuh0OqSmpuKpp54atR/nHG63G6+88gpOnjyJmpqaMZ+BPp9vlK56vR4PPPAA2tra0N7eHnLVNqHjQ3V2ajDGkJiYiIyMDCxfvhyPPvpoSEdNb28vLl++jH379mFwcHBS55HqC/inrD7wwAPiSP/Vq1fH/D7pOz5yuRw6nQ4PPPAA8vLyxKTLQv3o7+/H0aNH8d577+HrX/864uPjYTAYkJqaCovFMunzDQ4O4r333sPOnTvFbdHR0cjKysJNN90k5rTq6+uDUqmEXq9HbGwsNmzYgIKCAvE7Q0ND6O/vpz7yJKiqqsJrr72G9957b8wIcLlcPuFcbGVlZaNyOKrVajEHJOB3DvX29sLr9Yo5iZYsWYJt27aNWonGZrNNaFnvGx3hvm9qaoJGo0F0dDR27NghJpT97ne/C5/Ph9jYWOTk5CAiIkJcjruiogKXLl0SjX+lUomUlBSsXbsWw8PDaGpqEuufUqlETEwMsrKysG3bNphMJrEMNpttwst6ExODc46BgQG0t7ejtbUVWVlZWLp06ajPFQoFkpOTodFoRMeLx+PB0NAQXC4XLBYLFi1ahFtuuWXU83hwcHBO9JpxR40QIr99+3asWbMGDzzwAFQqFVQqlTiFInDOn4CQxPSee+4RH2RC5MXVq1fxxhtvoKenBw6HQ4y4iY2NxUc+8hHk5OSIx3E6nejr66MOxhRRKBRITEzEk08+iW3btiExMREDAwN49tlncerUKVy6dAkDAwNwuVyic02lUiEqKkqcbsE5x/79+3H27Fn4fD7s3r0bBoMBW7ZsAQBERERAo9Fgx44dOH78OEpKStDf3y82grGxsdi4cSN27NghTrXy+Xzo7++fEw/nfEdIVik84IUVtKQPESlxcXEoLCxEQkIC9Ho9OOc4cuQILly4AJfLJdYtj8eDXbt2ISIiQuxgREVFQa1WY+fOnTh27BjOnz+Pvr4+yGQyqFQqxMTEYMuWLbj99tvFDo2gbajQbSI0LS0tOHv2LP7617/i5ptvhsVigU6nwze/+U0cPXoUf/zjH5GcnIyNGzfik5/8JGJiYqBQKDA8PIznnnsOR48exeDgYND20u124/XXX0diYiJWrFgBwB8pJ0yjO3ToEKqqqtDf3w+5XC7qe8stt2Dr1q3icbxeb8ipVURoGhoaoFKpYLFYkJaWJo7ySent7cW5c+dw8OBBvPbaa+ju7h6VbDgYQrv88MMPi7oJBh9jDLt27RITKiqVSlitVixduhQf//jHERcXJx5HiMAhxsdisSAjIwM/+MEPkJ6eDovFAovFMuYqMtLoiclw6tQpcM7xiU98AowxaDQaZGdnY9u2bdBoNPj73/+OgYEBeL1eKBQKcdXGj3/842JELOCfojVZJ9GNghDhkJmZiZiYGHHVp+rqapSXl+PNN99ES0sLHA4H1q9fj7Vr1yI3NxdJSUnIzs5Gbm4uKisrJ6yv2+1GXV3dNYZDfHw8nnjiCWzatAlNTU2orKyE0WhEUlIS1q9fLy4zLFBTU4O//OUvGBgYmNbrsZCJiopCTk4ODh48OG3PsLa2NrS2tl6zfceOHdiwYQPuvvtusb+l0+lw8803Iz4+HlarVYzY8fl8+NOf/oSDBw9OS5kWMm63Gz09PXj22Wdx//33Y8eOHVCpVMjOzkZycrJo3Gs0GixatAgKhQJOpxOHDx9GWVkZ2trarjnm9u3bsXbtWmzfvh0XL17E4OAg9Ho9Nm/ejMTExFE2EQD85S9/wYEDB2btN98IcM5ht9uxd+9e9Pf345lnnoFerxd9DNLcbJGRkeL7yspKNDQ04JOf/CTWrFmD5ORkREdHj9Lrb3/7Gz744INZ/00z6qgRwjpXrVqFrVu3oqCgAKmpqeKF8nq9qKioAACkpqaOWupOMAaFJIkCKpUKycnJ2LRpkxim393dLS6xlZmZiYyMDJjNZvE7LS0tqKiooBGDKSKsIrNq1SpER0fD6XTi4MGDOHnyJC5cuCCGAEqJiorCli1bxKlR3d3duHTpEq5evQrOOVpbW0fND5TL5dBqtSgqKhKnZNTX10Mmk0Gr1SI/Px9FRUVISkoaFUpcVlY2bsJT4lrcbjfa2tpER4hMJkNhYSFsNhsqKirEZZsBf8cvLy8P27dvh9lsFj3WFy9eREtLyzWjrc3Nzejr6xO3yeVy6PV6bNiwAVqtFvHx8aivr4dCoYBOp0N+fj5Wr16NxMREUVuXy4WzZ8+Om0SPuJbh4WF0dXXh+PHjyMnJgVwuh9FoRGZmpphHKjo6GkuWLEFCQgIAoKOjA1euXMGFCxfQ1tYWsq30er1obm4eFRWlUChgMBhQXFwsjgIKDgWDwYC8vDwUFhYiPj5e/I6wEhUZ9RNDqVTCYDAgJiYG2dnZyMnJCZqclHOOzs5OVFZW4vDhw+js7ITL5Rr32dfb2zsq7B7wP2uXLFkiRue0trbC4XCISw3n5OQgJSVl1CjwlStXxkzESPiRy+VISEjAli1bkJ2djbi4uFHGltvtxvnz52GxWJCUlASdTgetVguLxTKlqYPd3d2jjEBhAG3ZsmVQKBTweDxobW3F0NAQ1Go1lixZgqVLlyIlJWWUUV9VVYW6urrrvwALEGF6kUqlgkKhgM/nw9mzZ3Hu3DmUlpaisrISdrsdcrkcDodD7NdqNBpotVpxmtREHTXC6H5paSkiIiKwatUqKBQKKJVKREZGIicnB7GxsYiJiYFGoxGn1kmjkoeHh9Hb24uamhoaFAmBcJ3tdjv6+/thMpkQHx+PtWvXoqKiAtXV1WhpaYFMJkNERASio6PF7wlTWyZiewgrbb777rsoKCgQjXqz2QyNRgOVSgWz2Qy32w21Wo2srCxxVSnOuTiFraGhYUJJ4wl/X+nChQuwWCzo7+8f1QYLfVi5XI7y8nIwxjA0NITy8nLU19fD4XBg7969KCgoEAerTCYTNBoN5HI5LBYLXC6X6BQ3mUyjtBoeHkZjY+O40YzE5PH5fGhtbUVJSQlefvllaDQaKJVK0cGakJAApVIJuVwutodGoxEJCQliVKIwE0TQy+PxoLm5OagzdaaZUUeNkAfj8ccfR3FxsTjyJvxou92O119/HT6fDx/72MewePFiMYGw1WqFSqXC1atXMTQ0JIbxA0BaWhpSUlKwZMkS1NfXo7a2FiaTCXl5eVi+fLl4fqmnbO/evROez02MJiUlBQUFBVizZg08Hg8uXLiAn/3sZ7hw4ULQaSyMMaSnp+Pzn/88IiMj0d3djQsXLqC8vBxNTU0A/IahMBdUcM4pFAps374dK1euREtLC06dOgW5XA6z2Yx77rln1DxfIQnf7t27w27N+/nA4OAgTp48iZ6eHnDOIZfLcc899yAqKgoHDhxAQ0MDXC4XGGPIz8/HLbfcgsceewxqtRo2m01cTra+vn7UcTnnaG9vF0dnBW1VKhXuuOMOrFixAi0tLTh9+jRUKhUiIiJGRUkJx7DZbHjrrbfoITZFurq6sG/fPnHJbaPRiJiYGMTExIgrdgn4fD5cvHgRf/rTn8S8BqHgnKOtrQ02m22UvjqdDnfddRcKCwvFe0Or1SI6Ohp33nnnNVNSe3t78be//Y06lBNAWNUlPT0dGzZsQFFREe67776geQ+EwY2ysrJJjdT19/ejo6NDjJgREsiuWLECS5cuxfLly8W8KEajEZs3bxad5tKpT0eOHMHx48en7bcvVNRqNRYvXoxHHnkEsbGxUCqV4nV0Op3o7e3F73//e+Tm5uKuu+5CUlISzGYzUlJSgiYFHw9heVIhFF/Qd+3atVi2bBlWrlyJ8vJy2Gw2GAwG3HLLLYiJiblG3w8++ACnT5+e7suxIPF6vXj77bdx+vRpMd8FgFGOTeDDZYKnoivgH5VvbGxETk4OjEaj2E+OjY1FbGysmFNOQOqosdvt6OnpQWNjI+WOGwObzYbOzk40NzcjOzsbixcvRlpaGpRKJf72t79h79694iBFZmYmZDIZhoeH4Xa74XA4JnxtW1tb8YMf/AD/8R//gdWrV8NoNALwO/NSUlKQnJw8ypEnTfTt8XgwODiI5uZmdHd3T/9FWID4fD5cunQJly5dwm9+85tJfVer1eKHP/whnnrqKWzcuFF8Hgv3wVhaeb1eDA4OoqWlhQaaZ4iOjg50dHSgpKQEgF+X1atX44tf/KI46CzAGENmZmZIvXw+n2j3tLe3z+4PwQw5apRKJRITE3H//fejqKgI27ZtA2NMnN+1a9culJWV4dixY2hpaYFarcbRo0fxv//7v+JDRXDC+Hw+PPXUU7jtttvw6KOPjpqqITSW69evF6dRCJ8JnQuhMly5coUiaqZIamoqFi9eDODDkbjo6OiQCdLWrVuHtWvXIjIyEnK5HG1tbdi3bx96enpGjdq8//77+OxnP4vvfve7iI2NFUfuIiMjERERgYyMDAB+PaWdS2HkoK+vD5cvXw7qLCLGxuVy4cqVK9i3bx/cbje2bNkClUqFgoICPPfcc/jJT36C3t5exMfH4+mnn8aiRYugVqvBGMP58+fxwgsvoKWlJeS0s7feegudnZ34/ve/LzpdAf80mcjISGRlZYExBplMJnq1pdr29PTg0qVLFHExRex2Oy5fvow333wT/f39Yv2VIszRfuWVV3Ds2DF88MEHE15F5tVXX0V9fT2+973vwWQyiW1BfHy8GPUhTGkVdAb8Dzyn0ynqKyReJEKTnZ2NjRs34qtf/SqsVit0Ol3QaBoBp9M5pemg3d3deOyxx/DII49g8+bN4rNWo9EgJycHixYtgtfrBWNMHP2Xdjztdjvq6upEZzwRmoiICHHKi1KpxMDAAFpbW3Hw4EGxb9TU1IQtW7YgJiYGsbGxMJlMSEtLQ35+Pi5fvhw09H4sWltb8elPfxpPPPEEVq9eLeZQ0Wq1WLJkCRYtWgSfzxdUX4/HA4fDgdra2qARtMS1MMaQlZWFpqYmVFRUzNjU+8uXL8Nms+H73/8+Hn/8cWRnZwMInZdR6Bv7fD688MILOHLkCEpKSiiiZgzsdjuOHDkCt9uNH/3oR+J0o1tvvRX5+fl4/PHHoVAokJCQIDo4q6urUVJSgosXL044Z8zg4CBKSkrwwgsvoLKyEk8++SSA0asMSZFuLy8vxx/+8AccPHhw3NVsiOvH5XKhpKQEv/71r3Hx4kX80z/906iIuLG0unz5Mn79619j//79NFg1SwwNDeH06dP43e9+h5qaGnzjG9+AXC6fkF6NjY147rnnsHfv3pD5+maSaXfUyGQyGI1GrFu3DmvWrEFubi4UCgVOnjyJxsZGcTS9rq4O1dXVcLlc0Ov1GBgYGOV1vnr1Kjo7O8E5R2VlJSwWCxYvXoxNmzaJHQylUilmsg/G8PAwjh07hvLy8mvCuomJ093dLXoRGWOwWCy4+eabUV9fD6fTKRpbWq0WsbGx2LZtG9auXQuFQgG73Y6WlhacP3/+mpUlurq6UFJSgiNHjmD58uXinFAhAdtYI0w1NTUoKytDXV0dGfNTQAjLLS8vh9lsRm5uLiIiImAwGJCTk4OdO3fCbrcjIiICaWlpove5tLQUp06dQmVl5ZgrRbS3t4vaFhQUiI4CQdtQ0QCAP7z+zJkzYngpMTlMJhOMRiOio6NRUFCARYsWBd1PSCx87NgxMTpuolGHLS0tKCkpweHDh7F8+XJxOXC5XC6ukCFFep9UVFSI0Vi02kxohKkURUVFWLduHVJTU0VnKeCfvtje3o7q6mrk5+fDYDBAqVTCYrGMSi45UdxuN86ePYusrCzodDps3rxZPJdKpRKjPgSkK3j19/fj+PHjuHz58pyMOM03AtvBjo4OHD16FO+//z6qq6tRW1srPluF1S3lcjnUajV0Ot2Uoi+cTifOnDmDo0ePQi6Xo7i4GMCHgy+B+gpwztHT04NTp07hypUrNAIcAmFaaV9fH6xWKzQaDVatWoXh4WF4vV6UlJTA4/HAYDAgLi5OjJYQVhqZaq4TYfrS2bNncfjwYdhsNixbtgwqlSrkVCqHw4GOjg6Ul5ejrq6O8vyNA+ccHR0dOHv2LH73u99Br9eL0aROpxMOh0Ocvi8MODY1NaGurg5Op3PCg8Scc3EQTafTYf/+/Vi2bBksFovYVgSO+gupBK5cuYKysrJrbCliZhC0qqmpgVarxf79+7FkyZJRg9jBtGpra0NNTQ3OnTsnrspGzA5DQ0Oor6+HTqfDgQMHkJ2djdjYWHHgK5heHR0dor3Z29s7J3pNu6NGoVDAarVi586dWLt2LWJiYtDT04PXX38dhw4dwvnz56/5jjCnVri5vV4vzp07hytXrgDwJ1AUksrm5+dDpVJBLpeLjV/gxRVWN3A6nfjzn/+M48ePXzNFg5g41dXViIiIgMfjgVwuR1xcHD796U/j9OnT6Ovrg8PhAGMMERERWLt2LT7+8Y9j0aJFkMvl6OrqQm1tLU6fPn2NUdbf3w+bzYY33ngDHo8HixcvHpV8WPpXQMhtVFJSgl27duHy5csUKXUdnD17FoA/Cio3NxcGgwEJCQl47LHHRu0nTFd86623cPLkSdTV1Y3ZYPX29mJwcBB//vOfwRhDWlrauNoC/rp/7NgxvP3227h8+fJ0/cwbBsYYEhISkJaWhpUrV+LjH/84EhMTg+47ODiIuro6HD58eNKjOl1dXRgcHMRrr70GjUaDxMTEa4zHUPoeOnQI7733HuUyGQdhWc/bb78da9asEZf1FFbw6evrQ1lZGf785z/jq1/9KlJSUmC1WpGYmIiIiIhJ5bsA/FET1dXV2LdvH+x2O4qKiqBUKiGTycZ81vp8PrS1teFPf/oTzpw5g87Ozmm/Fgud5uZm7N69G++9915I57Q0AjHY4gvjMTw8jOrqauzduxeDg4NYs2aNuCJNMH2F/30+H5qamvCnP/1JNC6IaxkeHkZ/fz9aWloQERGBxMRE3HTTTUhOTkZaWhpaWlrgdDphNpuxePFicTWRoaEhOJ1O0SE3FZxOJyoqKvD666+jsbERKSkpMJvNYiSydEU3uVyO3t5elJWVhcwxSFxLb28vent78c1vfnPGzyUMUnk8Hnzxi1/EkiVLYDabR0UwCo5ymUyGqqoqnD9/HhcvXqTIqFmmqalJdNR99rOfhUajGZVLLFCry5cv49y5c6ioqKCBqjmgtbUVTqcTL774Ih566CHodDqxvwSM1ksul6O6ulrUa64iwKfdUZOVlYXVq1fjjjvugFwuR01NDb75zW+ipKQkZAduyZIl+OlPf4rk5GT09PSgoqICBw8eFB01gH/E6YMPPsC///u/Y+vWrbj77rthNBpDJtarr69HeXk5Dh8+POkQYWI0V69eRXl5Of7yl79g06ZNSEhIgFarxVe/+lVs3LgRv/jFL5CUlIQVK1bgS1/6EsxmMxQKBTjneOGFF3D06FHYbLagnRCfz4cTJ06gt7cX58+fx9e+9jVxNCoYbrcbx48fF5MZk5Pm+mhqaoLP58NLL72Ef/qnfxJXYpPS19eHyspK7NmzBy+//DI6OzvHXUUG8Bt+x44dQ39/P0pKSvDVr34VZrN5VHJKKS6XC8ePH8fhw4dx5syZafl9NxJGoxHZ2dn4j//4Dyxbtgxms3nUyF8gw8PDU15FBvDXxSNHjmBgYADHjx/Hl7/8ZRiNxpDTcgYHB3Hq1CkcOnRIdBASoRGmmGZmZorOtoaGBtTV1aGkpERcRaa3txerVq3CunXrEBkZiaSkJOTk5KCgoAAXLlyY9OjqlStX0N/fj+HhYXz0ox/FihUrgrYLAufPn8eJEydw6NAhmoY6RcxmM5YsWYLDhw9fl8E+ES5evIje3l7Y7XY89NBDWLp06Zj6njlzBocOHcLhw4dpquIYDA8PY2BgAD//+c+xY8cOPProo1CpVEhPT0dCQgLy8vLg8/mgVCqRlZUFpVKJ4eFhHDp0CCUlJbh8+fKUdfd4POjp6cHBgwdx4cIFVFRU4M4770Rubi7WrFmDvXv3or6+Hu3t7SguLkZVVRWeffZZXL16lQz7MERYtrmlpQWtra1YunQp7rjjDqxfvx6Dg4PYv38/mpqaEBERgeXLl+Pb3/42Ll++jN7eXuoTzzJCSo/29nY0NjZi6dKl2LFjB1avXg2fz4e9e/eiubkZBoMBa9euxfe//32Ul5eTVnOEEKW6a9cu1NbWYunSpbjvvvtQWFgoroDY2toKpVKJDRs24Ec/+hFOnz49p3pNu6MmOjoaycnJ0Gq18Hq9Yjjo0NBQ0BH4pKQkLFq0CImJiVAqleKqM729vaO8jcJSaqWlpeLDrLCwEDExMbBaraiqqoLNZsPQ0BDS09Nx6tQp7N+/H11dXRTWeZ14vV709/fjyJEj4iofwhx7zjkeeeQRREREICUlRRwl6u7uxvnz5yc07ay/vx81NTVwuVx46623xNxDqamp6OzsRFtbG/r7+xEZGQmVSoW//e1vqKioIKPgOlAoFLBYLIiLi0NmZiaKiorEUOxAOjo6cPnyZRw8eBBdXV0TNiQ45+jr68OVK1fgcDiQmZmJzMxMpKSkIDU1VZze2N/fj+joaHDOsWvXLlRVVdFSoZNELpcjJiYGt912G7KyskaFcwqryJSUlECr1YqrRajVakRFRU1pdB74UN9Lly7B6XQiPT0dixcvRlJSElJSUtDU1ITu7m709/cjPj5ezE9WXV1N0xUngDACJ6xOAPinHp47dw4nT57ElStXxKTO0uerUqmEWq2GRqOZ0gpBwrSIEydOwGg0oqOjAwUFBYiPj4dMJhP1k8vlSE5OxoEDB3DixAn09fVRyP0EcblcGBgYQE9PDywWC2JjY1FcXIz6+npUVVXh0qVLkMvliIyMREJCgph3z+PxwO12X9fCCIODg2hra8Px48cRGRmJlpYWLFu2DAkJCeCco6amBgMDA1CpVEhMTMR7772HkydPisn/idB4vV5UVVVBrVZjcHBwVBTpwMAAOOdiegDGGLxeLyorK3Hx4sXrrjvS/G5C5HpZWRmOHz+O8vJydHV1oa+vDy0tLejo6BBXfaSUAOGHUNc9Hg+uXLkiOgPKysowNDSEixcvoqenB3q9HpWVlaipqZlwfjliehGi/J1OJ2pqajA4OAi3240zZ86IuYN6enqg0WhQXV2NS5cuoaenh7SaI6R6CZFrnHOUlJRAqVSirKwMfX19kMvlqK+vR0VFBbq7u+dUr2l31FgsFkRHR4uJ6IRRQaHTKH0oyOVy5ObmiiM6jDH09vbizJkz4qoxAkJG8/Pnz6OjowO1tbV48MEHkZ+fj5ycHBw+fBgtLS3o7+/HLbfcgn379uEvf/kLGQTThM1mw8GDB1FQUACTyYSIiAhYrVZYrVYUFBSI+wkPmPr6erz66quoqKgYd067w+EQRw98Ph9Wr16N4uJiWCwWXL58WcxpJMz/fPnll9Hf308jQVOEMQadTodFixZh9erVKCwsxP333x8yOXRraysqKytx5MiRSZ/L4XCgvr4ezc3N8Hq9WLduHdatWwer1YrKykqcO3cOdXV1KCgogFarxR//+EcMDg7SvN1JolKpkJSUhPvvvx8JCQlQqVTw+Xyj8ia88cYbYjJnjUYDg8GApKQkMe/JZDvswqohQoJRl8uFrVu3YtWqVbBarSgvL0dFRQXq6+uxevVqeDwevPTSS7Db7WTQTwHOOY4ePYqjR4+KKxkAuCZiSkjiHCqSajyGhobEZX/7+/tRXl6O+++/X5x+deDAAbS0tECpVGLTpk148803cebMGconNQmkq+3o9XokJCSIy9e///776OnpgUqlQkpKCjIyMsQltIV8GNfTPgr6dnd3w2634/z587j33nuxbt06+Hw+cbTeYDBg/fr1eP3111FVVUX6TpD6+nrU19dj165dc3J+l8uF2tpa1NbWBv18Ks9xYu5obW1Fa2srSktL57ooxDi0tbWhra0N586dm+uiEBNAWBlKuiqflHfffXeWSxQCYd5qsBcAPtlXWloa/+hHP8qHh4e51+vlLpeLt7S08AcffJAnJCSI+0VGRvI777yTHz58mHd3d3Ov18ubmpr47373Ox4TE8MVCkXIc8hkMq5UKrnRaORWq5VHR0dzo9HI9Xo912q13GKxcI1Gwxljky5/uLzG0mWyr+kqk1wu53feeSf/4Q9/yL1e7zUvl8vF29ra+LPPPssffPBBbjabuVwun9Q5FAoF12q13Gw28+joaB4REcENBgPXarXcaDRys9k8r3QNNw0B8MzMTP7ggw/ympoa3tXVxe12e1A9hddbb73Fn3zyyes+r1Kp5DqdTtTWYrGM0tZkMoWltuFYFwNf8fHx/MEHH+RDQ0Pc6/XygYEBXlFRwZ9//nn+hS98gWdmZnKj0ciLi4v5Sy+9xPv6+vjw8DAfGBjgd911F09JSZkWffV6PTebzTwmJmaUviaTiRuNxjnVN9w1DHzpdDqemZnJz58/L9bFn//85/zee+8ddR3lcjl/5pln+OHDh8X9Xn31Vb5hwwauVCqvqwxyuZyrVCpuMpl4ZGQkj4qK4kajket0Oq7X67nFYuFKpXLWdJ0PdXEiL8YYT0pK4vfeey+vqakR663T6eQtLS38zJkz/Ny5c7ypqUnsS126dIm/8sor3GKxcJlMNi3lkMvlXK1Wc5PJxKOiooLqO1ZfbK51nEsNb/TXQqmLN/qLNJz/L6qLC+MVSpNpj6jp6elBfX09zp8/j/T0dJhMJkRGRuLmm2+GRqPBnj17YDKZsGjRIjzwwANYtGiROOXi+PHjOHny5LirjwgJDEONKk10KTxiYphMJphMJiQlJaG4uBiFhYVB93O5XGhubsbx48dx7tw5DA4OTjpUWgj3JA2nH2EVmXXr1mHTpk2Ij48Xk4UC/pHWzs5OnD17FitWrEBERAR0Oh0iIyNDTouaDNezsgUxNkIEhRBq39PTg/3792P//v2ora1FS0sLXC4XXC6XGO4uTKvRaDRTWkUmkLH0pfo8ebxeLxwOB7q7u2Gz2WA0GrF69WooFAox6bbD4RCnqFitVvF7brd7zFXZJlMG4XjE9MG5f9pgeXk5fvGLXyAiIkKMgBKSy8pkMqhUKjFfW2dnp5i4crrCsAV9aXo4QRAEQYQf0+6oGRgYQEtLC44dOwaj0Qij0QilUolt27YhNjYW9fX1SEpKQkFBAT7xiU8A8DteHA4H9u/fj+PHj1OnIYyQy+VISEhAamoqioqKsGPHDmRkZATd1+VyoampCSUlJaipqZnlkhLjwRiDRqPBxo0bsXXrVqjVanDun6/p8XjQ3d2NyspKvPLKK7BYLOIyvbGxsYiOjoZcLqccBfOE7u5u7N+/HwcOHBhzlZbrWUWGmFk8Hg9sNhuam5uRmJgIo9GINWvWICEhAZGRkWhtbRXnvi9atAjR0dEAIK4gM9NJaYnrY3BwENXV1fjpT38610UhCIIgCCIMmXZHDeBfxu73v/89tFotPB4PsrOzkZiYiLi4OGzcuPGa+fPV1dX4zW9+g/379+Pq1aszUSRiCmi1WuTm5uKpp57Chg0bYDKZoNFoQhp1w8PDU4qiIWYHhUKBmJgYZGRkIDU1FYB/1aeGhgYcPnwYf//739HY2Iiuri7k5ubC6/UiNjYWiYmJWLx4MZYvX44LFy6QI3UeYDAYsHTpUjFCkQz2+YfX68Xg4CB+/etfo66uDl//+tehUqmQkJCAHTt2ID8/Hx6PBwqFAqmpqWJeomPHjuHkyZOoqqqitpggCIIgCGKeMiOOmuHhYTQ2NuLs2bMwGAzIzs4WExwKCUt9Ph/sdjvKyspw9uxZHDlyBJ2dnbSufJggl8thtVpxzz33ICcnB5GRkaO0c7lcOH36NHw+n7h8q0ajQXx8fMjleYm5RUjwLdRFACgpKcGZM2dw+PBh1NTUiEmah4eHRSNPoVBApVKJSWeJ8MPpdKK/vx+dnZ2IiIhAZGQktm3bhp6eHpSXl+PMmTOQy+WIjo5GamoqFAoFOPcn/h4aGqLkvmEK5xzV1dXw+XxwOp2Qy+ViHbTZbOCcgzEGvV4vrgxUXV2NixcvkpOGIAiCIAhiHjPtjhqZTAbGGAYGBsRpTsHweDzo6+sTl/Y8c+YMhoeHaeQ3TFCpVIiKisKOHTuQkpICpVIpTpFxuVzo6urC3r17wTlHSkoKNBoNNBoNEhMTxagbWn4u/CkvL8fhw4fHXAmCMSZOjyFHTXjidDrR29uLhoYGaLVaREREYNOmTfB6vYiLi8PVq1ehVCqRkpKC9PR0qFQqeDweOBwO2O12ykESxgirftBqLQRBEARBEDcO0+6oSUhIQGJiItatW4f7778fubm5QfcbHBzEuXPn8Oc//xlVVVU0ohtmmEwmxMfHIycnBwqFQlzy8dixYygvL8ff/vY3dHd3Iz09HUuXLsX27dsRFRWFtLQ05Ofnw+FwoLq6eq5/BjEOaWlpSE9Px9GjR8lJOo9xOp24ePEivvOd7+B73/selixZIi6fvGLFCnz0ox+FXC6H0WhEbGwsGGNoamrCyZMnUV5ejvb29rn+CQRBEARBEARBjDBtjhqFQiHOnV++fDkyMjKQnp4OnU4XdH9hRQu3201OmjBEmCYj5BIaGBjAnj17cPToUdTW1qKjo0OcIuPxeMQQfIVCAaVSOS2ryBDTi5Dzoru7G729vYiIiMCqVaug0+ng8Xhw+PBh9Pb2Qi6XIyUlBbGxseL33G63uFoQEZ7Y7XZcuHABzz77LKxWq1gHhcgZmUwGhUIhriIjJH4fGBggXQmCIAiCIAgijJg2a1qtVmPJkiW4/fbbsXHjRuj1evEzzjkcDgc459DpdGJ+DDIO5g92ux0nTpzA8ePHxxx9F4xBabJoIjzw+XwYHBxES0sLWltbERERgdzcXMTGxkKlUqG7uxuNjY1QqVRIS0sTHTXC9Bi73U7T2cIYl8uFhoYG/P73v5/rohAEQRAEQRAEcR1Mi6NGrVYjKSkJ3/72t5GZmTnKSeP1etHf34/f/va3sNvt+OxnP4vo6Gjo9XosXboUWq12OopAzDBqtRpLly7FuXPn0NHRQU62eYjgqHnppZdQV1eHH/zgB1AqlYiKisJdd92FwsJCDA0NiUuyC5EXp0+fxrFjx1BZWUm6EwRBEARBEARBzDDT4qgRklempaXBYDDA4/Ggo6MD9fX1aGxsxKlTp1BSUgKDwYANGzZAr9fDYDAgLi4OqampaGtroxwJYYawiszVq1cRGRkJi8WCO++8EwBQVlaG/fv3i6vIZGZmQqPRiKvIuFwuWsI5jKmvr4fL5YLL5Rq1iowQMSOTyaDRaMSoqMbGRjQ0NJCThiAIgiAIgiAIYhaYtogag8GAqKgoyGQyOBwO1NfX4+jRoygvL8fbb78Nm82GlJQUNDU1YenSpYiIiIDFYkFMTAwiIiLIURNmDA0Nob+/H3V1dVCr1YiMjMTq1avh8/kQHR2N2tpaKJVKpKenIyUlBWq1WsyBMjg4SI6aMKarqwtdXV24cOHCXBeFIAiCIAiCIAiCCGBGMr52d3fj2WefxcmTJ9Ha2hoyr4VcLqfEs2GKkO/i+9//Pr7xjW9g3bp1UKlUWLNmDZYtW4bt27dDLpdDq9WKuUza29tx9OhRnD9/Hk1NTXP8CwiCIAiCIAiCIAhi/jEjHhKlUomEhASo1WpKPjqPcblcKC8vx49+9CPExcWJU2G8Xi+cTqe4KpSQy8TpdKKtrQ0dHR1zWWyCIAiCIAiCIAiCmLdMi6PG5/OJS/iqVCqoVCpkZmYiKSkJ/f396OnpAWMMSqUSWq1WjKDhnIsvIvzweDxobW1Fa2vrXBeFIAiCIAiCIAiCIG4IpsVRY7PZ0NHRgerqaqSkpMBqteKLX/wi8vPzcfz4cfzkJz+BQqFASkoKVq1aBYPBAJ/PB7fbDbvdDqfTOR3FIAiCIAiCIAiCIAiCmNdMi6NmeHgYHR0dePnll/Gxj30M+fn5UCgUWLJkCSwWCywWCxQKBaKiohAXFwe1Wo3BwUFcuHABNTU1NFWGIAiCIAiCIAiCIAgC0+So8Xq9sNlsOHToEDIzM6FQKKBSqQAAjDFkZWVBJpNBqVSiubkZANDT04PTp0+jtbUVg4OD01EMgiAIgiAIgiAIgiCIeQ0bKz8MY2zSyWMYY2CMTWhfyk8TGs75xC7iBJiKjsT0MF06koZzB9XFhQHVxfkP1cWFAdXF+Q/VxYUB1cX5D9XFhUEoHad91SdyvhAEQRAEQRAEQRAEQUwN2VwXgCAIgiAIgiAIgiAIgvBDjhqCIAiCIAiCIAiCIIgwgRw1BEEQBEEQBEEQBEEQYQI5agiCIAiCIAiCIAiCIMIEctQQBEEQBEEQBEEQBEGECeSoIQiCIAiCIAiCIAiCCBPIUUMQBEEQBEEQBEEQBBEmkKOGIAiCIAiCIAiCIAgiTCBHDUEQBEEQBEEQBEEQRJhAjhqCIAiCIAiCIAiCIIgwgRw1BEEQBEEQBEEQBEEQYQI5agiCIAiCIAiCIAiCIMIEctQQBEEQBEEQBEEQBEGECeSoIQiCIAiCIAiCIAiCCBPIUUMQBEEQBEEQBEEQBBEmkKOGIAiCIAiCIAiCIAgiTCBHDUEQBEEQBEEQBEEQRJhAjhqCIAiCIAiCIAiCIIgwgRw1BEEQBEEQBEEQBEEQYQI5agiCIAiCIAiCIAiCIMIEctQQBEEQBEEQBEEQBEGECeSoIQiCIAiCIAiCIAiCCBPIUUMQBEEQBEEQBEEQBBEmkKOGIAiCIAiCIAiCIAgiTCBHDUEQBEEQBEEQBEEQRJhAjhqCIAiCIAiCIAiCIIgwgRw1BEEQBEEQBEEQBEEQYQI5agiCIAiCIAiCIAiCIMIEctQQBEEQBEEQBEEQBEGECeSoIQiCIAiCIAiCIAiCCBPIUUMQBEEQBEEQBEEQBBEmkKOGIAiCIAiCIAiCIAgiTGCc87kuA0EQBEEQBEEQBEEQBAGKqCEIgiAIgiAIgiAIgggbyFFDEARBEARBEARBEAQRJpCjhiAIgiAIgiAIgiAIIkwgRw1BEARBEARBEARBEESYQI4agiAIgiAIgiAIgiCIMIEcNQRBEARBEARBEARBEGECOWoIgiAIgiAIgiAIgiDCBHLUEARBEARBEARBEARBhAnkqCEIgiAIgiAIgiAIgggTZtVRwxirZ4w5GWODklfCbJZhPBhjeYyxvYyxLsYYD/L5k4yxEsbYEGPsd3NQxDlnvuvIGFMzxn7DGGtgjNkYY2WMsdvnqqxzwXzXcOTzPzLGrjLGBhhjlxljj81FOeeShaCjZL/FjDEXY+yPs1m+uWYhaMgY+2BEO6H8l+ainHPJQtBxZJ8HGGMXGWN2xlgNY2zjbJdzrlgIGgaUfZAx5mWMPTcXZZ0rFoiOaYyxtxljvYyxNsbYLxhjirko61ywQDRcwhjbzxjrZ4xVM8bunYtyziXzRMdPMcZKR2yJZsbY/yeta4wxK2PsryPPxAbG2Cdms3xzEVFzN+fcIHm1Sj8Mg4ZoGMBrAD4b4vNWAN8D8NtZK1F4Mp91VABoArAZgBnAvwF4jTGWNmulCw/ms4YA8F8A0jjnJgA7AHyPMbZytgoXRsx3HQV+CeD0zBcnLFkIGj4pKX/2LJUr3JjXOjLGbgHwQwCPAjAC2ASgdtZKFx7Maw2lZQcQB8AJ4M+zWL5wYV7rCOB5AB0A4gEsh7+/+sVZKVn4MG81HCnbLgC7AVgBPA7gj4yxrFktYXgQ7jrqAHwFQBSAtQBuBvB1yee/BOAGEAvgIQD/wxjLna3ChcXUJ8YYZ4z9A2PsCoArI9t+xhhrGvFwlUpHdRhj32aM/Zn5R9RtjLFyxlgWY+xfGGMdI9+7VbK/mfkjKK4yxloYY99jjMmDlYVzfolz/hsAFSE+f4Nz/iaA7um8BguB+aIj59zOOf8257yec+7jnO8GUAfgRjTyRzFfNBz5vIJzPiT8O/LKmKZLMa+ZTzqOHO8BAH0A3p+mSzDvmW8aEsGZZzr+J4DvcM5PjDwbWzjnLdN3NeYn80xDKR+B39g/fF0XYIEwz3RMB/Aa59zFOW8DsAfArBmH4co80jAHQAKAn3LOvZzz/QCOAvjkNF6OeUuY6fg/nPPDnHP3yPPuZQAbRo6jh78d/RbnfJBzfgTA3zCLOoaFo2aEnfB7spaO/H8afi+yFcArAP7MGNNI9r8bwEsAIgCcBbAX/t+TCOA7AP5Xsu/vAHgAZAIoBHArgBtumsQssRPzTEfGWCyALJARIrAT80RDxtjzjDEHgCoAVwG8PdVjLUB2Yh7oyBgzjRz/a1P5/gJnJ+aBhiP8F/OHgB9ljG25juMsRHYizHUc6cSuAhDN/GH6zcw/3UI72WMtUHYizDUMwqcA/IFzHnLK6Q3ITswPHZ8F8ABjTMcYSwRwO/zOGmL+aBgIA5A3TcdaCOxEeOq4CR/ag1kAPJzzy5LPz2E2naac81l7AagHMAj/yGkfgDdHtnMAN43z3V4ABSPvvw1gn+Szu0eOKx/53zhyTAv8oUpDALSS/R8EcGCc82X6L0/Iz78H4Hezef3C5bXAdFQCeA/A/871dSUNp6yhHEAx/FPYlHN9bUnHyekI4GcAviEpxx/n+rqShpPWcO3I8dXwG4c2ABlzfW1Jx4nrCP/oLwdQAv90iyj4R4C/P9fXljScmIYBn6cC8AJIn+vrSjpOXkcASwCUwm9scvgNTzbX15Y0nJiG8NsWtQCeGnl/K/zTZ/bO9bUlHcc852cANAOIGvl/I4C2gH0+B+CD2bqGczEvbCfn/L0g25uk/zDGvg7/vD+h82CCv+Mg0C557wTQxTn3Sv4HAMPI95UArjLGhP1lgecjJs2815ExJoPfO+sG8ORUjzOPmfcaAsDIuY4wxh4G8AUAP7+e481D5q2OjLHlALbBP+JxIzNvNQQAzvlJyb+/Z4w9COAOADdUElPMbx2F4z7HOb86Us6fwO8Af3oKx5uvzGcNpXwSwBHOed11Hme+Mm91HOmb7gHwKwDrR47/W/jzRz012ePNY+athpzzYcbYTvifgd+A3wH+GvwOhBuNeaHjiF7/BWAb57xrZPPgSDmkmOAfjJoV5jqBjxQuvBmZl/YU/Al9KjjnPsZYL/xhY5OlCf6KEcU590xLSYmxmBc6Mn/t/Q38ntc7OOfD13vMBcS80DAIClCOGinzQcctANIANI48UA0A5IyxpZzzFdd57IXAfNAwGBxTK9dCJex15Jz3MsaapWUNeH+jE/YaBvAIgGem8XgLhfmgoxVACoBfcH8eviHG2IvwR/LfSI6aUMwHDcE5Pw9/EmihrMcA/P56j7uACBsdGWPbAfwawJ2c83LJR5cBKBhjiznnV0a2FWAWU2WEU44aKUb4w/064b9A/45rPVoTYmRk6F0A/80YMzHGZIyxDMbY5mD7Mz8aAKqR/zWMMbXkc8XI53L4DQoNm/uM1eFK2OoI4H/gDy29m3PuDHYMAkCYasgYi2H+ZWQNjDE5Y+w2+EMbKRltcMJSR/hHDDPgn5e8HMALAP4O4LaplG2BE5YaMsYsjLHbhGchY+wh+Od4Uz6F4ISljiO8COBLI+1rBICvwr9qCTGacNYQjLH18OdtuBFXe5oMYanjyGh+HYAvjLSpFvinlJ6fStkWOGGp4cj/+SPbdMwfLRIP/xQ24lrmUseb4E8g/BHO+amAY9kBvAHgO4wxPWNsA4B74J+NMSuEq6NmL/ydvMsAGgC4cH1hoI/AX5Eq4Z/z9hf4K0wwUuEPoRK8ZU4AlySf/9vItm8CeHjk/b9dR9kWMmGpI2MsFcDn4TcM2xhjgyOvh66jbAuVsNQQfk/8F+CfS9oL4McAvsI5/9t1lG0hE5Y6cs4dnPM24QV/mKmLc955HWVbqISlhvCHGH8P/g5WF4AvwR/qfDnwIASA8NURAL4Lf0LHywAuwp+w8fvXUbaFSjhrCPiN+jc457MWnj9PCWcd7wOwHf52tRr+paC/eh1lW6iEs4afhH+Riw74I0Vu4R+uVEqMZi51/BYAM4C3JfbgO5LPvwhAC7+OfwLwBc75rEXUsJHEOARBEARBEARBEARBEMQcE64RNQRBEARBEARBEARBEDcc5KghCIIgCIIgCIIgCIIIE8hRQxAEQRAEQRAEQRAEESaQo4YgCIIgCIIgCIIgCCJMGHNZacYYH/kLq9UKmexDv06wJMSMTWW58xuDwOsl/O/1euHxeDA8PAwAMBgM0Ov1aGhomLaLKdUxIiICMpnsGq0YY6TfJOCciy8A8Hg8cLvdoo4WiwURERG4dOnStFxUQUMAUCqVkMlk1+go1ZC0HBtBN+lfr9cLn88Hj8cjtnmRkZGoqqqa9roIYJR+gToGe09cS7B2lXMOn88nfmaxWGCxWFBXVzftdXHk/1F/g+w/HaddsATrS0jbVgAwGo0wmUxobm6ekboY4vPpOtUNS6C2Wq0WWq0W3d3dM1IXr/NY03WoaSMcF/tQKBRQKpVwOByzVheJ6YcxBplMBo/HE3Z1kZg4jDH4fD6qiwsAznlQHcd01AjIZDKoVKqgDzIy8CeP1Mj3er0AIP5Vq9Uwmaa0dPy4yGQy6PV6UTNBN8HoD/WdGx2fzzfmdp/PB6/XC6fTCYfDAa/XC41GMyM6MsagVqtFzeRyuWjwC39nw1kzkWOHYydTWiZpPeSci842wK+pcH1nCqlmgp6hNBzves9mGzzXuo5l2As6er1eeL3eUY6bmSBQK+EVygkX+N35wGzoHVgvfT6f+BL+93g8M16OUI7vYJ9N5BizwVzVx/HOK3wudZrOlo5Sgg1KTWS/cGSmtJ6olsL7mWpPp8J06BbsGHP9nBuP6ShfuP9GgiAm4KhhjEEul0OpVI7aJjRsgYbMfHjYzTbBGkPBMePxeODz+cRIDJVKBZ1ON+1lEHTUarWi80WhUIQ0EInQBDP+PB4PZDIZhoeHIZPJoFarodfrp/3cjDGoVCrRQSN9LzgWpA446ffmAzPZcQjsXEodpUIdlMlkYpTbTCN1tCkUCsjl8lFaBjpUgeA6TtbwmM5rPNMdvbGOL42Gkr5cLheGh4dHOVJnUk9Bo2D1MFDDyRr+E623U9VhIt+bbo1DRZdK21XB2SY18IVn5EwhbTcDHW5jaTlRTafDuX09n1+PjqGco6HeB0acSh1uM60jENqBGmxbsP2lxwn2frKEuvbjXdepfH+8/abyXtrfmQtHTah6N56GU6mDk2WqdXKq90Sw96Ha1LH2mwsnzXgR4Nfbfs4Wk7l2Y2kzUV1mql2fDsbTabK6zXSf53qZifZ5PMZ11Oj1ehgMBni9XrEDKkTXCB2ZiTCVSjbXN+BM4fP5oFAoRCNR6AxqtVrYbDb09fVN+zkFHd1utzi9ymQyBTUsgMkZhAIT1WsmOjwzjbRBFUZ6Bf2EUXyFQgGPxwOlUgm73Y7y8vJpLYPgMB0eHoZCoYBGo4HRaIRKpRKdQ2NF2ACzP5o4HQ3YdI0cSTuXgQah4Jzp6+uD2+2GUqmE0+lEY2PjdZ87EGnbKYSR6/V6qFQq8X9BR6FeBtNSaHtn2pgYb9/r6bRP5ZxSgyEw+sLj8WBwcBB2ux0ejwecczidTrhcrimXcSwEDRUKBfR6PdRqNVQqFZRKpbhdcMJJI6eE7wYaG5OJqJpshy+UToHfDbzOE2UidX0s7Xw+nzh91GazidGJADA0NCRGu80E0vqo0WhEDYU6qVAooFarRS2lgxxSB13gK5iTABjtRA/mQJZeI+n7YO1YKIflWPsFO28gofYXjiU40oR6JzwThancQ0NDo17Cc3I2nKaCVgqFAlqtVmxTA/UU6qnwV3jGStvfwGeqQLC+71jXPNDRIdVJej2l26UDCaH0DeboDCxD4DmEab7SZ5+0Hg4PD4/SUWhLpXV2NhCuv1wuF+ulVDulUim+V6lUo3QXdA2MPA5WHwUETcf6fROpc4H6Bm4P/BvqvVQTQStpPRP+SuufsE9g/2Z4eFj8TPpbZhpp/0XapkqfkxqNRmxThf6sUB8D21PhmNPV7xEYz7k1kedk4L0QrM4F6jaehoHvpfffbCPtu0oHGQV9gj0XhUGsYP0c4ZhSJuJTmIk+Z6g+bbD2NrDfEkqjwKjuwPZioozrqBGmAwiRGOE2vWK+In3ojzX1aLrwer1wu91Qq9XiNsG5MJYHdDIajLfvVPWU3tCzdU8EViLGmLhNeu9zzkeVSWicgOtrTMYql/CwEx5y1xuRITBWBM5UHwwTNQYm+9lkEI4jk8lGNZrCdZK+Fzp3QiMrdJSnG8b8kVGCjhqNRuxkCoYCY0zUN5SxN9kRRen1GMuoD/WdYP9P1vCbLIHnCmYwCg9EhUIBt9sNt9sNuVw+o/rJZDKxLqpUKjH/hlqtFrUU9pEafoHT3QSNpJ0Z6fZQz4aJGvjBPg/8/ljOgcDjTNWBE8oIkRqKgn4ul0u8fjNtFAodScHw02g00Gg0o+ql1CAMNOZDGfYTnZYa7HoH3uNjGemhjMCxvhd4XunfscokPY5gvAtGhtTYcLvd4vNRMBIDn5/TjaCjXC4X66BarYZOpxPrqFRPrVYrtr+BThvBwA90sgYzNAKvWSjDLVAHqW6BRl1gpz9wGmAo4z7YOQONCkEjwREjda4FOtpcLtc1ZZsNhOstOL6FSHNBS4PBAJ1OJ0YuC1oK+0ufo9I6CQQf4BiPseqG8L/0WRNYByfqmAllBAqGoNvtFrUTnNqCVsJ7t9st1kWXyyU+DwPLNBsIfRihnglaaTQa6PV6UUNhm/A8DXQCBAYGBHO0TVXPwP+n+qwL9uwU6k2g40xwhAq6uVwuOJ1OUVdBN4/HI24XIhFnsx5KEeqR4PwWNBUc4UL7Guj8HutZGGrwYiz7Y7wBp8D3U90WrD2X1mOpA1TQU6hzge+FOip1jIc6fzDGddQIBr5WqwWwsJ0nc0koT/F0Ic2/IW08hBtG6OQElmkqTpJQHbJAp8ZY353oOWaDwAYgWAWWRkcJTLeOwrmlo/WBzpmxprIFK9tEDPvAMkwG6Tkn+zCcrlESqUMtmH5SY1DoHEg7yDNBMEeNdKQ3mLE3VvTFWCOFEx29D9wWilAGXqhjT/S4Y51LeB9olAhONqmzQ9pBn0n9pCOEgpEgGPnS6ItgBkOozkuw0ftgRqH02gQz0KT/C++D6TMRY36i98hYegcbjZI+g+RyuZjEW7iuwrWYjdF7qZNWMPBVKpUYJSXUUWlERqDTRjqSHzi6GDgYE6pOTtSwD9weaOyFGskb614JLIO0bIHHlXY4g3VWGWNiZEbgaOpMIY2KEowGwSAUtDMYDGL9lEbASetsYORUsHoqnE96zYJdv7H0DLym443SCt8R+myBuo/lHJDWNalmgrEvGI3C5263GzKZbJTGgdd6NrSUOk7NZrNo6JtMJphMJuh0OnG70P5K66i03R0rkmaiBHv2BasrYznNxnLOCMcJ5qQRDD5BK2GKr8vlgt1uF41Bp9MpvhfuXeG+EY45WwiOGkEbi8UCg8EArVaLiIgIGI1G6HQ6GI1G0eDXaDRjOruF40rPMRkm6qQJ1V8Z63zB2gGpw1Wqodvtht1uh9vthsPhwODgoOiwEd67XC4wxsSIxMCIqNlEOjBlNBrFeinM0BDaVKEtFZw2waISpXVxLOeblIn2NyfSX5lM/0V6PmmbLW1HhbrocDjgcDjgdrvFnKVCnWSMiW2u9Lk9EcZ11EhvtGBRBdKLNdEKM1anc6ESrNMarCGeKeNQ+kCRjpoolcpRIybSSiQYt6EI9dl4lW2yDp/xtk3ks+tBelxpKHLgw1WouFJdZ6IswUYSpFMwgkViSAlsGMcy8qXnDfZ3omUO9jfYfT4T+obqLEkfnoFRUNL9ZgLO+aiOh/C/1OATjMBAQy/YdKiJjFaEGk2X/mbp32CMZcQHGn/jtWMTubbBji9NwC59LgnbpQ//iZ5nsghlkdYzhUIhfiaNrhAMh2BOm2CRGIHhw8H0DHZPBzPkxzK6x/uudHug1mNd21D1PNBolMlkoiEv7CP8TukI+Gwg1VEaXSc4ZISIqUCnjdRRJ2gdOO0tmMER6nqN54SRPncC/5ca81IjP3B/6ZTdYHVYWhbg2lFEqdEodFSl7ZjgqBGmMATet9Nt5EvbQOmorxAZI2ik0+lgMBhE49BkMomGhWA8CtpKNQwM3xfOGUiw59xYTrhADaXGdLC+YeC2se6FwPsimHNGMCCEEXzhd/l8vlGDBkJ01GwN0kq1lI7UazQaaLVa6PV6WK1WWK1WmEwmREVFwWQyiU45oS4G1umplH8yA1fBnlXS/0O1v6HqfWBfUtBM0Mtut8PlcsFms0GtVsPhcIgOb8D/fBQG2KXOt9lCaEeFQQwh4lSoh1INIyMjRe0ER2mwfmzgs3Ash81Yxvl4z7CpEHhMqZ5SB7cQ4eR2u2Gz2eB0OjEwMICenh7Y7XYwxkRbTNoPkEaezqazDQg+kCHUSaPRCIvFItZLg8EwKpIx8DkYOPg4VUdNsD7JWPtItwf7P1S/NVhfSdBRcJoKjjUhdYnD4RC/K/2tQoTiZKOiJrTqU2BhhRNMR8MXqlMX2KDM1kNiJpioQRJ4fWeyLNJzSDvHwRrCYIZ+4M080bC1sTo6wco3VWNvuq+h9HiCcSg0MoH3rPShOxNlCHw4BRvNDTWKFKhnqOkWoc4frBMiLct43wVGG26BnwUec6xtEyGUsejz+cROqbBNuG6Bv3WmCTQ0pGGjUkdNYJ6TYBFUgcamVP9gHcmxjLZQ11J6TQN1DeyUBn431P/BCPbQ9Xq9UCgUol7Cb5TqKzWoZprAkSGhDgrGuzTnSWAujMDoi2DvpZ2aYNcn0NALNABDGQiBo0OBxwo1Og9MPHIq0GCVGqOC8SGNpJF2PgN/90zXQ2k9kralUgeNdLRQ6rSRTnULlfdksk63wL+h3gc6Z6TGXaDBF0zbsZx3Uu0E3aSGvxDKLRiAwvNP6JwCHzrAAu+H6YRzPqrNC5aLRq/XQ6/Xw2KxiBEYFotFHMnX6XSio0Y6bTFwykwow3Cs9i2UgzyU5qEcb8EG9IK9hP2F/6VRNG63WzT2BQNDcNgI975gUKhUKnF6fCjn4kwg7dMI7ahgwBsMBphMJkRHR4sOmujo6FERNWNFQV1PmSbCRA0/4e9E7gfpFEPB0eZ2u0XjcHBwEL29vRgcHER/fz8YY3A6nQAAl8slOruEaTazgdSmkE5DFJyiZrMZ0dHRiIyMhNFohNVqHTX1SbgPx4ooHs+WEAjVtxyvzzkVAo8ZSk+hLhqNRjidTjE6zGazQavVQi6Xw263i8fy+Xyi7rPtpBHqkHRQQujXSB1uBoNhVF0UpkcFRiYG668KhHIkTrQOTeZvqPeh+i/S99J2VYieEeqiTqeDw+FAX18fenp6xLoo/FbpFOGJMmlHTSgm0pCNt4+04FLjd6IVciLMhuEViNRIGo+ZNA6D3ahjjcgLhNoWSKhOqPTvWA4gYT/pNQjs5AW+D3WzT6ehJnQEpR1QweMd7PwzqWEwpA9Fad6EwBHcYA6bYMb+WE60YAZcIMHujVAGgfSzsRquqVzPwPtEOKfUcSGM5gc+NGbKqAh2zEAdApMhBgsDDjaFJpRDB7g2SeJYI+yBZQz1MAtlzAdqPdbxxrs+gfeIoJegmbReSrfNtIEvbc8CnTTSKIzAaRXCCL8wWiyNtAn2XngB12oove7jGfXBDIHxRuLH+v54bXBgR0o6iiRNoCjo5PP5RjlJpffubCC9b6QGotQxo9PpxFFE4X1g3hNpjgxpJFWgwSGcM5ShFsx5FqhVoEEeOAIfzGkTmBQ2lLbBzi2NzBCS5gsRUdLfI5wv2Gj4TD4XpW2e1NEm1c9sNoujv1FRUWIkjTAKHNjmBnsmjjfIFIpgRpz0fbB2NJjO0rokdeYE1ltBa2lOjOHh4VFRNAqFAi6Xa9RzUNDX4/GIUVFzUReFaAxpXRQioaxWKyIjI2E2mxEZGTkqT4ZUO+F40r+BTPSeHK9POdYAZahtoZ6t0uee9B4QotiGhoZgMBjgdDqh0+lGTdkTBhIFDYV6IG2DZqN/KnWaSqd56/V6GI1GREZGwmq1ihEZ0qjEULkWQ/VlgzFeH2YyhnKw6zWZ8wa27UL9FBKtGwwGMepPLpeLDjVh9UqhvZU6+2fLxpA+F6WRhkIEm8VigdVqFeui1FETbAppMF0DCezrSAlWT6b6dyL7BDrahbZWmo9NcHwLzxGbzQaFQiFG6wt/vV6v2N5OxuE2YUdNIBN5cE3k87FuOOGmDBwhHctIHI/rbaynSjDDYSIN+3QT6hzBGr5QnuxQ35UaitLzBevch/rtoQw9qdbSe0bagZjK/TARhPNNtHEM9ntnimDGvXTKTODDTfiOsD3Y1IvAzmkwY0vaIZwMwYwE4b30c+n+4x1vIp8Hnk/owARO95tNpGUXrntguL7QaWGMjdJUmuRSalgEGvhSp41wzsDOQqAhOFZHJpQhB2CUcTmVSJ1Q24ONZgi6ScO8BSdAMD1nqi5KHXzSUWBp1IUQ0h0sIa00+kIadRM4EhXs9wQ620LV0cD3oYxA4X2gERh4HOH843V6gt0nUmNDMPKFe1MYnRKcNrNZJ6X3jDTEWwjT1+l0sFgsooNGmutEmghTGl0TLJmicM8EEni9AttIaX0K3B5omEtHbQPreDCDP/D8we6TQO0EQ1+Yny/cq4KOwjFn08iX3jOC4SrkU7BYLLBYLIiNjRVH8aOiosQoKcFACpzuBATvuwX7X2Aq92woIz3QwAvcPladlt4LgpNG0GtoaAgOhwP9/f1wOBzi71cqlQA+NBADHW6zQeCghdAems1mxMTEICYmBqmpqYiKioLRaITZbB7l3J5IuzGWI3+iz4rAcwRzHITaJ9hnwQhsE6S5oQQj3263w2KxYGBgAF1dXZDJZOKiIdI2IFhk1EwR6DQVnolWqxWxsbGIjY1FUlKS2Kbq9XqxfxPYd5XaF8Gu8VSiMIL9DXwfyHT1IaT1VYiQGRoagtFoxODgIEwmE+Ry/ypnwu/weDxi32G2oqKA0TpK+yoGgwFRUVGIiopCSkoKoqKiYDabERERIU55kq7kFWhbANcm9Q71XAx8P5bzJtT7ifydzD6Bz0VhOqnL5YLZbIbNZhN17OnpAQDYbDZ4PB5oNBoxyfBEmZCjJpQRBUy8sQlVsYSLHnjxhQZX2vgGetkCR4euh5kegQ0ngl2zwBs1WOUJto/wCjT4pV7f8Yx66bGEUZ1Ao2A8J8lMOWnGasTn6l4Z67yBjrVgOkpHrwGM0i0wckM4n9QYl3b4x6p7gXVK2Feq9XiN73jG9ljtT+B9E+jgE8oy1vdnE2n0S+CDLfCBJ20fpfpJnXXCQxX4sD0NNO6C5TwIbB8CH1jSNlu6r3BNBQMt2P0x2U6R9B4QnDPC9olEgc000voV2DkNdJxKX4GOGumIozS8ODCMX1qnguXLktZNqbEmNd6k7wOdOqEM/8B7Q/oSyiP9G+jQkealEa4X51w0IEKNts2WhoHPMml9CpYsWsiXIZ0aJXROpdoJIfyBhoeUUNcslPMkcHugM05ar4NF14xV3wPfBxr8wiihNMrL5/NBqVSK0xKlGs6mltLzCG2iNL+Q4HQTXsJ0KEHbsaJoAgl8NknLEKpsY/0fymEQ2PcOdV8E3juBThups0Y6vUvoC/h8PnF1GWG6zPDw8JjOxZki0FYQ6qCQdNZkMsFsNovRUEJ9CzQEQx0z1HZpP0H6/2TKG9jfmoijZqL3Buf+CGBBU2mkjFTHwcFBMbHp4ODgNc+Q2UD626R9EWHqmlQ/wQEhHWgK1n5I6/Z411noHwT2PaX7Bj6zAt/PBNJzCverMAWYc3/OO845BgcH4fV6xYS0Qr2dzWndwLVTu4U+p1AXhQhFs9kMo9EoDmAEi24LlYpB+jeQsZwuobYF+19gLOfdRBw0wdpeQT+h/8YYE/8K056keYmk7dV4dq3AlCNqxkN68vFurMCCBo4aS40TYX+psRDK2TMVJnrhZorZPrf0JpzIfoGdysBGVepYE5CO3AnHkjaWgQ9mqY4TeWhORPfrva7BKu10HHc6CTWiE+xaSx0WwrZgjppAZ43wYGGM/f/tfWlzK8mOHaiFm0hJd+l+HW9mHBN2hP//T/EfsD32vO7X0tVCcSclkf5wfVKnjoCsIiVxURMRDG61ZCUSSOAkgEyOHF8vMpL4fmYvu/WgP3PASe7a/H90X8842kVSh87MXvGD+aK/41itsaGr2urMa6FKnYjMfOAE/AOAwumADNQyn3F/PG9E3sSIcFFcLwIlo2ttgpQXvBLFwAtHy7Ahq0ANzlUn3zMWPIAlqk8S1aXh4znNzBsXkXGjn1Vv8DiI0hS2RRHgprxh8AbvHsjG4FNZRA3e1Rg0i3f2ykVU8Gq6AjY6HiLQhseE2mH4HX2DCCleWNuGg68yqEAbIqAYYONaYO/V5ipOutd2pki+cgCOmb3iLxcTxrg2++lALJdLm8/nhb6ATmJ+b4JUn/OchsgnRLjp7nrRPFCVnznbP2dj6GdtQ9nnyG7z2gCHXhdsoPPn87l1Op1U2NQDizcJmrKtgq2csS03b/GMMalgvUZgqJOfc/RVTnTuyQF6ajfmaBX7wrO/8cI9n5+f7eLiwqbTqfX7fWs0GilNUW25jybVqZA1AN9nZ2cJ9AZPOaKU7VSe/8p4Z5aPklkVoMF9IpBHbVP9n4/T+Rlzntqm4COKRg8GA5vP52sBbh8C1OhD6+QXGZvMODgYaszydVBYC6sFfM8y5y5HmwJrtuHkK29UcXlOPvikIfKYwDlH/fj4Z/EwCCUXsuPr8md23KAQdIWe21+1394LnPHuHbVjlfa9J+nkpTLHfFaFCWfSmyx5EmEHAPxnR79MaXoGFH7D+IMzF5HXtzlFz2BBFYBg06RGCPe5RtGwQcoAtkZuaGFTTrtQHmJlTkEbzzkHwVhkAIWBFHX81LHH8aBIjsxeO6hmL5E1ABLYgNukEeOROvgwRDXNicEZjajhopi6Wsx85H7WQq8eSBOlLTJ/PACPr6X81HkkAhEYNDB7mWMfHx8LczzL/6bllGWRIzLw0t0ueBtSrCKiVobKq2ec5sAtvDx+K3nne9E1PE74dzNz5VWBPy5mCkcf7UOhUt7VrAxA/QhiHkK+4OCjNgZW9eHsszNbpa1VdZf3e5kzHoF5fM1oDOg7jwXmPwrLnp6e2nL5soo/Ho/t6enJJpOJ1ev1BOqwXsW4/UieqoOPiKjz83P78uVLYVtnzHGq/6s4f95/6khXaat+VnmvCtitovcwj0I3mVkaw4PBwJ6fn1Nh023UGuI5GemhnU7Hvnz5YhcXF3Z+fl6o56WRwOgD9i2UvzlnP+dce6CNkl7vI/oNepaBKejN8XicImru7u5SbalVIzHeSuxHwB5pNpt2fn5u5+fndnl5aefn5wms4Qg3z27xfEyPyoCZCKjxKLpfbv6NPvNYUfuGyyjgmbGtOrZiR5ob5smq9K5ATTTwc2hurfayrSmH83OhIuTqISwTRiQLL99bUbF1DL9NCcI2KAr/0gmSJy3NZVenkp0M3pYTwI3ZT2AN57MzwUKQU7w5Y9Wjz8xDJjUQlLjPIkBHV9B4JZkNdyZ2mHEffXEbmKLIKQVUdFJd1ZDaF4pArMgY8X5nPnIEABwn8BEOMee7s+xx5ENO3jynE8Ar2sdgAF+zjKf4H6AOg/48tjxjeFtAnAeAshGmQBIfw3qXDVcGdnQVhp1p5in6HVEsDH4wb9CXLHP4DHCPDRBdpVegRscKrq/yDJ7yijD327b4x21A27yUQgVHWd4UVNWV4Whe48+RHsX56rTnrstG5GKxSHW5PPAt+oxzGHwxM6vX67ZcLgsRY5o+tEniccTzGANtANc4csRb8fXmlwjoLwNu8HuuPxRg0HfVjdH9ohVhlnVcY7FYWKvVsufn5xRlpM4zg/ybIn4+rlHTbrcLkRheWiiPT8+ZKwNq+HMEwnn9z7ZK2XNFc9Uq4AB0NM5pNpu2WCzs8fHRut2ujcfjVH+JozE2JZPMC8gewBrUMNGi3ZqelQNlcrYRKOLHOrajLnBWuY5n0+l3nh8BvKEGGnaDQoQU+1WbIu7nSBYRRZPTq6vYaB5gqr6Aypvakt59ov+qgDR4V/uT24vnXCwW1mg0bLFYWKfTsdlsZoPBwM7Ozmw2mxV2FaxKbwZqqqKTzDB2ygHSmFmBuZ1Oxy4vL+23336zbrdri8UiPfBsNrPpdJqubfZSr4YNSpDXIds0BveB2Cj0Jjx28HPOIa+golDkcrlMuxBg4HPEzXs/x0c69VVBo22SGvt4Z4MWv4GvrJR1BR7XQL0Cz2nje7MTCPJAGm6DB/Z6jvxnI3XmQTmlDh2sAIE6mux88XFmVgBi+Z65EGGdMDkSzqPoWvwM+t1zUHbBoY8ocsjN/DmHn4XD2ZV3XkQpO9Usu54+5b70gAFe7FADWAEbBtf1umzIML9xDNsBCmDxs20zMkodAQbc2KHweKWp2pETaVYc455uiwAbpmhVTgEylk0G46IIOHwGyMdGqJklAAf1anIpT5t2Ds1eF6TVyLYyZ8JzxjEmV53zy+Ypb7VZ+4/lyPuM77xogrbifAbLzX7qfE7fQx9FkWDbdhABJGmkaK6Nns6LyAN0IrCG24nfcg58xFfvs5kfWcW806hUjHEAIlz7ZVspM56DjxpevEkCnpdtHw+Q8MZjpFP5O5+f+7+M1Lapwm/9HvET12Gwhnca9KKjN0FsF0Bfon3cLgXrWbeuqju4X1S+PPDN+83rb/3u2bBq16iN4/3OoOlyuUyRihjvDFCOx+O1dmBbaXvuqHMUpGHjTydxXiFdLpcp2oId+pOTE/u3f/s3++233+y//Jf/Yr/88ovVaj8d/V6vZ/1+325vb+3333+34XBoo9HIlstlAgK0jTqxesLmUdVO/AzEEwM+s7EHYuXIxg4mCeQqYsLAtmWTyaRwvUajkXKmj4+PU0g1C4G2jUP5tT1/dYoUE4xtz/HF8eoYmFnBsAVYA3ANu7NgrOAz8wbX4gr13mpf9BwMEpQZS/tOVSdeyA/3zdHRUdq6ka/HBg+DqrgOwt3hiHGUIt490KbM0OGJXYkntrLn9AxXD+gp+75JYhnUaBqz1/zDb3wOO/kM0HAosfY/dh1A1APAlMfHxyTf0AFmL6uxHgjAuoCdev7MfGRgRl86FnAep6xpP+2SPvfa58lWWQSUOiNmrx1p/Kb8iPrWmyeZ0P98DU554neNlOLvAHPUSVksigWE2UDHM2/aOQTp/dlR9ACJnEOh8yb6laPK8Du/a1vwWX+r+rv+Fjks+lmPh0xivm42m/b8/FwAQbwd5zZJ6uRzfRpE/vCY43P4+SN5KqNVjvXO9frce8ac/OIYfffmZTNLkc9cOwQRNVqD6aMJz4z2cn0obN3M0VAK8LKe9H5n+eb+YWL9yvzHf6wTvYXBiHILUd790T7mNb97MgsghFM1h8NhIRJjUzLJcz50KHZDZHlkUFAj3cyKCwo5vxo8qeKX61yqx5T9FumMKp+5nfw8WBAFWIOaTOfn59btdlPdoY1H1IDU8GQBxO9sNJq9KBdMpkdHR9ZsNu3i4sK+fv2aqknjOs1m0/72t7+lquHNZtNub2/tx48fZvYSzgkjRAvY8jGMZv3VwZqcAmEjk51uFkJMAKenp0l4a7VaAmm46KzZz7HSbrfNzNI1cQ04HOwoKBCo9FfmYc6xgULBSjh+43fICDvoAE/NzF1BPzo6SmHvGAfT6fSVowWnLOece4bte/DqM/GbnSdMBGZW0J2crgTjBMeoYcPoP35DdBs78azTy5wGJb5nNKlGvC4bA7viyIO0T/i78oLzmNlhVueb51HuS66loc46F4P2+KR6gK+h4IryST9jXHFEj6Y4cSQdz//qvO4aP83iWiFM6jwosKOrwzknXA3UyLlgQEXlknW7zuF6rPJvsSjWD8Lz8PwAfc76xnvmdVZR35tw/1zEk45H7UvP7mCdqDZvNJd51weVAZTeOav2A+sS1u8KMGo6nzrMmyK+p0Zqc4QIU84RVz56Dhveq4A06tx512QZ5DnYcw51nKCtkUOu8gyZA9+0wDmD/F5bP4L4WZmH0TbqUZu8uZX1bnQu6ytvbuVFJ158UDvFs1sjsCYKCCgDEnRswJdCRAZeGoX00aTtwvjSKDwFvFX/6zgusyF5QZFlh4/z5E1tlir95OmCqr6Dnsv2NWwpTrlFdBRvW16Vl+8C1HgpD0zc4d6qOjscrVYrbfXVbrfTqg0GAIr1odiZmaX9y3kbQhCvJOKeaMcmkcldJxbInAGYc7rAQzNLERgAXnj1jo8zsxQNUKvVCoVpuQ1sGLLi1Wd4L9p3Rz8yOFQWNEVClSS/s8FnZgVeayguiJW1TmTaFj2Hv0fOxzq0q7zNIez6/Ox0w9lHpIK+zF4bOQyA8jtPMryagvaV6XqQGmH82RsLb+HnrpCOW8+p4wgVjQ4EcT+wcc0GKq/q8/2hK/m+qkur6km+J8u/goAKxml/VDHI9ZxN0yr39fpcZUuN1Ei21ZEG6aqi1/98f76WyhLzBhEyfC/8xyAw35N1Lj+fZ5hv257yHCB2ZLUmEh+Xa3sEBPD3qB1lv63Tdzo2+De10Ty51D7JAVjbIJYfTrnwVut1zHugppm5OljvF5HXj2VUZT6LbBu0NwJXVMZ5bmBgROsMbdLJB3FpBCw0eEBL1fnDG5uqX1l/oq9Yt2HOUj3rOd+rgDV6jN6P2+PNi/iN+0zr+WxSJrmNAB6Un7l5QOdDflb9jO9q/3A/Rs/uyYNHVf0MPr7KPb15h1PXNZpz1RS2tYAaOGZKPPjwPzvnAFDg4HGRKzS+2WzaL7/8Yn//+9+t1WrZZDKx+Xxux8fHqYgYXsixbTabqUI92jGbzczspTCm5xhUpc/gRJhVc674WChUgC0MgHkDFKtyo9EogWdwHpEeA95hBR/gG1D/2WxWcDxxLwYF8BsDR1UcgM/Aw4i8SYtlz+wlbJsBGvCMnS3m83Q6dScY8AY85F0l2EhSJe05p9FkGU2S69B7XWcbhP6BkwVC3wJgOTr6GfXGW7CihgTzjSd8rnvCQI1GI3qGsDepMTEfVV8wCPSZ5dKsCIhCNngrR3X0VKepIQQewgnR6AbmCxcSVuDN0+FMuF8OYDUrOkDq2EfvnrG+bScf7cg5NXg+jSBRZxe/VYku8UAY5ZEHuEZOeCRPKsO4jndtvjeIQZ4ogsZzqjZFfF/lDUeKlNWm4efmxQqzIviZA2q8NikpCKufcwsf6xLbVOxIeKl7rDc2SdwXmram6Vi5uUl5B9KI1KgNnlNXxpvcvMgypzKs71X7XMc8R65oBNImnXx+RuUfR4XynMbv/Ir0TCQ/0M9mRdlk/nAkaE5GmU9lNiTb3TlSXuM+DCBG0SubBmu4vzGevILsXhppbv4r+272wjuOivJI50iQJ0NlvInmU9YHmDMZ7APBLsNcyfqL08Q2nvqk4fEsQBzNoikWbFRCoSK/EmkVj4+PKf8edTIA2sDBBwN/++23tE2fbiPNaQFoK9peddB/VofCU1IYaOoos2LhFWEI0tPTk/X7fZtOpzafz20ymaTzFouf6U58TR47EHJUO+f/WVlDAHjCxPV1JfMzrtorsRL0HKtoMsPvcOqhYJ6fn206ndrp6anN5/O0FStPgJhAcH0oInZCcZ8IkfZWPPCZ26sOvR77WfgZGQtQ9mavV0p5zDMAhmg2HIvfMZly/4F/6G8AbV7uv8qcGqU54zY6hn/bZ37qpMtzjYKlZsUVUBg1IM+Q5+M8gxVznsq/1ojiuU+Nn2geZAOS+a7ADz+fR57BlrvvNonbpE4hG6SR8w8eefpX5Zj/Z54okBnxK9KdHsCGNimfvO/syHjOk/cd918lWuEjiNvFIJr3LEwqt7rbpb74HNyX3/mzzoXMcz0H36vIZzQOcjqV+8cD3cyKtc42yUPVdxxRo6kf3rj1wBpPRvh+3v352sw7z66M+BiNL/7f4w/r8kiWvPHhjfltRmIwD3PRF55O0d/0GfU35a3qUzN7NUd6to33LGavfYoqUTV6rGcPRzYRR65wNNK29ClsRY6miQqPe+evc0+Qp2vNqoEzfJ2qYBrOq2Kr5uSQbQTmY5UFHKZ33Z6bCQKiqRUY7BBYNh4YNZzP5+k6nHPJBi0GTqvVsi9fvtjT05PNZjMbDocpBaqsIxRV/SuSJ2CsuHJoJh+LPh8Oh/b4+JiimsxekEYNP+XICwbf4GyygKoBeKAXUuNMgSuebJQ4FQPAJuSPebBYLFKamhq+qFsAgIcVWkRl/0dGzGcnz7grM9JxHBuoHE0DgBNyyAY4A3Vq4PE4UoeRgZrcBI17qHH0EbSL4yVqkzpKanjqsZFBamYFB0YLRauR7jmbXtuYMFczaMPvuG4VJ3FXqWxcqvOhBXTVsY14xUBJ5Diir8v6Tw1Ydho9AzIHpHpOksq399L+2QVSYzmKAALp2FUghp1+/s07PyfHoDI7xnNSqjxzFXn2+Krg4qYd+4gUdOB+8xwldcr5WM8m8fRs9F/0W0Rlx3qy6Y3JqgvKnoOYG/MfSaorVU9qP5cBL5GNkdOz/Bv0KfdzJC+rzFnrgjXaViXmpRcBuGmCje9FjirAZla99tYq94/mNLOXbAE+NnedqvcrOwb35u/e2ObIRe67qvQuQA0mLb451xrxVth58kM4FXYLMjPr9/vWbDat2+3av//7v6fCWNh55vHx0QaDgS2XPyNxEFFzdHRk/X4/7UzDofy4n9nrHRiqDJx9MzxXIQXN0B9PT08p7YkHJPh2fHycALHFYmHD4dCurq7s+fk57eyEYkqIvOAIAb7uycmJXV5ephX+4XBY2I2GnU7mJa6lfPzsUTUq6N4YVgMSSsPMXqW3INKtVqvZw8ODHR0dWaPRSLtxcSgxr5Lg+kCKeQcvlnVtl7bPay/a/FeIqlHy0Hz+zIYr+GH2soPe0dGRTSaTFHYJOcIYwPV5guMVJwV3eHWSnRa0NZooPUOKnf639ssuk7ZVgTBEp7FBpvIKUiONDU8PyF4ulwlAxbUxL0cRNZEhyMCMOno415PLXXLeq1LkIHAUje4exIUevZVhJgW3olVAT864n3Ngm97TMyYVcONjWed6L6+fdoHUwVGnlRcXcDyTznMKzjDYzH3vzWE5R4WP5c9e9ITKuHc/PUeBiWiM6FiNIhg2SSpz7OSwj8GF2ctI5ye+l2dT4Bz0idornt2i18u1Jbq39oMCiNp+fGd59cCtbclnrVYrOKhRVBuDhDoPaRqejs9IZqDj+HfP3sjp05zuBumCRVXKgYcajbFNXkay6IFH3tj0bD/9rvaDXoPl11sYYqoCsFTlV6RPo+fQezAftbD3Krr13SJqVNFxJ3iMqtV+5i7CUUfR4NlsZqPRyGq1Wtrieblc2mg0stFoVFDWcOIBBnz58sWOj4/t+vo6gTkalaEGibZplef8LOQJFwgOPAwWVhoAXY6Ojmw6ndpsNrPb21ubTCYpTQ07QB0fH6etu5HeNpvNbDAYpEgcpEfhHHb4zV5CccFzFbaqYM2+k05OTNwHrAjQd/V6Pf2OXddwDiJpIFu4B9KczF5qXjw9PaVUtlqtVsifRbrOfD5P8q1KTQ3gSPa8sfnZ5E/JMw405YUnAQ5FNXspLgy5w1bNHGkBvYhrcXFvM0vHAXhjHmoaDJ+Tm7D5HOVjmdG6L6Ryx0aO7n7BuzloHn/k7HvOlVlx1Z+jo7BNJCKs8NnbEdHMXjnn/FwYS8pH1rGe0WL2snscH7OLxPJlZgUHn3dUAc94K+6IL7hu7h2fo7QKNlKV5yDmneeURiCaAm8R//W7Xn/bpDLCQCjXXmHHwhvvmt5g9qIPmbg/I7n3VtDVsYkWHdh50X5WXavy5ulT/axt9Z5h06Tt8CLXmKDnqlyTz9EVbe1Pr2/YDvUoB6Tw/3pPz/nT8/k5I3tJ+64squEjSXmoERgKpGpkBi9CaP9794j6wCO2bbnfFRTH71Woqo+h47UMFNK+iY79KNJxXwa66bk5imxHPV/f1f6ocm1tj9otZc+e07G5NqO9bwVP3z31yetsNRa8CQmd9vT0ZNPpNNW8QKHZp6cnG4/HhYJn7HSgSE+n07Hz83Mbj8c2HA4L1/aMFrNqyv6zkjcxqyHIQsGoKgwf8G0+n9t4PLbHx8fUpwDHTk9PrdPpWKvVShE2R0dHqQ4KFOVi8XMLYoA5nB6FtmJ3Cq6/AKoCuHkC9hlIlQP/7q0qmlly3jjiDECYOu9M7KQxn2u1WqFeDfMO55m9FBWuygdVqp+Rh9649YwZfXl5wuy0sxECJ52jZNhAgnPPaVMK1noAaZVn8xyBzwikgtCvuhLFxR7V6dfCj1WMbJV7NdbBUxSFV92QA0zVYfEiLbxr7TuBb2xggX8cScNRhTk+VQUhIxuF/885MGW8zDn06xrcm3YCc23AuwJs3m5BZq9TF6Aj8Zn78z3Gtt7fu6bysOq4WUUP63fv920Ty6DnrEbngHQFvipFoA3+0/tUuQ6fU+ZkRudXtW2jV9V2vydhzvDmNP4vGocKakbjl79H7dDvfN0IDC277jpUZQypjbSKDLw3ebzi97dQGUjJbajSztw86/F4VftTr83f8ZltJAYEud+q2HVMbwZqIrSKnTyE4sMhZFAGhqvZyw402C3oy5cvdn5+bufn5+khh8OhnZycJEcfkRtwSprNpn3//t0mk4kNh8OUHuU5iNFKw1+ZMJB4VR59pZE0zWbTarVacuwRkYH6JjBg6/W6XV5e2q+//ppAlvPz8xTyDx6Zmc1mMzs7O7OzszMbDAZmZonHDASAj97KMIytnBL5TE4Frw5h/PJ3XpWCkwEem9mrWk7o06OjI2u320luF4tFIXLGzNIqM4oO1+t1m06n6d5e+Dj6Hs4/UzTplinxz8JLVuCKwsPh9laj4ODryj4DrBxVwUA3roEIK/CUa0xxNARkPYrKwHHes+H9vRyPXSDmF/qdHcXT09NCnTUsKpydnaWUUE4L5RBZNdjM/JBbr/9xf6Spgr8cdcOpbriWZ8Cqcc3h3vhNIw72iTzngRckmHferhcstzz/MG94ldijiK8MHnA7I2NU7+cZwp6e9Zw7z5Bdx+nbhF2l/FNgFLoTx+rYZ9IVdv7MNpHOUSwvOI/bl1sUVH7y/d6qM73/PIfXc2g3TdwW3o2KnVQPBNF+4mgmdXBzsgje8/8si7l263XKAFN1LL3P6syW8URlmJ95k+TpU3VYPaBGf0PbecGPr+Hd1+x1VIW+tJ0eaAD59fquCi/eQtonnnxuilSvcmQIUwR45WyV3LHRMTl59H5jPq5qh+baUnYePnP/rQO2vWtEDTdAt5+CU4D/arWaTadT+/btW0p3OT8/NzOz4XBo//2//3f729/+Zs/Pz/bHH3/Y/f29/eMf/7D7+3s7Pj62drtt//Iv/2JHR0cpjQb3/P79uw2HQ+v1esmp15VEZvSqnbZPTkQZqfCz0gLP2OjHpNlut63T6djR0ZGNx+NC/QukWDw+Pia+fvv2zabTqZ2fn9uvv/5aMFiwDTuKQcOoarfbKb2NDSWs+CuQtMpk9hnIm6w8xc4rwY1GwxqNhtVqtUKK0ng8TmlRcOw45YkVc6PRsIuLi0KaBh+LlCgzS9FVAADATziKZtVWK/UZc8j5PpHHL/AMssTbWvIWpQzKcJQUOwJs6DJBdgDamb3UNAE/AKCbWToO1wYY69U64WfT7xqRYbbfW3Wrk6sRGEhxwtaMSP0EUIPaa5xGw85/FAlg5jt2zA81DsBbEOq9Rek0PF/yZ4wddY6iz/tEPIexzsSOlJy6y1E1kfGlzkLuvnjPORXaTuhrjU7k8/jaXltwLY+v+H8f5lNuN0esYc6DDoMDz88bRbooAKnzEB+r/ax9zHOWxxOcE51ftQ/U0S+Tw+ja2+S52pyRo6or/GoP8rzCAEyVMa3Xw29VjvV44H1/T/JkNhpnmySdh/jlRUypM4u5kO0aT09F9/Z0qSe7rBt0EZhJ7ZV1+zZ3Lv+eizjaJOnCYWSToP8Qka19zQBq5Lfl/DnlpQdAq8yDeAFf7c8cRe0qI+YZ81HbUEYrAzVeBytpLilSl5S4SCyvdpycnNjFxYWdnZ2Zmdn9/b3d3t7a/f29XV9f28nJiXU6Hbu4uEipNAwUYNWr2Wy6+5V7RuRfOf3JrLhiy8RGN68QN5tNOzs7S3wejUZpUoXhaGZ2dnZm3W43HVuv163T6dhisUgr9vV6PUXicN0hTguYTqcFxcjK/COcgX1zMnIKAdESbLzCAIWsooYJnrvRaKTv7OQfHx+nlWVch8fOYrFIRaRRzBsyrluBQ954u3Xvucx+jsOcQt03fnmkRpamXMDh4Agp1plmP/uJ9Zg6/WwcaTE49DFqkbAs45q12ktEjeccenxkud0Fw/GjSGUQjn69Xk/zUavVSnMW3jmKRnmTq39iVlyRjZxzNorBV/CPo2pyYJvOA+rwcJv2VRZZ7sA/TVFjgAb9miN12Phe+D8y+HOGKN4V9ORzPQfRuw5/zx2zDzLLdgpsFa2pwGmgXpRaBJBwP1dx0PSanh3q3fOvTqpHIYue3tMXR7FpBIY6j5G8lc1ROX6tMj7eQlWcfHZEt0U650c88343e/ElPX6V6SZ1qj3H3buex9uyCP33JH4Wvue29K/KYjTvm5XXnYmOXeX3CKSpqkM3yUuQysCq9KaIGkXrYeSwU2D2ssK7XC5TXRE45AjFbzQaycm7vLy0r1+/WrfbtZOTE7u6urIfP37Yjx8/7B//+IfV6/UUifPLL79Yq9Wy2WyW7l+v163dbtvZ2VnBmeHwYbyzQbOKcv2MkysPIjbG2dmGs4FaQPhtNpvZ8fGxdTqdtGPQ6emp/fbbb/brr79ap9Oxk5MTOz8/t7Ozs5Qig8iZ6XSaEGxE1nS73bTNt4Y+8uTtKVg2xKogpvtK3qQHZcrOBK8sNpvNJJPgG1YYETHDkRbdbjc56CcnJyk6AIDb4+NjAl+en5+t1WrZ8/NzSmFk+QcPURPHQ7zXVWbaL7sun57yZlmDo8hpM6jZpSv5rON4PGAXPfCFz+FoG5Yr3Bu1hgDoMcgGZ4dTolS/4nO0ghzxaB94p8T843QnRNGcnZ1Zq9Wybrdr7XY76VGkEmqhU5Zl5bOn73guY0IUDZwURElxTSrloTcflhnb++506twHYBsyh4gapD15kTTeyh9fn20Nz+nEZ9aJvAqp6Tf4HaR1oxSs0ef1AInIAPfO3zXitnsAG+s5tSU8W5avy+/RqjyTdx2QAt/87tVz42fbR9lah6DrNPWJyYvAUDtReerJQ65f+Rzlhzffed/N/JRSj7xIArzrYnJuLHjz7SaJ+5znMLPXRXLV+efjIlCg6vOxPq0qOzym1DZFu/Qeb+3nMl6+h038FlL70GuTzjmePeL9HvWfnqtAjQfSbAOsydmx+t0b51XoXVOf1MGAcmEkW6NtWIAuLi7s4uLCfvnlFzs/P0859aPRyG5vb+0///M/7fb21prNpi2XS/v27VsCd8bjcQIN4JR0u90EIugq4Gd23lclb7LTlAk4+4iOQcQTjH9spT0ejxMQcHZ2Zt++fbPLy0vrdDpmZgnkOTs7s8lkkiJnMC64XsrFxUXB8eF0J1Xw6xgw+2z4eELPK4maIsPFthGVAWcdhiwinDhqg3P74fgzaACFV6vVCjsN4TwQ2mZW3M4Q7Y6cGH5WrErua5pMjtBv7CRy2kyj0UgpouAZeKirwrgergU93Gg0Eq/4XDV4QUgbxQ564AMiJNnZAG/YQIuMKda9qxjNu0p4BtZV4Fu73bZut5v0JuYkjfhkAwjXVNlW48gzTvh/nIM5mO+DaCk2SMucRC+KZh8deo/YoUDUDKeqAWjjdE+zF/AZ18BvzAO9j+c4VnH2PZuF+9eTK0+vVjEq+bdtOwlViW0XjWLjyEIzv86BOsnRb0qR8++1DZ89p9Nz0rmtVe6L662qQ1VXb9sp5PkrV2SdI6UYNAWVOXA8b3kLud47A3t8nTKe6jPif+8YBWnWAQO2LbORbeoBNbrglIuy4evrZ8+59xx6bp/qZBxXxU/Euavwh23mHHlz/qaJ+8azGbn/opdHOgd6/6t88XuunbnrfhTl7reKvRTRuwA1KjBQoCAI6XL5sr0zjuGwfhSRhUNyfHycdhHCtt0oVDqbzVKqjNnLCiEGEFZUeHKugqK9Bzq6j8RKlQ1RVqCIyOAtSqF82+22zefzlIYGcIAdkqenp3QdOPkMKEApqhPoDXJub87Y/SsQyxyvXnD9GC1kqjVNOO2JV/lRtBsvrqmBFArItgIuLPdMbLDyM5iVryxECH0Z7Sowq32gzjQXMkUkE8ue54Bx/6N2EGSNgZqoLWz0Mh+97ZVX7Vd93s8ks+CdV4AWcxo7jgq25fSc/p4zPtEWddLZOPR+Y6qyWqttPDoq1jnJ0S7OsfwcvGU61zjxau+xQcpFhFU2Iicy+q5tK2u3Oh1l11TSaATvvu+1Cvme5OlQ3aGLQWjm17rGc84o58/qAOp7dG7ZMR+hN3dJJnXu0VV8b45S3ac60Ow1+Mngs/7Hn3W8lMmuXm9VZz5HVYDBXaJofovAmFwkTVXKAd+5cz6zfbIuKW+YP2Z+pAuAz6g/I1Al4rXOaTn5q8qzqlE1nizr54+md0t9UgOQhdFz/sFI1Dq5uLhIkRcnJyfW7XZtuVzacDi0x8dHm8/n9vj4mNIs8B1RFryDDEcJ4J6cl6wrl2xkrVKn5jMJMk+KnA7Bu8zAaGVHBFET3W7Xnp+fbTQapeshZBwOyXw+t1rtJSrj+fnZ2u12YWwgNY75qTxh5yNS5DimTBj3nYesODVdBo4FVhexwg+gBnxFCiL6gmtmaBFG3UrYzFI6jNnr6uow/gGk4pgqzv5fCTRlPnpFTBGJBqAN0TE4V9Me0Pe8ox6nsyElBrqTKTKEAdR4wAAMY/1fj9PP/PzeGNh1+UT/cDQNR2OcnZ2lCEJ8hw5l4Cw3zhVM8Ywd1oncNm2nXoOPq7JKrM6Q5zCoIbMPMsx85LpCDLBxeppZMZWTr+H1m9ZDAU+9lVyQJw9sz2jb2TFlioxgbqvnaO4bsSMB/ck1hVZ9ppzeUeckB6qUOZwqf7us7zZF6C9NfWLATR1H73yVB08WWKYiPpbJUHTtXaBttUftCH6PojP03CqUc9KZ/9DX+l/E80302yrzI+uTbVAOQPPAGv6dP6vM6MJH1c9l+tIbCyrL7714W6brzV7bc1VobaAmcoDRCex8o06C2c9IGNSjeXh4sH/5l3+x79+/2y+//GLfvn1LjgUAgsvLS/vb3/5m4/HY7u7ubDabJXCHUwRY6M2KgoZ3Xv1nJ1Lbv2uKdhPEAA0bpegPjrBA5FO32y0UneW6M2ZWqKeBdDV2Up6fn1/teKK5pBEvPGNY/2ew5jORju0oAgN9DZ61Wq1UH4ijbeCs4zMAOvAbhONxL46k4cKkXEza7LUSzz3Xqv0QIfP7RGyAam0M7K7Wbrft/Pw87Tij0YJm/koxwDQOt2V9iHeWO2+yZSDOM3bwGfcuc164jXyuHrsP/OS+Zge/0+kU0p7U4Wf+RWCMTvxlK0c4juUQ/OO6QuA5rsMvvle0kuQ9/z4T9CjAacge+MbznFkRkI70GqdSRPMTf+d3fPbsLM92YSAV53r3rNoX/F72+66Q8lDrQClwUrY6DPJkQ4/hNpTJQ/Q/xhJf3ztuFZ24jg7dhagptjlh13DajBZZ1yjdaFEI/3FfcwQOH1PWPo+PZbJThd7DBymbezdFvIjoRUBplGdZO6s48vwbv3i+U7CAgT0mry05f+K9wLq3jJ+PINWZHrgW9bfZ66LICpbk7ED93dPRueOr/L4uraJfPTCyKr1rjRoQHDpOaUG9mel0mnaFeX5+tvPz81SbBts9Y6ttFLP85ZdfrN/v28XFhfX7/eR4Ig2AEXct0uYZURxVowYOztm2YGySWJny7kC8eoj/UFCRV/YBBiCCBtEZnDZzfHycjmV+sODnjF4mT1DXNUr3nVSBasg35+orzwC4QBbNXlIIGahhJ55XQ/gFRxDX4muys5hzaJT+CnLIypujMnS3IDj/nPrExo6CKzwm0PdsCLHjEU2u7Nyzs8/AjhY9Zfoo/u3SmGD5i8BSXtnXArRm5hqrZX3nOXTsnCi/wDPIN//GfObniu6nzx+ds0/Eukx3yON0bZYXs2KqU0TsCDDQE/UXXxvvXqQvgzVl8lcG3ERt2TeeMlijRdc9OQNp/+UM/cj+wNjIOZ5VPv/ViWWFF4XU5sg5Pvici5bRa6wKakWAmzqi70lVwLtdGUvMAwVoFFyLninHk8h5VxBGZTbn9Hv3iqJ9N0G7wkszP/gh4hvbjPAPQNqfWiBb9WgV3byrvsJ7tWlloKbsxhBAgCkwULHV9sPDgzUajVSc8uvXr/b161f78uWLXV5eJmOSQYF/+7d/s/l8bjc3NzYcDq1er9vFxUXaQYidFwABEVBTxtBV05/2nSKQhg1V8BRba3MaBqfIYCcg8BZ1hmD8wolBuho7/wyymflh+Di2qtLcVeF9L2JH3XMUuYAw7zTDjuPj42OqC3R0dJS+Hx0dpQK2s9ks8YtTptjQQcFZ3WKdnQ5d8fVAOVXOn52HIIA0nPbExUyRPoN6T1x3IZIJNlIVhNHf2ZFHfyvoxjv1cUSG5+SXrZB4APk+E5xD6EzdKYhrZXiGafQ9cigjw9PMXvELKcNIFeYXgzXghweaRw5Jru3R8btI7OCr/uTUGTX6c8YkG5zcV+ykROfwNSNnJQdwe05OmRP6FuBg27zlftXUJw8c9XRU1N9lzl7UFu/33GceL5Hj/Z4LUNvmWY5gk/KLHX3P4cd5/Bm84jnSGwfKe8/+XEU+PL1QZV78jOSBNPy7RyoHZSCaB7Ro5C8vOqku13PXoc/KU+VfFE2ji3qsz1hG2V5UefN0a1UQnemzLf6+ezFhbN/7/ft3+/vf/24XFxfW7XaTUYgaJo+Pj+4OT9Pp1O7v763f76frXV5e2t///ncbDAY2Ho/t9PTUvnz5Yt+/f09ROHBAT09PbTqdvjJEdQB4Cn0fGfgW0pxRGKlctJSNVf4d28weHR2ltBl27M1+pryx0zeZTGyxWNjJyUly6geDgc3n88LKJPjEjoWu/Hr89CbBKnwtmwR2nWDUcOoFp1pcXFyk2jQKsGHnLSg2rlcD4G4+n9tyuUx8gOG0XC5tPp/beDy20WiUCnxDjqfTaQJuOGWGQYMcIs/f+Vm9599X/vEkyGmCnDoDQLrT6RQKePN5LBPoD+5j3o4Zv6NI+2w2K+hLnDOfz206ndpkMklg3fPzs83n84JMeg69J3f7yqMcsUPBOpCL4nOqIQwW5pWu9j4/P7upUDzO2RBiwweyB34CoOEab/gO/oGXem3cl9tQlYf7OJdCljh6DXOfphkyRfONgjT8H//GYKuCq6CohpfqVE8e15XFtwA32yIFTBmo4ZdZcd6I7ENvHvKAG6Yy59MDOMvAmojew27dRd7yvKibJGjqxarjVGXUcy5h56wCbjJ/Pb54PgefW7X9b6VN8dtz7pV/uTZ5gBn/F/3OUcS4BmyXyOlnXar/KZVFMn5WYnnzgBr9zPZnxK/c/MS2EstrlFLl/e+1bxv0VplbG6jRDuIJstlsWrfbTdEyFxcXyWmr1+vJ0G80GnZ5eZlWH+fzuc3nczMzm0wmVq/XU7HZbrdrv/32m93f31utVrNut2uXl5fWbreTUwnFCgMVDkiUcqHEE+QuTl4fQTwhYjJEjQyutwDnH8dA+alDCLBHjc7ZbFZwDOD8jcfj5AQqcdi+KgLw9K/CJ490ZYINGt4iGC/erhR8ghMPJx0FnxkFZ7ANL9Q+gTM/Ho+TMwh+M0jDYBAIk+g2Q0t3hTh1TVNn4HBwbRM2dnS1wsyPWILcoHgwF2LniAvQfD5PfAQvn5+fE4/VMVSHdBXjc1/lmI0WjWjLpTspAZwBsf7UeYn5yulM4AfmPZ4DMefixUAN8xDtLDOSvX7YZ+I5EIBpjnfewoCOd60vw44cItdU/+kqsDp/+h/fWwFxbstfiThdBpFQ6liA3gLU8O85p7yMFKQ50Is8RmlrkdPHVAXoxHsOeIt4ErVDj1GAtiqP3+qP7ILsKzBZBVSL+kdtDO93BtsYpOHv3vW9398ii5/NN2GfIKdLVeZ4vKs9w/NfzqbIAdc50Ibbpe/7xpt3iajh9Blss315eWlfv36179+/27dv32w4HNp0OrV6vW7D4dCWy2VhF4x2u21XV1fpGETOwNi9uLhIxWaRGvX169eULoOwcjibk8nERqORPT4+JgNGQYmcc7iPzFyFdEWCQ0y5mGmj0Sis6KM/Z7NZEjLe9Qfn88r809OTjUajVHMIkVXYch1Ovjp3cCS9iIwy5/CvQhoCrDuWIDIDvEREDdeygeMG50EdE6wmw0nHVs1w4MfjcdqdDZMi/oMDCUBAIwoiNP2vAJp6ICmnEfILURkA1/g8BWtYhrjv8fnx8dGWy2UhugIv/Gf2EnEznU4Tb/l8s9cr/2X8+kzyiedUgBv840iashVDBrzh4GvUGRs1mM+gGxl0m0wmia+z2exV2hN4CNJ5EOMmMmrX6aNV/9skqTyx3RHxj7/rooT3u5kVonJwT7ZLzIrGLMuW9678UTCcIwJYJ3wmGVQCrzygTQEb7kMFyJifnhPoLf6tC85E56pTW8WBXZUi52YXSHlWBtZo/7A+zUUJqg3ptSPidQ7A1WtW4dFntHeUj2XPp/MRz3ksl2rzsCzzwoV+xvFMOQBH2xLRW3lXRS9vQ17LxrhZsf90gcH7X59Dr6e89mTXo7JomrfwSP3TTc6jlYGaSIHxKlSz2UzFgeEUdrtdq9fr9vj4aMPh0G5vb225XNrZ2Zn967/+a0rDOD09TfVnYGBMJpOU1lSv1+3bt2+F1X9s+TydTpMwPj4+Wq/Xs36/b+PxuBDO7zk10bPycZ9ttV+de/4MYxKGDoC0o6MjG4/HNh6PzezndtyIzDg+Pk5OHQshK1jUrcE4QrpMv9+3h4eH5CSavYA9cDJU0NRIhVOzz4jpusQGPtcLAviJXWcA1LTb7Ve535A38BN8AN9w/ePjY5tOp0kGkRYDEBaTIRzBp6enBMyZWeGzOqHKw4g+o5MBoBSOvm4L7DmN7NDptfj3qL8YnJlMJjadTgvyBt4zgMMRGCB8hqzrBBbJ4WfRqaw3ubaQV5dGz2N9iOtE/aJGEGQFssj87Pf7KYKVo2s4upQjeHQu0KgaHKPG7CqO6irOyrYIdgyi2BqNRtKPZq95xsQOAWTBC7UH4TqQGdhRPLd5RaAZVMhdm3dsZDAockY+g15FP3IRYQ+owbEe2KXEDoNGvTFFBrw3XrwFiEhfV3VQqtA+gXTotxzQhuP4PSKemzxdqjLlgS0eSBTd37vOR/X/LvLUA2eiV1VS3edFDrKtqSANf9fzvD7UKH/PH9wnmXoLqa8Y8c4DwPSzpkThM9/LA89xrqeza7VaWPPQuwd+34Y9suq4N3tjRA1uyFtawsg5Pz+34+PjtMI3HA5tPB6nqBes/sOZWy6XaaWfkfDZbJYiMfi+y+XShsNhAS2HcTOZTJLzgevjvF1eQdg0qdOHiZHrX8BYXS5/Rklg4mTFx8aRrgiOx+Nk6DIIhLQn1B3Cai8brnAudKWQhdUbF95E+pmJ8351xxLe7hmFoTlyiiOhEBnFq/NPT0+pjgnqzoAfcAYRcQG+cJqM2esVLfxWhf4K/GOjFAApeMi7lnjOBl9DSSczNlgAwkBPsqPPYBt4yfzVic8zaiNHpGp/rHrOpkmfXVNmmG/ROWVj2wNuuP+ZT0hR45pCLK8c7cb8Y6BJr88rY9qGzwK0MakMetv/4jgm7TN2CHgsM2Dn9bMnrwp6e+mG/OK5QKN1lNaRL89Z3UXSdBkmjwcelYHdej3+rv2jacR8jzJnbxP9vGu89BxD/F7Fyfd0lOfcRdeIADYm5elHLBRG8+k+UcS/VfSPx8vIvsjx3pP5XbYzmHaB/2V2JvNFP2tGhJ6r1+Pzo0iZKnLx3rITjd2PBO3WBmpY8ADUdDqdtKL49etXq9VqCTS5v7+36XRqrVarYByORiNbLpcpXWOxWKRImuVymVYL4QByrn2v10srmaenp+l41MwYjUavCmRiAgfti5C+J+lExxEwmheMLbYBml1cXNjR0ZFNp9MEzCwWi4KDYvYCpqAoNEA0GJ+43mQyKdRL4DorWOFH3Qw2aKs4C7ug2DZBLIscmcE7bQG4QR8DDIDzBkeTeYOVeETMAHDlSAuOogHPUY/I7EVBY2XSU+Jmr5HyHO/K0hb3kXTXJ6/GiVkx8iLKF45WHDgNip16yKDWogEfOXWKI2hYn2oochXg6LOQ8o6BGq1xouObo1dA7KTowgI76sxLADOIegQAx5FuzEPW8dDZaEdkzJY5tkofabi8NzHQwVs758BRs9dOgc5REeilIIr2La7L/GVdq4tPnDrJUUDa1nX6Zd1zNj3/sl2p4LaCNt749lIpWK9xn3OUVa4tOTBd+Y33HAD+V6UcQMOAZc7x8xYAMC/yPfg/fuffoyjJKsBf9N17ps9EZcBa9D/bkrlr8AI/jvfsyVVtxyqRrnqPVWhf5khQGR/Lfs8BNZ6sRrZk7jqeLO5bPzOtBdRASQEkQS2Mdrtt3759s+/fvxecxMfHR2s0GqmjUGj427dvZvYzxIyjabB9N+jm5iY5iSwwvV4vReacn5/b4+Ojjcdju7q6spubG3t4eCgUx+TUATZ2eDBEqzCfgbxVHt32sFarpXS0o6OjQqFf3gUDEVQIEYdRc3l5mXZygnGJ//A77xrDRRUXi4X98ssvZmYpSgNgDcgzhDVlJlrR+mzOvVnROAX4wrUywC/0E9IyED2D+hUAZ+Coj8fj5Pjd398nh57rX3iRTuAtiMP54RDyfzjPzM9t/cykThYXEQZQwzqLHWl2Is1eotVQP0iNFvAakWyoDTUYDFLqIVKcOFVGQVHcW41jGLwqc1VApH0m9AHmQuZbrhAmzmHHnUEvkLcSzwsYiIrq9/s2mUxsPB7bw8NDIVKKwR0QO/TaJo5Q5Xt6nz8TcTSNRoh65DkEDKBqTRocy84hO/ycKoxIRuhg3pmNxwfaCJCQ26H3rqpT9TiOzlnlOpsm1aer2HLgldqEXOcnchi8/mLZwnF8Dl9T76m2TJm8rcKPXeUdE48zTc/02q9AqvKEgTWzYh2o6Dp6T/3dWyTx5kr+nc/flA7dlj/jyUUZD838KCWvv7wFDD3e428ZRfOv3o9t1/fmpfes25bbHO+i5/dkSf8rszM8eeb/I3vSA3pUVlfVm7nnzLXhPejNqU8wEBBJg5oYvPpj9nMixFbBqF0DY2i5XCZn8enpKaXCeI6H2UtIMBubiM4YDAbJaOVwfSb+rs67KozP7NzjMxs4+B2GznQ6TYZHq9Wys7OzFGUDZ97MkgGJ9JuTkxObz+d2cnKSjM7xeFzYKhbERhHn9zOYw2kbvKoYKWMVks/IR7PX6Qu80wWnM/GxHGUGZ280GhVAGDgIw+HQRqNR+o50Qk5tQl8zgOMBn9FKFv+37Qlp06TGIPNQQdTcROFNomw4AqQB2AagBtEXGq0IBx/X4Xvx9tEqV2UrzZ+N1Dlk3rE+rWLkROHdHl+REsNRNPxCtBTrUDNfHlmvRivSkfEb9cm+kepRBdeU1Akrcww8I1FTO3A+78TGKWxcDBrjChF3DPTVarW00LIK5VaHczzdFX7znBNF93l94s1P/D1nO/AY8WwpXqjQRaXcnOc5Gqs6F6tSpKO2RWqLr0LoWz6X7SA+zpNT1r3MV72mXkvbn9OXbwFsorGwS/wzi4EOpipt5v7nqF7+rsdHQFzuPP1NI4XL7vsZad0xpWPUs2ci8CZ33wgg5XN40VfP3aRO5Ta9hd686xNWgbF988XFhXW73cLuIDBem82m/eu//qt1Op1UNPj09DTVsTk6OrL5fG69Xi8BMYjWwKoRr9q3Wq1kVI1GIxsOh/bw8GC9Xq+w4xMXGcqFxe0CcrlJ4vB6Dhc2e1GM0+k0RWagUDSiMv7X//pfyRngYpUYE9PpNEVzYJcgjtpg4ACRIGYvKDXXqOHUGg7hj5TlX4GP6iQySMZOP+/mtFwuC0Wf4Qj0+/0kV9jJKQJquPYMRwGAv7g2HHkcw8BOTtniO9qr9NkmSPQFp1xo6gX6WFd+zexVdI3ZS39CdhB5gagLFFsfDoc2HA4L4AwcRLPiChcbOeCPRl9EkzM+r9s/uxzF4fGPneboZfZ6lyCzl1U9jH925DntCcDbaDSywWCQok4hr5PJpABoq/OICDcGyD05fKsu3SddDDsjty232Wughp1A5VnkAOtYwHU4mgZ85I0R+JqwkxaLRWHhKge4VaW38G3TPGf9xO/6P3/3+sMD4PC9DLzKATUK0ESFLzkKx2vnX0Ue1TleBZTwQBqeQ73rsK3CfgHr9gg4YqewCjDz1rmsyhjYRR5HDrqZbzd452Ae4/8YOMk9N9vA72lD7rp98hEUPa9X4gDE/IsiXVadnxT09gIv2G7V86J5YNX7Vz1+XblcG6jRcP1Wq2W//vqrNRqN1Jj7+3s7OTmx//bf/lsCZ3755Rf79u2b1Wo1G4/H1m63bT6f293dXXISEBlzfHxsnU6n8KAwWobDoX3//j05iDc3NymM//7+Pm3/jLZ6DORO9oyyz+YQMmHQ8Cpwq9WybrebUs+enp6SEViv1+2//tf/mnYFur6+TlE2ZpYAmF6vZ4PBwJ6fn1NaHGqhjMfjVOwZ2wxDaLGt+2g0Su3SiChVsOws4pn4vSrtm5JlxcM8RMoFAE4Y/eAR+om37sV37KLGgBp2AkLUBfiHdCmWGTj56hRyyHGOLxECzv99RsLzspPFnzk1BcYi9y/4j/8AzGBVHs58v9+3Xq+XUmPg0CMCEav1XHyda5koiBsZRZEM6oTqUWRI7zKxHtW0GeYdjo0WA3LOGIM6mCMBnA4GA7u9vbW7u7sErmKRAvw0ewEg8B45DZ4xkXNC9DdNk9kXgnxpRJSCa8ondSgwFjxnjvtEgSDwFbp3PB5br9dLenc0GiX+MxjQbDYL86AXsZGL3KjSL/tCCtaUzTeevKkzoYAKOyKePCj4xqnfunMeAwoMvHkRQe/hWERUBkBtkiLwiz+rDvW+K9jCfa2Rotq/+h+Df3ovBvR0bKgeZD2amwdz/OUIjzKbSPtEf9sklcljNAZVLpXUJ2CwzVtEwrVyi/LenJj7P9e+dWkX7d2cf+WBo9553jVULlRGGJzDd5W7HKjuybd37yqyoXzmcz+SZ29OfWKHDLs+cWFFADKXl5d2dnaWUmLMftYhub29tevra/vf//t/JyE7Pj62wWBgy+XPYrRw+s/OztKOFojCweo/ImqGw2H6P0LZzIqC4E3s++YwrErKOzZO6/W6mb3UQtCJ6PT01Nrttj0/P9t0Ok3bbCO1CVEV7Xa74GSidgpHXRwfH1uj0SjUvTCzV1EzuD+nQbGS3kXF9pHE/OMXGzM8GXG/6soeIm64bhMXpOS+5XMRMacGbW4C9BSbTsZqLH12Ur7pbjOew2hWdArRd7xbEwNuvDqPXbzwPxft9gxcln8PQFDyJsPIOK3K6113GJlv3qq4xz8v1YnlD+eqvCKCkYtBD4fD5NQj6g06lJ3PWq1WMGyifo+MUz0nNx7KjPNdIrRT5Q1UdXx6zj//7p3HfGV+Ih0V9YbAN56zNS1Y+arGb1lbyp5Nj8mlNGyDVMaqkvJLnQDvmOjeOBbyjTkWCyIcCcw6XFeio7FU1vZ1yDt/m079uud5uimn43S+i9qgczCu6zloUTvM/K2J/+q0ytyf69vceZ7tuYqDrlSWbrUv815V8ubCKraDNy96x+V+0/mMf/P0NP737sn8eesY2CS9OfWJnQms6HMay3K5tNFoZL/++qu1220zs5QuMx6P7Z///Kf94x//sP/5P/+nmVmqYzMcDgupMt1u13755ZdksJhZWkHEFs8wbpDCwY4nSBm+a4bGRxP4hc/4jlz3Wu0lv32xWNhwOEzCMJvNrNlsWr1et263m5zA0WiUVv+QYnF6emrNZjOt6CL1DRFQ0+k0GSmIrnl+frZGo1FIdfJems5W1ZBap692eTJlw0EdfOYzH+uFzmMVD446Vt21Tgoio0CcWshGJmQf92Wqij4zSFDluOj7PpCCayyfKqueQYlnxqotF+HmyCi8M0DDRYQfHx8LUSAaDVWmK6OV7H3jxyqEflEZjFbsIv3Ejl3uf97piQt8c70hzH1PT08FEA9ti2rRKK2yervvxHysMtZxjtnrkPsqQJYCdnDkAdIoUMPRpQBplsulnZ6epvPVeFUDtcozHR0dFdKSc23fVeO2zNjn38oAEH7PAVnqkPACEuRRo9zMXqI/GJj1UnDKnIp1bJ8cD3eFt1VsADMfJPYcNO887tcIHNP5t8xZrUJVz12VtznAaZ8oGp+qa72o+tw1cyA668l1eLzP/b0uvXWRTXUnf/YAGrPXdfVYT2AsRAvN7wHSRH7GR82LbwJqsBIE4toj3759S9tj12o1u7q6svv7+1Tn5OnpyX7//Xf7H//jf9jt7a0tFj93pHl+frY///zT7u/vbTgc2u3trZ2cnFi327Ver2dnZ2dJkGCc9vt9Gw6HCbThLWYjRc/1AHbZ6PgIYqeQt29uNpvWbrdTDRqzn844IqN6vV4CYGAoYnUXr9FolK63XC5TuD2My8FgYLVazc7PzwspGmgPoqEwrrg2DUfUmL1eqV/XgPwMzj1AFew6AwXEudVmxdBfFHrG74iKQ7ohah0sFovkMBwfH6dVe9wfegBtQRqVmR9NoYYvT7IeCo7/GFwtS2XcJ2InH0AJ7/akERoesSyBp7pjCQNBDHjyWPKKzuL6uKYHArJxkwPj+Hf9jPvu26oj96umq3lAG84BcR0nEKcpcaQT85jrlzDYhp36wAevVpU6Hip7MFirGDJ6DXYy+f9dJm677oSF/yPyAHGWN3zWKAr8zrt3cUri/f19Ali5vhfSkc3slbEK4pVG1sUK1kQyqs+jn3eRqjqoHvDiPRv6it91POTkh9OEwWO2ZyCXsLVYNsuiF9+6KOXNod59tsXvdZ0nvHv9A76j+DaD42p3qAzrNfS6nr2iaVa6yp+bI6N7rAPY7KrMRr6ZJ1P8Oz6z3uO+hOyofcELFDwP58BPbie3NZKfj6Cq89A2qAwA9drNv0X2EV9b5zWWXQ+gMcsHYETA+1t16jpU9X5vjqgBwaiEw4+tmxFBgRXe4XCYAJnJZJKAgqenJxsOh6mwKXZuGo1G1mq1rNVqFQoUc9FThH1jlRiGbVSwjYkNmb8SsQGPFwAW8LBWq1m3200RErPZLAFhZi9baKP+zGAwsMFgYJ1OJwE5MEihPAEmcDQGCx629AbvmI+MouI/fo8GPYR239PZPGWmq/gM3LASNCui0d5OauAZClTW63U7PT21VquVDEjwrdlsFrbirrI6GSlSnWhz19kX531VUqeO33MEfqEeka7kcp9ywfCck64Oh94vMlahSz2jlImN2NwxOWN2FykyDnIgDb6zbDCPPFCaIzC07oWmhzLYirbwe0TKz0g+PYMMx3vO7y47+2Xtihw//S1ydhXEwe8cKcV1ajgtkUE2jorSFUVvpVHBmir9H/Ev6qdd4amnM6voj9zcEzkZeNfFPpZDjWBkZxE2FxZTWCdusj93WSZBZTz0FoJyiz34roA5fudjIsAsmptY7sra/lHz267z0+x1JEvVNpfxQ22L6PpV5kI9bxdskW3xdhUZxPeyuZA/Rz5BGX88mzSKBtbPVe6h5OmRj7ZV3wzUcGSKAjVw8IfDYSpSitU/TGKI4kDBy36/b7e3tzYcDlOoKIAcnIPVRKTboP4CO/URgg3yhG8flNtbSY1FBWoajUbabh0rD4iKms1mCUwzewFqAMANBgMbjUZ2cXFR2FEEfAEPUCiYgTe8eFvgWu0lNcfMCsYniHlXJnibRME3QezQa+qTRtJwv+GzRpyh7xARAxC13W4nQx+ru/P5vAD8qMHj1dhQis6PiK+Vi7zYR+fec+Dwf05XgV9wzsFTpEHhGuwUKKjnRRWyw8AOu0c6ttbp/33XvTlwrcqzeVEZZvbKEWegpsxZN8sDa/zZe+lxSp6xtQ9OXxmVPYcHZkbGvNof+mJ+MlDDad+YK3m+Zv3tRZwqQBO1X59b+wCfdVx7BncVHb5r5PGO9VfUT94LBPlDMXe8tM4Q7GOkmoO/nr4tcyjeU+Z2SX5Zl0VUdc7xdBrLoaaFqk73AMBIj65iZ761v8t09C6Q58R7BFuwrN1lcqrRTJ6+wvfIkWfd7bVzm7Rtvub4p4s76+hQvcdbbHo+L4q2Wge02aSfsTZQ4zn7R0dHBaCm0WjY6emp/e1vf7P/+I//sMFgYIvFwm5vb+3p6Smt2Jv9BHPu7u7S1qKDwSCt1iOK4+HhwcwsTYKY+Fggo3BOdYSqGFdV+2FfnEImNgwQSQPnDjWGsCX3/f194snj42NKs0EB5x8/fqRdKb58+ZJANUTWoPAlh+r3+/1kgHLhYLMX5wROIkcGgAD4qIApX73Va9xDr7fvfGRwhI0/dgh01QiAy/HxcQJBwY+TkxP78uWLnZ6epkLRvKsU7xYFXnHKGu6JPudaNh64g+dB+3JGKRtW/Dz7CNgwD1lHeaG6OqlpCkStVqxDhCipxWKRgFXoXbwisIZBb7NiKhX6n/kVRUxx2/U3tFnPxe/7wD9Qbrwyj0GekcngGI5h2VVATsFX1n88fswsAe5HR0eFz1qnStugkXn4DTzCZw4j1+gAvteuk4LXoMig1PEdHePZIAzQYIc2LgoN4IYdGObrfD5Puh/6WdOJkfam4Lm2U0FwdVI9J2fXiRcDmKfR/OLpKv6vyvyEaG9EIHsFoTGHNhqNQjux4Ilre5FQVZyKqrpTZXpXeOo59jkQRPvHzO+DnJ3vzbd6b71WFPEY9X3Uv6v4Hx6YUXbP3Hj9KFIQOQLK+F0/547T/7wxsK5fx+d6tmUV8uxb/b2Mcr7MJsjrT+1br406Z3gLUdG84rWB78tjSv1/vY6CcGVpjFXa4f0W/fdeMrcWUIMGwGmDwa951FiVb7fb1m63bTabWa/XS5ExDw8PqfM4aoJzsmFkcN49GKXRGCB23nRy9UiNzM9ManzpNqFmxQkbCCmAGRgZx8fHNhwOU4oaeP74+Jhq2HBB6eXy5w5eyL+fTCavwhNxP+/FhuU2Jp1dJE8Zgp+QKxj2XpoZ5IfTKDTKiR1EEIxJ1EpYLotpNnyeBxapg8/vuWf1DNR9jpLynDetR+NFkXmTp+fA83U94vHCLzaqvCKluB6cQrOfzgmi6PT5uM1qVHmgjOfk7gtgE41FT2fxvAPSOYjnRS4kDFlVvYhr4N0DasxewEE49zync5oNqEpaV+61DxQ5h2bVwuOVd5HcmllBb+LFoA1+w2e2h3CtWu1nlCtkmBdRGIAFSBOBNV77+B45OVbalagalSnvP9U5yi/Vd/itzDEEuIbUfRT5hs2zXP4sAg3eMnjL+p91g3fPVShyJPC+6zIaASU5x9ybM7zreOfzddnnKAOMvOvl+l6fYxXalzkxmo+qHM/pK9pnVe6h/qGnvzzeRvdZl9ROXZXfuyCfb+kL1bORPvPk0OOn+iUqb/B7NP2JF4/MXi9CVZnvc1TlvKo+D9PKQA0bdFy8FEY6nA12ABBlg9okCAl9eHh45awvFou0fTOuxQaNCpTnQChQ4xkgOVpVce6TI2H22oGKtoeE84fjUZsGq3VIdZrP56no5Ww2S448VvlgcGI3C6S/mdkr546LQPPOXWgX2oo2/hWJJzA4VBxVo0VkeYLg+hWob4HoNN5G9PT0NI0BRNjwLmp8T/AKxPLHBg2DSAAAecyhrRwphd/5HX2gpMp2n4j5qM+JaAccx/+ZFWsiMI+YGPDEdVT21clSo9RzXFR383iLAHL9zmANPxeO3Rd+es5CmRNUJawfYwCyyDLs8YP/8+bH5fKlyLvZS+FizLFos+pZ5acXNaNzS1UHf1fIM9ZzFI3PCPTh41nf8jzJQA1+A3iG/sb8Wa/XbT6fF4Aa2FzHx8cJCAA/uQ0eWBM9I797q6a7Qrpyr3zA/IL/QTnHD8/o9ZXnRMAOwo6Y2PRiPB4need0/nq9nuZSbNygerTMgcjxsaoOjYCbbfI3cpw93ZaTW/5d5ydekWdiW4TtHy9lnOfPqsCE57S+B3l6dxfIA0MiW4UX96Jr5X4ry6zQfsmBNe9FucWOsnGyK1TWPx4AmQNm9Nr8ztf05F5tWr4/YwHqD3nyqfpV25lrk/IP+uA9o4fXiqhBpEyz2bTz83M7Ozuzi4sL+/d//3f79ddfrdvt2mQyScc+PT1Zp9Ox5+dnu7u7s6urKxuPx3Z8fGyTySSlyfznf/6nTafTtFU0K2FWqswos6Izqkapp7AiVA20qmDsiyOhz8WAmpmlHX8Wi0XiHwh9htWi5XKZtg1tNps2Ho/t6OjIGo1GWpXt9XopgubHjx92c3OTDFGulYGaRfiPJ0a0Gzxlg5X5vGpElE7SuT7bVf7ypANwjJ0vr5848gJ85tQ0TJJc1JlXBOE8IByfHUlOm0L7uJ0sdwCCGCxQZ4KvAfKUshdVk+PbLk18ZsUoN5AHkOjxfIw67ywvvPMI17vw+kEj2bSP2VhFPQU1aHmFOFoVjvqBn09XoDT6ZNfI48Fb28uRNLqdOgN0/JnlkR1NBvPMLKUf83+QG55PqxSi9cAdXC+ai3dJDplfHHmoFAFS0TH8G+5jZgkoZ9nkFBnezQu6FtdkEAcGISLa0H5OeQRPOaWG3z1jldPZWD9Fjs4u8JKfw5NBz9jmcz1nn8d0xFeWGWyKMRwO7eHhwW5ubtJOXphfzcwajUbaJMPMCtE1PC/qvOm1V8eWx9uIcmN5W2CNx7+qjrQ+M8ub2vk8v6g/gX6FDmUQFfbvYrFIkcWIINcIYm6D2kPMQ33+96AqaXofSdz3nh3jPae3WOQ5z9FcxPfQe7Iu03vy3OeNMV2k0CL9Hnlj7i20TT56/cKfo3nR++49iycLyg+2S3mOVh7z9XjewjX1ufB5VYra+xG0ElCDBz4+PrZGo5FSXC4vL+3bt2/WaDRSRMx4PLZut1soBlyr1azdbicjAjs8YVKbTqeFlXncz4u6iATJc+TU8GRhK5uMImON//9IBr03aQQD3pGm9PT0ZKPRKA3yRqORjHs4fk9PT2m3LS54aPazT+H0Pz092cPDg41GI+v1emlFifsKxg2n5oA8wwltZKXLRqXyH7+XATJ8v12mXPtYacJgZ0eL+5ojaebzuU2nUxuPx+l4Ds0fjUbJgWBnETzD7k/sMJpZgS8gNmI4woYjOxQFj56/qrG2D3xlYvBFAREGaHjy0rQJ8BeFLCeTSQGo4VQLzzDRCYwNGbNikUc4gXx8zknVe+hxVQ2SXXAOQegLNSI8vVPVMGfgAOAoeMjOOuSP9SjLIvenOu/L5bKgN72tnHksqOPqEYM2XsRNdM42SQ3BnDNo9npFLXdNTkXF76yDoX95YwTs9sQpqQoKqG4dj8epPbPZrGCvcRu1Fpa2X3WnZ+hGoMUuUKTPdBzzf/zuXc87Xp1x1BlC7T5sjoHFKkSKm1mSYyxagZrNZpoHAazxoiXIc/QjPVuVdoF/nm4scxQjO0F1r+cDeNfROe75+TnJJNcaWiwWqb5jo9Gws7OzVLC/ymYKHpjznnbKthx7JrVV+DePvCgy7/+I57gPv6MPosUpHKMvLGhUiWjj62h73xoIsO45702RPeORB4zgGqqnyvRWZPNH4zvy2XPHenaKx0/v+yYwgLUiao6OjgpbOXe7Xbu8vEwOBYwOs9fb/iLME0DNaDRKExqiKfjhEfWBDkLIr3aKZ1SCWFnoyj2T3luvFQ0wfN4nZ1CNNEwsAGE4lQaOH5Dn5+fnFNLLIA3zFZPb3d2djcdjG41GNpvNzOylrzAJck0UT6BUOXgAgKbL8OeqymWfyHsmjTBTwASgCpwE3lkEMsvyCkcChS11u1iOovGANnZezYqKnne3QJtxbDRJ536LwLh9kks2NNjR9qI01LHkNAkGY3jXEc/J1xo0StqnaiTz7yq37ICwrHpOj0fs6O8qD7nvNFotmot0JTd3XQXhOEVG69VoRA/ONXvRzV7kDBtVPNdqJI2+s0ED0v/5d6b3XGl8D/JkyhvjTFWNZ9bL/BsDcEiV0W25FahBO8BrTrlACjpSaDDHg6fMPw8812fjleYcsLMLToRZ7NTneBgBA9H1VXexHCEyFYtYWIREujd2JjWzgh5mXmEhE1HJ0cKaNxY9HRzRKgDctoj1Zy6ipkrkAvNK7UQFcPge0LWwd0ejUdo4Y7FYFDZPqdVq1mw2zcyPkv0oiuyeXaKId6tegz97Dr4XZWH2uj8iuybyP8p46c31atN6VBVo2AWKbD9Q1D/rgvmeD49roOZaZPfz+PB0Gl+P50OdG7Xdq+pYfn8LrVWj5uTkxFqtlp2fn9vFxYV9/frVLi8vzcxsNBol4/D29tbu7+/t6uoqKTKEgE4mE7u7u7MfP36kyQwFg9m4BEIN44RTK3AMhEijNcxeD3o2THE+p9jgNzWo8TuOi5yNXXYqzF4LjaYfLRaLlJaGAtHYsrvZbKbiwdiOGyANatSwszKbzazf7ycDlIUDRktk/OIaZYaTfmcng1FSPjandHeZfzoZqNM+Ho/t/Pw8fW6324XUhqenpwTGcCoFh94DNIMMPD09pdVAOBMwMPEZjoQ3+ekqiio8nlgZvGG59khX9VmJ7yr/lJiPvMI+m82s1Wol4x9Fm1kvsoPAq7Pj8Tjt3vX4+GiTySRFOA6HQ5vP5ymVTXf5UvJWpnglnwEJDgXmlUhOr/QcAzwPKAcAVKFtGKjMOwZSvNU/BWkiQ437UncFAv8wl8LR58KzDJ6ybPBciWhXbhvGYr1eT+8A65FaqamKytMoffE9DZf3Jjw3Fg40OlDnzXWfAfeBU49oi8Fg8MqpB2/BV9B0Ok21aXh8sM6u1V6iX/EbnH/e6EEL2SqxPEYv7p9tO/lR+iHLFMatOgIsG6qDojkF9wG/+v2+3d3dWa/Xs/v7e7u5uUn1aSaTSboOSgc0m81kK83nc6vX6+m6mkLKtcrMXgM3EYCmc6OnWyO+bZOXCppGPMWxoMgp9gA7z0bBb7B5xuOxXV9f22AwsIeHB+v3+2mc1et163Q61ul07Ndff7Xz83PrdrvW7XZTRBSPNb4H88HjzVv73pPTTRPbNjnATcevB8Lwd5ZR/O7dg6+nC4wg2JpsVzEYgPvhWLa9cO+crVJlUSLHn12YL5VXOkZz84J+9mz1yG5X/asLDCqz2k4F2dg2YbxA07Qj3yP6jZ/jI/j1pho1jUYjRdKgACkmnOfn57RFd71et7OzM1ssFmmnp+VymYwVDst/fHwsCAIEig0Q7Ux2IDzDCufzOwxYFXg4i3oe7uGt9nsT5D44i3hu9COc9Ol0akdHPwsSnp+f25cvX6zZbKZjEDEDXvPgRyQNjoOheHR0VChKG02s7KBECgHEERusaDmdJqco9Hr7Rugrdi7gzKEGjJklXgCM0RV6nrwA2rChr+kz7DhCRtUpZeXJ7QVppAQMU0bK4UjkHLycnO2DHKKfNB0JvKnX64XdegB+sFOGlBhOYePvCMdn0Aa85BQ2lk/PuPIMI3xmoAYAANrJxTJ5Ii9bZYocj12SWZ5PVKaiqBpQ9BwKGsAJ5FVdOPQIxecaRDyO2CA1eynozfMq3xPPAqBJU+/AZwZTPWIea9QOH7MrkTWeHFaJfALhOXj1NAKuEdkInYpVeuYp+MppbXyvxeJn2gV0HHjCEVN8HgAatIt3+uL2M0UgTA6k2SbxXFIme5FjiM852eTPvACC6PBer5eAmn6/n4Ca6XSazsOuT9heHddqNBppHAKgh/zkFp8iXcnfPZDGo13hJyhyxvg3zy5UHnvjQe1MjnTjWkN//PFHAmmGw2HSD0h56nQ6yadBrSFsoOKNp2g+0DbrOVV4skt848+6kB7JZzQnePqU+eb5DqzXMU9iUQPn8s7FSD1UOeH75KhMdjwAoyrtAl8VlFqFtG+8/vXupWBOmW5TX4QxgRwY6LUnktsqgE30/OvQ2rs+wanqdDrJKFgsimlPjUajcCwfB2PFWzliQWWD0ot8ATFTvQGhCpuPZaMShmnUqRrGlhPIXXcSleBkTCaT5Ag2m007OzuzZrOZHDD0Exx49AcMSDZCeUVXwTeco84fA25m+Qgmrp3DDizOi+oprAvW7BJfOXKB05k4Ogr9z+lN6Gd20iFfcAzNrJBOw7VpAA5wPQwzP9JH+4qVJ/gKIEKjMBSQNcvzah9SZTxiPnJaEutKsyIgwsAN+MKAmoJrcBQQkQFjJapvwoYV7m/2OqqQa9zgWdiZRxQGnMSySCmQTnq7zE/Wa14qIMtF2XMr+MpyG7209hADNXx/NXTYCcR3yCFHZUDn8zOws5ibAyPHfheMTiYFaVgOqoA0OcADxBFSPEfyrkBco4YXr3geZeCM505OVdPi3lj91wiaKO1J58fIyN0lPnoOvfefR7lni85ZLl92I+WUJ0Qb48X13XAtTn3i+l6IPDd7sZ/NXtJIdQcT7917ttxz7xovmU9qO+r/fIx3neg3tVHwOy9OcUHo6+vrVKIBQI3Zz3RDgKuI/F8ul9Zut5P9yendES9Ul1ad7yLgIOLppnmsTnNEZQBV7to4xpP/xeKlaPtgMEj6ldMQAdCgxipAG68Ny+Xr1JhN9Om2ZdPTqaDc3FAGjuh/OZ1d9p5rd9Se6Jz36u/3us7aNWqghJCTiYF/fX1t0+nUfvvtN6vX63Z6eppSZJ6fnwsrDwgnBNIJ4nAzjtZgIxEr7+yMmhXDu3ENs9fKnR1FnLNcLgvhiorUK21beN5K7Jxz+P7NzY2dnp7a5eWlXV5e2nK5TCkzMEbG43HiHRw23pIbDgYMX9yPecCTGPORecm8wHGq/D1j1UtTU3COz2XylMkuOYpqWHBaRLPZtNPT0wS2YBLCavxgMCisrPLuTXwdM0srhfgPAICex21SGTMr32EL8sqRNBwlVUaeceM5G7tIGM8cXYjUBqR+YoUOxgOALDNLOhVRNOPxOKUbstPH6U74jYE4BooULFVglPnItRTQTnzGSpU3WWskI8u4B57vmjMBYh2KvtUIUbSfQSrtE10RZKBtMBjYaDSyh4cHe3h4SHI8HA6Tg4i0RY50YxAVxOkd0L8YfycnJ2kXP017ZUON2822AFME0OwisXHPwCenr5n57c/pKKQDgxgIx05AiMCAEwjHHsANA+IgyBhS0jDXou3Yna/dblur1bLn52drt9vJVsPz8njUWmHQn2wHRYZu9NsmCc+kEVGeU4/jqgAdXmo8gy2YFxFFc3NzY1dXV/bw8GC9Xs/u7u4KKcM4F7q9Xq+nlNXhcGiLxSLxH/Nsp9Oxo6OfGztAn0Z6JAcGVKEqIPomiGWS+aifzV6DTQp4aJ9A/3nXg/wMh0P7448/7Pb21q6uruwf//hHkllegIR91Wq1bDweJx1dq9Xs69evdnFxkRYs1Nfgdqqduipg45HnIG+DPD6q3cgUtTVXj4Svz34hFjMGg4FdXV2leZN52Gq1rN1u29nZWdq1+OzszM7Ozgoyxj5IBEBoe3dBlt5K6wDe3tzv9aXXP55PwWNHU5PVr8PcqHYrdIBGdqtuiGyXnCx+tI+4FlDDhjyMj1qtVshh7/f7aYLp9/sp9QmTF3Z5YkOHDUedaNUg4hVLdghVgHIDKmIKnjFSDHztfRVEVmrsoM3ncxsOh9ZqtWwymdiff/5p3W435U7f39/b7e2t9Xq9VFeoVqsVHDJOc2A+qpPHis/MB1K4rTw5mxWFnHeyAPH1PNBFJ3WlXQNomHhy4hXa2Wxm9XrdJpNJ6hM4dABXeHcnGI8sc5jAALixI8pKkiMvtG3KP/7PzLKypkaaWbFYNCt6BnKrgm67Qvyc6GsuJgrHmScqM0uOFXjPK7YA5BSo4dQnjowCb9nJQduUr54hiQhINb4giwwAAQg3Kzr4VVYFd1nXRjxEzYmcU6iyBx2MqCcAbwzUwJFAgXZOf9IIDO1bGJmYU9GvUXQNvnM9EwbjotTE6Hm9OXoXiMc/g2wsdxoNxgafGnogjG/wFTyFwwCHHpEYXMOPFzoglwqIsnyBjxqhyNFQiI7CnI3/WX5z855nwOZok3yOnPscsc2Ca+g1vfswQDYYDOz+/j7ZRkh56vV6SUa1zlCtVksgOa7HdYQAnGJc4rOZvYrQ4M+rOBb8eRedyshB9PjKdp7KI5+PzwrUQG6Qgnh3d2d//vlniqa5vb0tpCXiOtjllBe35vN5qj20WCxSPSKOaNO+jhzWXbZBqxL3e9kx+jnnf+FYXeTlaNT7+3t7eHiw29tb++c//5kWPbggdLPZtHa7bZ1Ox+bzuX358iXVXEWwAbdrsVi4/obSe8lTVV370cR8idoUgRzRdfT3CJzh1HJelOJ0Ui+FTRfscV2O2lddGNku26SVgRruRKzgcE0QEIxVs58FhuFYwEAZj8eFlQpP8YJBIO5EFU42BPl8b3DxZ48xOcdvFdp1JcuOPgxCGB/Hx8c2m83s5ubGzMxarZYtl8tC+CdWjgHIeM/KRhM73iDvPFaAOF5XhkFs+GuNGtxT+eDxZReEcRVioJTrWfCqOvKjwVcYiwjBPj09LfBGQTW+rqZTqPypke8ZfjoZR30ORcryz4qWlS9AHpBGwu2y/Jn5qS5w8lHHAMfxs2ClF0ANwBcGbXgXGYA2nMbmRdGwnOWMJC9qkT/zc7Gz6KWN5tIvojGyS7VNIDfgH0dkQHbYeOH0TD4X/cX84volcOTZYeDxwsWMeTHFm/cYqGHSNB68Hh8fC+nLGpnj8SoygLz/t01q5Hu1hpiHuirH11Hdw9flwt5IkUHdIU198iKjOPqQt22G/QW5waKZWXE3qPl8nj4zOIhxskpB4SiKapukQA3/jnfmkWeoezzU60NOAZrCLkJ0FOwj3r1LgRrYXtwuTjNsNpspEqPdbqf/EG2J86LxV4V2WSZ1bldbQ3npARtlNgiDNIhsGgwGaUH57u7O7u/vC2kzvDHG0dFR0vfMk/Pz8yR3Z2dnBV1aRRcq8OT1TRlFcrot8mxF/Z9/i6JncK7KuvJyMpkkkOb6+tqurq5S8XZErEHmANTArloul6928Iqeg59l1+3NdUkBFKYqYE1ELK8K1HjAG/QtL0SCj9jwptls2mKxKNRJhNwpzyLgtEpbN0lrRdQ8Pz8nI7LX66XtBM/OzpID0G637f7+vlA5+/n52X78+GH39/c2HA7N7AVwYYNBlSn/5jkF7KQrk/F/NJhwD1yPlWOZY7lLk1pV8hQakEk2KEajkT0+Ptp//Md/2OPjo7VaLev3+3Z1dZUiavr9vj09PVmz2Ux9hSgNOGfcxwzKaDixWTGM3AN1vEnO+43HhUe5GkQ52hXgzXMA2FGHPED2arVaAuCGw2GhwCSeiR0UBu/YmWfAxswK6YpMZauTHg81hYJBA4xXHAcDiSO3cN0cf8oi5LZBDHgjjWU8HqfIE6wOwLlSYA3OH67hRVrgMwM6DAwo6MbRSkoKzoAP0J0eUIPxBplmZwTXVGMoAhj087YJfQYAlFORRqORHR0dJcPh+fk5GQ94BgbI0Vdw5CeTifX7fbu/v09zLac7cdFo3cHL059mL33NAAtI9SZHmKDNfE0GL/ja+t0D5/j7rjgSeF52yBioMSvaGpFdgedhcBs1L0ajUXIAB4NB+sxgHIN97MwzoQ2IwEDEGnSC2YsMsrzxZwXl8NkDazyKDPJtyafaNZoytsrcrc4/fsP1EUkzGAzsx48fdnV1lXZ5QiQN9AAvhDFBd+L/+Xxuy+XLJhuYz2BjgUdcu0bt2Ag0XeWZeQxvk5feb+yc49kjviqApSAP3jFehsOh3d7e2s3Njf3xxx/2+++/p6LQDw8PSc9qJD9Sm7juFAAc1K55enqyi4uLQmQi80159hbwTc/fFnmgmn7Gd3735pjc9SFXiFqEb3p3d2f/5//8H7u5ubE///zTrq+vk56Fg4+Ip0ajYa1Wy4bDofV6PRsMBlar1ezbt2/W7Xat0Wi4ERhYVASpT6l81N/2iZRvHnljOAK/9X/wnXEAzG0cgXpzc1NYuEK7sGlRp9Oxb9++WafTSem/XI8NeAX7HJ685QDfSO981Dy4VkQNDI/RaGT39/dJ+QBpXiwWKU/z+PjYzs7OkvNwe3ubEE04EggdhIGBztOBEeUKe6gciI1iTxmq8WlWLKqokR3cD9yWiHbFuWdig4aLVeJZWq1WWqUdj8f2559/JkXFhWprtVrBkcTqD9etYGO9VnuJvMEqs4ImEWrLKRMgNjKj5+S+V1R8VRR1l4gnKQbcxuOxmVkKs8VKj6YtmVkaA1CM7MCzcclGiRpL6tRDbnQ1DP/xROeNDwX20E7wH+dxO1TR7iIg45HyEIbedDpNqYT1ev3V82v/c/0g3tEJq/IMwHJdGvCWgRQmD/BUI575zAAh/8eAm9nrHXJy8rULDmCOVAa5tgzXi+IFBw+ogb7FvIoVXDiDiKxhEA5zJkB2lmXVfconjCeN9sEz8RyBiBp28PEMXE8qRx6A4x2zLYpk0XP4ywAoBu8AomOlHqv1WKzCTjIA9sBTREiZ+YsWZkVAhfVgrVZLMo/0SYBtSKkE7wDc6A57HkXg1C4RA9mQLW43zxXReGQAQOUCYwOpiKhLg8UrgKmcjuil6YO4lgIvRhwdHdlwOEw6ZDQaWavVSk6l8oAXKneZP+tQZB9qHYoIMMyBNAA2AYRfX1+nOkO3t7fJIWS5ZB1bqxV3VzP7ycdWq5Vk6/Ly0ur1utXrdWu1Wtlo47foxV20U0FlTr7yMQLqQGz/QKagb6Fj//zzT/vjjz/s7u7Ofvz4Ybe3t4UFKwZqeKMNzAEoCG324kd6OpId+9wct6u+RBXy+FemP6vabiyfusCHiHEA4JBN2ESozbZYLJJ8Iajgy5cvdnFxYd++fUt6lPnHdaNUV5gVfRqvzRF9hP5dK6JmuXzZRabf76cOgDG3WCxSfvXR0ZFdXFykc3q9XmHrSV3hVQOI76lIl/edia8VgTRVDQ92/qoYprtKrNjUyWelhGORvjabzazVaiXjBw7H0dFRygtE3h9WEHi1XRF0fEf+NUidOrM4RcJzziPjuSwVZ1Xh2gVjCLxkpQbHDXxDmDQ76WwsqsPOhi5fn3/n/yFXEWDDpCu1HkijcqVGbBnt22TIcsDOPoA2OPksIzieHULePY/T3Bhw0+94cfg9kzfGNYVJZUx/0wmYV0P3mbSv1DHnelGo44V+gIFg9rKzGqeq8SIGCot6KW2cXqUF9riNOl+aFY0rBna8F48VBuIjUAjX1/vkaBfGAwOfutV55GjoWMe7Xkt3BeIVQeYtgzQeQM73BT/wP2rXgD8s3wrScuSrRg2t4uzvGnCD+YpfuXleQRuzeDWcgRrwEilPSHdioJzHD9s1fH0Gksws6Qs4j5oK12g0CumkbJfy/Kr2Vo52jYdVwQrty9zxkePPURgMoj48PBTSEb2IRb0W9LyZ2WAwsHa7bY1GwwaDgV1cXBSicdgvUV6xTL+nPbMtnyXSkRHpMR4v1QbFPMUg6u3tbUpde3h4KKTMIAIRMs0+C+bnX3/9NRVh73Q6yd/hdjCvcs+/TzYpk2fnRKSRph7f8VnHP/iJ36DHOSDk9vbWfvz44UZGwR9F6tNy+VJ0uN1uv2ordC+DvfzOeMN70VvGwEpADQ9srN5fX19bu90urNDBcUDYp04mmkqBSY1XE5hZ0YOywc8rClroyTNyWOC8z2rU5iiKutk1UkQaio15gkkEqzZw4nhXExgJWB3AyhwKb8E4ms/n6V4ommf22jDgMQIe8uoSK0hVjhh3cCA03QqkqKleyyzPx11TtgxgsMyZvdS94FUdrjcDYhCG0y+8Fxc+9BSaWTHCQidZVdq6CwI7+WWI/CpOBPfVLhLGOjt0SJkBbxqNRmGcmxXDQzmqgmvRaJ0UdtQQZh8593wvs9e7BeEdfOSdaMC7aPvfHHlgehQhtW0Hgw0MyA/XrUBUFKIasKqKfjJ72aaX65PAiefdgRBxgSLDWv+C+Ym28TvLIeSTHXs1TBhUY13DhrGCNDgfujJaGOHfdoXUOGSQrNVqJQdZV/H5fLMXnYqVQN5t7/b21vr9fiHdiR0ITq2IHEImAPC4J2/mwLI+m83s9PQ0OSNse/ELNcuiOjVlv22bn8wDBkp4EYF1U7RQ5/2GeRa8vL+/t+vr61R09u7uriC3ZXKJ+4CH7DCibRh/9Xo9bfBwenpaSEXUCKGqNmtE2+YhKAJG1UlnuyxyDM2KvgKcNMg6ZJMjMG5ublLhdt19zQP/oO/gOD48PCT9//37d+t0OtZoNOz8/Dy1g/UuX0uvq8+/Lo+27Z94iwDMT28cM289IJx9UvAS9Wj+8Y9/2J9//plqRw0Gg4JewLUwR8PGAuh2eXmZ5Kzb7Rb8EfWlIjtnXV55QOu27Vie85m8BR+WiUiW+bq8EMTzJ3aH/r//9/8mkOb6+roQUcwLxog4RLTqYDCw09NT+/r1qy0Wi7STF+6hC4+eb/Pe/b4OP9euUYOQaVTPRuEsb4UNBexwrlmxKJ6ZFXIAcZyCLWxkevfJoXggFjY+z2MI7lM1Z3sfSCc6zgHkAoSIkAEIc3JykngMgw9RONjejncpAJDHBqHZC1DHUTtmlgwqLxWKVw5ZsJiPCr7ht0ipfIQAbprY0Uafo/8AkiH1CX0BxQbDk/uBwRyNumCnQY1BjCeQ8hB8Ad8hw+AfG8084TEgoP+vAsLsivEZEXQZ17OAkYe6NJofrStJzDNeVWY+ehFV2g7vP5YrtEfBbbwUfAN/8R//viofd5FYl7JjDNAFhgOMSYAj6D8+B+ALn88v3VGK+Y1xkHMKzV7Louf0eM6kx7fI0d0Vw3IVUlniNETubw6BVwLgCtAOUTS8Yxdvw83RF5pqyvxUmWTQFARbiucE75qeU4tr8nNEkY0R7YKOZbCNI5P4mQEuR2MZxHoW+hNRFw8PD692eEIYPu/wxHaP6lYFVSCPHOHMss879ik/1anzbOB9kkWQZ9tH80UOdGMAGecCzJtMJnZ/f5/SY1B7EfzEGOJUGXVWYc/wvRFx1Wg0kuy32+20GycvTnFbc32wbt9tm5g3nt0d+W2enamLBOAHotxQwwSpTtC1nMWhYBt0KWQQeuHHjx8pZeb79+8F38OzV7mt+vmttG1+esCRWZG3kT5lGVRimWJfcDabWb/fTwDqP//5zwSg3t/fFxYk0R7odo6yeX5+touLi3QvXkRmm1V3cKzCu4gnOZ27Lh/XAmrMXoAUOIJY+UVHqCIze3HS3YZQkS2z18gWk6ewFXn1FDobnZ5Cx/G6ApOjfUyBUsccKwvL5UukA/e7GnhHRz93HkA/Y+tuNpB4NV95zuAbRw5AsHT1nj/zNXSy02gaRunRdqZdMC7XJQ1VhyPIIOpisXgVZcTOuxYDZuCOJzO+lwd+KTEPlY98HQVeVOHjOD4+MsjKqEq7N00KknH/o74EVmQ17FaBGk1rYiBWUxuU2IHwHHXWhwqg83H8WR18j89v4ecukYI1HF2DVAYcB52n8qhbp7Me5TQn5q/WpOF7qIOvzj1HRumz6Nytshrxdd+J9ShHnqHvOeVEQWseA5j3ODIH9YVQBJpBOZZbBhtU9+J+PBcywMY6m3WAjpFVZG/bq/BVicc/z2EMTGNuyekkEM8XkDVOX4MDiHQnrgemOtcDVSBHaBtAU557vV3kMFY8u1j74i39uG1iecL3qhSBOXxtjA1ELfb7/VfpThyNCpn0FojNinXzlsvlqwhZyD3S105PT932fSbnnkmBGPCXd67TZ1ffjvuXf2PQDUAqpyLyvMo6wQOEABIcHx8n+UZUK7ZY57RDbncV3q3KX33WbVDEB6Z1ACoeB6wrwYPRaJQiUHu9XoqQQcF96FsQgBpgCQg2uL+/T7xDQIFma5TxMcIUtC9yPMr1Xxm9aXtuXi1AXjQiY+DM6+o6hIENRrOXMEB2AuAURBNd1Ak8MfNkzBEjfJ4if2XPv4pg7hqxYLBzgRWDo6OfNWegrHj1CcVpMcEhoubk5KRQfZsLXgLxVLQyMgAVKDN73c9I54kANzZm1aDmUGPl474YpSDmIQNuMCgYyOKJiY15Hu+sMD2D0ANay5x/D2hjOVcZ5QgMBdo4vUb5uq/Eeo1BGjj30JdcoFedcTbwsRKrtWmU1147eLJU4sgeHI/26eoJeMq85HeuW93GnQAAOLRJREFUZfVZ+McRDBwhA+MBvDk9PS2cD7mFUQ+DEyu6nBLl1aPRcHz8hraZvQbbzF5knVeYIgeEeQcjSCOlcB/ul30ilkEFWSaTSTLydJzz+cxH7PIE45INTa5Lw5EfkYPvRWKog88OLUd3qUOo8qmfQaqvoz7zPm+LuM8AnDB4wvMOxq9ZnEIJewWyjJQn1L0AT7V4MO6nQKrXX2gPt13HINce45QNnM/tXbffdoF/IG4P958+nxf5FfUH258AU5FagQiMu7u7Vw4+gFQGPr3+Yhu3VqsVQBqAQGdnZ4Ui8/V6PQuUqq2c42+kw3lcbZvYfuF38MXTU2axQ2/2AqKiGPTV1ZVdX1+naDfeVl0XsnBtvj/ms+l0mqJz6vW63d/fJ4ANGQZ8Ho9FdejXlUtu47Zk1PMPlIe5c7zf1eblFxatkMKGaJofP34kOQJQAxAV14WtxTbW4+OjtdvtxFf+jMwQjMtIFiOQpsoze8/t4RlltHYxYTwYlB6EYDweF0LEzF7qhzAIg0my0+mk63InASjQcH129tnIBLFzh/+96AtVZqzEcS6fo/fZVweDJ0AVNhU8dojNXlbUdfWYCxEvFgsbj8fZ1QcAcHwODE6+vqanKTBTBtqhzRrdEV1vH0mFnpWBAiQeEKlACIABXfEz840BljVvdZ4jMJCD70Wh4RjmSRRBxYpTo6j2kVSBswPOhrkWPtOJ3Oxl1Vj73jOG9HvE71qtllaRzF4AMyWWaf6fecuhxfr/PvKReceRTVyjYj6fF4xUfk4GanA8gy7KD9a9PE7Uodf2mb0YygzQeOOBDR8m5aGmLe67LlWQA87WdDq1RqNhs9msoEtZrhgo5+KvWM3FogWPDbZtmKeeIcfv3N/sJEQOjQf4gJdcE8VzhLV/vD7TNm6L2Pj3Nqpgu1HtO7UrVBejyDeKWCJCilMqsOCljiBfF+/sHLDNqdGR/OIxonLtze3r9p/OLdsgnQfZbmOw0fscOcr8bOAnr9gj5YmLQeuipqdnFWzAMdAhAHsB/jDQzu2P+mEdMC5ypDfJT8/218VF5V/uOqoTWTZ7vV4qNosd2EajkRuJyvOq9i+DBlgoQbrq+fl52lUI7caiCIO+XvvX6Tt+dh5/myYd12xzcHuqjlMFuHjRCRFut7e3dnV1lXZfA4CKBSzMo7wAydFZvIjU6/VSjahv374VSnnAnuGx+F485POi+bwqrZ36hJux0lJlqjVnNCeeFdxi8bIFrWdw4rosWDq58sPrCqK2WweYOix6D3XwlaI27yKxomNwxKyY3mDmF/FC/3GYP6/UeuCa3psdOjiI3qSiqyY86apARd+9yZuP2XcHwzPuvb4zi41t/pxDzPV37jt29D2jNDJGykhD1b17e0BE9Iy7SCyL+tL0EpVDNUA8B81zyD3+5lYU2LHIGfKeg68Gtq5mR/fddb4xKYDNoI2Xv838ZsPDMyqV57if9pEnyyB2Spn3VQwIjn7jKBtcT+cLvd6u89IzRBlUgdPFEaasj8BrBggUfOMVXY24AJ8iO6JK36ncV+WlN79G998HPjLYpk5alflf7R2vZgyDcV5Kkqdz8V6VlzwHlOncVclzBHeNr6xLVS5U5+hvSvz7YvGy0xOntmg9KtW/6mwpqW5G+1UfMD/VpnkP8oCNXeCtzlseIG3mp6558xx0KNJkBoNBofYXA6hRRJTKuvo3GCe8rTdkkoEBz05+rz7zxt+m+al6omyOYf8Mx6n9qqAdA+IcjcoRbmojaYS/2cvCIuYAbO6AyEdOYdO6uupXer6G/rdK/+mzV6U3ATUeSBMxhfPCOFyJjUmuum1mr4TLzHcM+T8VQnYQ4Wgw6WoEGy5swESAwT4BNCAeNDxYQRyKG4Viw4DRAaeOhaKnfA9dTfBWKjQs2Oz1lt5mrwvY4h5mr8OLvdWXz0DeaoU35s18pB7vmieP45XXDMww8KapF3xP77PXNlyTawrwTjnsKOnEvm8yqbqTjbyoGKXyGrKo9Rkgv5z+5E2wqgNzIE6OjwqeKTjDKTPL5bLAVwbt+bq7zk/mGwx8duyRxsbAG85jYxOGPEdicM0LNfJzzpXHI9Z9TFUcQOYfpz/hv2hBJGpL2f22QWgPR9QgQqZer9tkMimAXBzxCVnFKizSZXjrbQZuNDVRgTMe85FBrAB4DqRlnerJIv7LGaSRA+g5UZskz9nS1CEY+fhfi0F7cwjkEiksiKZBTROuZcIOoddf/J3vo3oX91ZnxAObPIApt5AVjSOv//j3TZPyES+2NTyQRsl7flwTkRKcwgZ+RsW9y5xk/R16RAE+rnvDi898ftnzRBHMnjO4qlP4nhS1Rxeh2JZDf6ijr3yAY48IDI2MivjogQx8D7aZAOY9PDzYly9fEliDdOZo4b5MFqv0Gfeb5wtvgvheuoCRkw99Zp7TuJ95DuR04Zubm5S+BoCFd7rMAbi43vHxcbpmv9+3ZrNpvV4v7b7ZarWSLRPJh/Ix1z9lep/56J2fozcBNWYvE42CIeqcs5DA+TArRlR4naUOtYIxXuQHiDuH7xcJF/732qUOyL5SZDR4Dpeu/qoS5f7l/7SCtg7QSCjQ38pzvQ/nIHq81AlPQRr+b9V+2zXKGc14Xk8xRCuJaghyWCB+43e9ftmqljfuVKGzc4/PmBjNLAvS6PNE/+0aKf94IvMmfNatIE9XcooDjFR2rHXy9IxFb7KCoaRbjHK7lI9HR0dpNysze+Uk5hy+iL/b5i3fH/2nOddcY0j1lefYMbFjXa/Xk4HPAJfyTa8TrdhijKGOCesN1gGaKoIaYWZWqDPEPNSxHOmo3LNvmri9HA3FRZ05hZsXBxQc5ZQV5rHKA89P3A5uD87z7BvvHLPX0VYcBYT7Mh8ZPFR9HPGwKl83Rdwu5hmcbw6Vz7WLgXIGTtmJh+x416ri2KsTivMUJOf7eMR8y0WsRrrUA/dyNsUmiOc/Bq3RPk8nQbd6G5Kw3YkoCRT35Z3XOG3Ne0X6me+nMsBR5169G8+GifT1Kn3H9oPH200Q61KNDMstOKivxW1newUgGJx7FIPWmk7a5zjfux+3eblcptQ1ALSDwcC+fPmS0magu1XfKQ/596ivvL7T/tvGPIl7Mkiji0jKozLAn8/DIhRS2FAHDPVoAKAySOONG743218A2nFt1Ig6Ozuz09PTgg5kfWqWz+Dw5mmdfz1wkqMvq9KbgRp9GHa2zV6nQ0SNYyGMrq/HR//xvZh5uW22Fa3W6/LzfAYH3+y1QcEOVhWqApDwJKlOmTf5aXFEvb7+HjnsCiiUjZd9J+3P3AqKN2Hrud7kyVEQUcihmR9po/evQgoWglQGc9fbZfkzqwZARBOfdyx/98DlqqkO+C+aoKKxokAEgxMayebxVvslcjB2iXSi1gmaDS7IEOvAHNDCfaQpK+vKljcP5xxKvp9+zgGz3J7c3J/TVZsibqc6OryCCKCTNz8ws4JTxAZo5OB59/dkmSly4Kqch3eOTvT0Q1nbPGc09wybJnYqtE6URqTheD3frLgtN6c2qaOgC4zReK8ql/ocHi/LbBhPZ3vHqB73nOdt8JLbpU6hpxvxWQnywuAXO4VaqFlTEr3xru3Ue7Ptxf2qQIU3Z5TNxavwVPXQNnjJsuil8+qL/QO+hl4P/cdF+zU9BsCeF4kS9YPym8eDFiZXma/CQxybG7P6vDp+PLt7E6Rt8WqsqR0TkYIXGo0KUMwDaCL97QGmSE/jyEhOi1OQia+Hz5ENzMfo52jM8v30uDJaG6jxGs8rpTzhKerIeZlsfPDgj66tk6M66TpY+Jq8Es+Grhdxw/fT//addKDrd+atpn9x3yqirAMQ1wFIxv2sAodjcB2gorivgjs4Z7FYpFVO/FcGqlWZ9DzapgEakRoSKh/MF+8cBWh0tdC7ntlL3/Pv6hBEDhiuzzsIeTxhOdWJPEK3d8HpW4eUF5qS6AGPntOkvFWjMAJA1QDQdApP33sTsxrP7BhqKqI6i57+5v92nbzVEw7DNbME1vD8EhnwZq8dPs/Iy8mansek44TnbwWIAE7wTkEKvnnjr+y3XSLVgzBIOWUpiqhhMM5zzDwH2HP2PRlgmc8B1J6u8HZb0yLQuQWXXHvxn372rrMJXnM7uRg0DHM45UjDV9uQnwVyy5E5Wn9IHZVID4NUd3vOhToeHqCtNu+q/WNWXPFlZ0VX7rchozwHMu8QkaK6rspig1kxFYkjJDjlyQPiPAfMu68395oVbd0IsInmWO/ZytJM1ZHeZtrMYrEoyI+m9LF9F41p1UHL5bIQKXF/f5+25EZEjefYVx3P6EPW55y+Gjn4Krv8LBFfI/+X5xMGiHM20kcQj00GvjnS7enpqZBCpPa5Z+NxxCnvqnd3d5d21cMOiQq0e7opsn05mm06nVq/37fLy8tXoJueyzZNboGE762fVea5/zTduYzeJaLGowi0MSvWDsF/CubAMVMQJgrv9CZFbzLENaJ0qzKQ5jMANR6xouSBGk2K3A98PAMsqlQ42koBII+iyAwWKqxs6jU4hC1Slm+hXXIyIgMxaqNneIAn2LIO/6vTDf6y/HB6Do7Ve0fGhU7QLPO5yY2v4U10+0qR0ud3Tw+hf3my1PM5otDjM/iYM0jZgFUZ0zEQTdaeHKou9sYxv0e83pZcqjGpzjrLjNlL/3B7FdTCVpMw0E5OTgr6DnoW4I9ZcRUoaifPtWrsKADkpenk5NAzlCKnhPm4K/qU267pTzC0OKKGHQ013hWo5Po+4CWMXLMiH8tWTpnPrEfRnwwiec4+rsGfvfGgY1kdLQWj+FrefT6KdExxJA123Gm32zadTgsFoSFrbLN4zxhFRzHYpXaQPr+ep+2OjtFn9EA/PtdzeL3P/GxaeFmjSjZFqkPBO05R4lVp1VdevzMIpbswsVPPJRly7eN31rU6BrnvOHJA5wVchxekcoBNNPfhengeOKN4bZKX3PfoZwbbooVAL3VN54zn5+dUQLjf71uv10uAm0bSePaU1wdqW3DbuD8Z0MPuQc/PzwXe6TWr9JO2EfMPgEUGiTZp53J7uM6S1l/TWpIKRPFcxXLANcB6vZ7d3NzY3d1d2lZdUxIVSAYpTsA2F/MOUTUYk/V6Pc3DuhCs4DjbR54+jewfrXe3c0CNKjMvtA2fNWXKQxz5nMhZ8xScdm4VhfUeCm1XjM8cRYZ6NPnnroNjlZd6H74eGzl6nAI6/N0zbHJA3rq0Dzw08x38XNu9/yArHOmCdzaMcumNem3mBzt7q7RL28jHrsKffQFyPIcHn3NOuFmRPxzxxuA0R0MoH9lBrNJfq8oHOzbes6hRpnph1+VRecaGKBuk4Eu0UIAIRHX0mXc5YsCcyTsPbfD4vaqxqY4K/+6tjOp1tsVfvjfzSgEKREcpyBk5z2av09c0KskjBvK8flln0SFy3D0QDcdoX6gTE4Fw23Dy0WZ2BpAewauyj4+PhZpnZsWIbQVoIrBx3fZFv0VzaKRHWIY8JzECejxnQl96z03ykdsY1RqKxpfOkdw/0ZjQiCIcH8nLKn3Bfa0AIC945MZUVdub78MAjYJCmyDudw+kUSAl1w/eeMVuPkiVwdjgqKt15DUnIxpJx862zu0Rz7xFNm0fxqHykaNqtiGPrD8RUcNpSViAMPOzZrRPOVoJu3bxDmzc37oIErUTpHxRwIQjgrADFOytaPx5fNNjeO5j/YnozHVB0w8Daqp2qNlrB5ENn8hg1xUJnuS4DgCOZQef0y6YdIWYBY/b/p6RGbtM3uTkDWL9XQ0OVmJM7CiyQIFYqekOFSwECuZU4Q8rkH3mp/Y1j93ccykf2Yln2WKjBysHHhiqeeD8n5Kn8FSeVwEGIwfTm6Q37ThUJW/1R517Rfn1WBADL+wQelEu0cpdZNRVjWjk9kXk6XaPb2Xv2yblAxvM7ORrqiifr/xnpx5RUvgcrfzmgBaNhil7FjZYdM7NgaXqSHpOrufY7xIvue1w7GDkoQCvRtQoz/GMbNvwzpeqZ3XsRLKkq3xVKIoG4evyfdmwXixednf0Uio855OjUzZJPJY4EopXUSeTSYEPKCbJdgU7YlFtDRzLfRCBKNw2JW+F1nsmBgq9GioqkwqCK5/ZEdT0rtyuKpsg8GOxWKTteuHIITKKi+LzWFVHix0lPCuiATgiQLdZV50VLZCUOd1oA/inKVbRFs+qcyPiZ8c9PGALc8am+Mk85P5GVBT62ctuYDuH9THkAFEmg8HA+v1+2rGLa5ooAOf1rxcw4OliBmnQr81m005OTqzRaLxK38Jcrddm8uZQnXs0dRPRQpviodpmaA+AFe5zpAQjYjSy4VUWwcder2e3t7dpBzZNY4uAmsiP03HDdXAmk0naxQ8RNa1Wq7AoZlbcUIjHI9+DP/O44dQ5HjeQAY4qq0IfBtQo5RSO9x+nWfAko5E2+E1X7nF8xFg4nUrq9Jh9TKTGrpCnrKoez995YuHJh5WwZyxi5ZhTMdD/vAW3htyzYYX/1RmNHLqqBu6uOYRKaBcrMB6r3O6Ib/i8XC4LaYq84o9IC4QReucqGq2GhkYCsDxx6CivNuee2ZNTPabst10kz1DARAGAmfWgypP2HVYL0L9R6gr+h5GqqVEMojMf+Rpon/efZ7zqdx3P6tx7+sOT0U3yWp0CvPML28mzjOR4aPaySw/Sn8x+9m+9Xi8YkHo+2gBeRMB3BGgr0IBj+Vn5Xnx9NVTYWIkcem9uyMn2R5Ln9GhBWl4x9IBtz6BUXuLFwAfONfMXqjxdHvGQ26FAvoJorNc98AhthOOgNXvYEUR/6X02JY88PtlAhqPfbDZtOBy+WhBk4xx9wrVouG4JiIFUPl/1r45jlSkF33GMgkD8Qrug29lR9OZNlSuOKuFUBt3KPFcT4iOJxw9ANtSv6Ha7Vq/XrdvtFuYinne8fmTADqv2nEqlpLoy9+w6n+JYBsPQxwAL0cdc84rBjSrOPd4hp3hGbCPP9Xc2HY3BcyHqAbVaLev1etZut61er9vZ2Vkau5AfbwGdnxH1TLC1OurTTCaTwjNyH5n5qcYeWMM8VIANqVbD4dAajYadnp4mwJB9So5M1qABfh7+zPqS7zcYDFKtlvF4vHLKzFuJbRUuyIuUs9PTU7u4uEj6x8zSjlhag5DtIeiZ4XCY6tLc3NyknZ60gLDXZx4uoG1XAHM0GtnDw4Odnp7aw8ND0hsAasyKG26wT+LdR/0RBvpZ5wBURJFkLH5UpY0BNR6VOcwY9HD41SjEMZFARsxTQ9msWDzzPWhfHMOIqq686vGeE8//YTBruoyZFXjNv+FcNYIiA1bbGY2FdWiX+aqTEDsSZe1WXoE/DN7wPXj1Azzj3/hYBQcigyMyWhVkqALS5AySXeWhN3njO3gBw5yP90h1J4el4lq8UsDnedfCOx+vsui1KZJJdQj1pU6qXt/7bxdIjS5dmfNW2qLnYJ0HY1bTn3IRNhF5oLfXhx7vIkBF+abh/R44k+M3rrkJ0r7nNrPRBeeV+xz8YGeCnxPX1/7WrbLZWatC6kjq8+hzKejJ7eSVQ26D9gEDVxpZw079Jh0JfW5+RrQTTgGcZXYklstlkitcg8EQL8oCx73VpvDmOyYPVON2aPqM5+AzaIB3ryiopocpLzfJT+ajOjxYCefIqGg3V8ijFpbmSBqOUlBQk9/LKGffRLWuwFONqol8G302s9dFZwFMcvTKpkEafRYAD4ieQFTUfD4v1IjyQBN1gDXCimvTwPn1bIcqz+3JIngEGeGi5MxD2KgM0DB4ES084niWaegsjlzRyJJNEXQK+Ih+QDQN5PH09NRqtVpaVFL7kucdfj4Aiv1+3waDQRqzXHh6VdA/8i9Ul2Ac4p6IlkXdOMwNPEd6sqnzKtsLDG4xSFsllYtpq0BNFYKBqspUFWnk5OE//s4DSJ3/6Ny/ElV55iogG7/DkIBSm8/noVPn8YNXT8xeF5vm89QBwmccU+aY8vH7Qh6YYvZ6J5CqxI4DI+PoU41a84wc5iM7nB5/+Di+DgNIEcCn99W+8HgZ6ZFtkxrGzD/ordzz83OwfsOkg+PYyGdHv0p/MC/LjvXaxw6FPqc6BzpJ50CCaBxuipRv7MgiEg3h7rr6zYAOEzv2eGk0BhMbixGVgabesWxUcDu5vcwnjZyJXhypsGmH0CMFMmB0nZ6evtr1CQadypWmBulzaRQA84HHgeoos9e8w/neWPKAL3X+Hx8fC+3ia/AxGmWiLx6PClRtitQ5ZMMcYe7D4bCQtgZHGSA2OyQcYaL1EjwdndNZ+N/s9WKW2jZ6HQ8s4zEGZ6JWe6lLpfOkOrtcZBlRJhrtUZZy8FHEfGTHqtfrpYiay8vLwryG/mLQhsE6PCOvbOsOQcor5kOZrRLZN+hzjWDiei2RvOK6Xl+rc8jbVPMzgp+Q0U3pV7ZVAJANh0Pr9Xp2fn5ujUbDOp1OGFHDfctRbojO4d2BeGvuKHUt6ltvEYrBBegD1MRB2ky327Vms/kKbGLia5XZbCybHL3z8PCQwJDpdFqIGNoEsTww8D0YDFJkSq/XK0TdNxqNVCxf+YhnBM9ub2/tx48fiZcAYRXM5HmxzDb13jXi7PT0NEVGHR8fW7fbTWORo2bxzvxjfvI7yyLGC+Tx4eEhRUbh+VaZH7cG1FRxHNkphyJk44d/j4xMOHn8mwIBqgxzBmuVdm/b2IwoUvjeb+s49t5nJhinjCLDgYEwcLqTXkdXJSOU2nPCcytX+0aRQ6PGRVlINJPXNxFYwxOZroSAh2yUeuBL2fOxEmMALnLE1RhWg0snbT4mB9p8tEHKn3kywqQHWYGD76UV6fU8g5JXHhXk4HtoyCeO8cJCmdQp4GuzzHspFh7gghc7RdAX2lfK11VWKt5K2lYGIHh1hdsVpfepk86GNeSIARuk0rBTz+16fn4u6FMzc+/tAQLRMx0dHSWjX1eZ2DjWlX/uDxjUMMS0Fsi20i34mTl1Bitto9Go8GwAadQ5ZMeCt+P0nolrEB0d/ax9UwZ6MzjDOll1m4ItnCuPe+FZGbDBc/C57GyywctRChqRoU7oRxP3L9qLVdt6vW5mZs1m056fn5PTA6cCK8E4F8+JNBKsbHMdFwZFPcAF/QjShQtdXGSwjoFCTp2B4c8r15BzjFNcS/UmeAnnHVsbI40BaQd4TgbeornlvYltl8VikQClk5MTu729TelecJI7nY49Pj6+cg5xHUQA9Pt9u76+tvv7e/vx40faKQjRERivzCu2mzynyuMhPwdsI4wn3qXo9PTU2u12OhYOour7aJ5n3Tyfz5MjeHd3Z1dXV2n3HE3x2tTciL6Dgz8ajezk5MR+/Phh9Xrdnp6e0nu73bbFYpF2UdIFWcwPcOx7vZ79/vvv9ueff6bxy7vpcJ9yX+I3zyf0+hj8q9VqBQf/5uYm6RMGCTG3cz0yT775HurgYwvp6+vr9EK9lnVqm7yVWO7Rxlqtlsbwcrm0RqNhT09P1ul07OnpyVqtVkrv5WeGPplMJmm83tzc2B9//GEPDw8JdAOQ6YGY2i5tK/MYv/Fi5Hg8TjbR9fV1+g+p/pi76vW6HR8fp+hLXeDne/Kcj+eDrr65ubEfP37Y1dVVAazBfarSzkfUgBiZ5BWE3PH8ztfwBCZCrr1rfjbalNCj/1gRc9hnjtRQjQQH93nLM+UAALM473ybxAoNMsKTfoTeVkmjATFww44/AFMoHnbcFGSJwpRz5AEPOWBG3z0ggL/n7vXR5LWH+ah6DroqGvtlYJM6FGU7CfH1WAeXAX/6HBgjOcNTnWX8p6CMRgVsEpjxSEEiBSYYADOzQlQGA1bKd35OfUZ21jl1JWqfWR5A9/7nBRE2RKBb0AaP1/wM2h9e1AmfF7X/I0nHHtqkaSKcYgJjnJ1DPh/AhgJRnuPL4FnZooI6GtExZi+ODoNPWAUGKKSrn3gGBmrgEMKB58gA3QaY+bxN0JTTQSaTSVpF5bB8REsxoMn9BIAG4AZeGlnjzVHaNn6vuuDH8sMgGQp4omYVoux0e2OMN44wQioFgANOJ+IaNV7ExyZInUOMO7T39PTU7u7uEghi9hOAg3MI4pSbh4eHBEbBWWLn3nN+PTtS59XcnMaAEfpftxuHI+it4peBNBzpgSgafkZOCdp0bRNuK54foOnDw4OdnJxYr9czs5cahfV6/ZUsAmxDNM3d3Z31ej27u7tLY1efkZ9zVV/AAwTQfgaoB4OBNRoNa7fbhfmcz/eiHdV2ZV2JVCLU3+n1etbv9wspbJuOVPQAD+h/gG+o9YLFm8fHn1uXY2zjfOjU8XicQJnb29vCeOUItyrzR24uVJtSoyyHw2EqCt1qtdJ8CF8GQFS0sKbzPXQV5gyAT+Ajnm+j23O/FbSoMmHBIdBVXnWaWTi8KIyq0TA5Q/azgjTvRSwwVQAvXq0vc0TVgM0BNbk25FYp+P77Qp6R6DnqZvHYzil9L/KMjQpeRcB11NlSsEYdE0/58bm8AsK8i8AWD6DhtrLDH4EZ3vePJs/ZheEN5xjHraKL+JoglSNPnhgsMXu93SJfC/8rYMGragyWcXizPrPXF/zODiTzkSMtcY2PJn5eD6R4fHy0Wq2WohX4GXJzil4nB2SUAWzKd/CvDGzjfmUDDQTj1OMhG6Bs4LFzgXfPKNu0Y8jPbFZcxUVEDRwJGHzL5bIQUeOBHJyr7hWm1dXCCKTSvsgtUIDYCGTQAk4v5B+6hQsmqpxpRA3eEXnBdRs49UBl8SP5qX2E9iIiAzxsNBrJ+UNEjTr4MLhxLpwIjk5gB191j9cutVE9PY4xALlkHnCtA44Q4hQ8OEa4LusQtJcjobDbCgpsYntcTpfZpoOPccjpFnCems1mAj4QleEBNQBEer2eXV9f28PDg93d3SWwRoHUKtF8Zb6L2hWs94bDofX7fWs0GjYYDF4VE9btjdlmYuAcugkAFgqx/vjxw25vb19FJ3BEzSaIdRrGr5mlSAxEReE5FotFFmwDD6+urhIvMXYxXlX3eDyMfvNkkZ8BOg/RWWdnZ1av11MRWlwDuwiZ+elw2jesl1Gn5fb21q6vr+3m5iY9ozr4myK1swGMcgppo9Gw5+fnJIvoG94RC2NgNpulyC+8393dJQATkY6adlnm41ThIaKBkcIM0NfM0jtKcjw+PqZn0B2HQWzrQL7wfMPh0O7v7+36+tpub2/t7u4uRSsy6FaV1gZq0DGrOg7edczyjqTmirHTpqHwcARwPa08rffNKeN1nmvTxuVbSI3Dt7RdkeuySUwHPdI8oAjwGxsejGx6QsMTmwoBj50cRc67Z3Rqf21CgapjqEYNywX6y3OsPfJW1CPgiyMytL+1HxgY0AgOBgAwcfE5rB900lNgQPtJeYV2sgHhRS1s0rFQJ5dlAPcH0o8+1pSH6Pr8zk6wrjhx37LRwVEaDMhwbQ1tD7eT74tjOCTY6wfWSdEY11ViNc5yhtp7E98PBsbJyYnN5/MEiJj9NARQX8ZLXeHr6VjFmOBn1ug1lsVoTmWZBVjOMsW6Ewa0Ou8IB9Z5lccWxgDLGUeoMN/Y8VfgZhP8A7F8IMoCzrGZJZkEcIOIBi8aTcE6Bkj4nQ1vb+6I0i5Y7syKNg7zBE4Oxh6ug1QRABhqhLJu5IgaTuPi7X/hLCJyxQOlNsFHHoPo86OjIxsMBrZcLlPh2PF4bM1m0/r9flrF5zB9jFNEK3AECtJlcjUxQLlFIZY55R0/BxxcyBzG4XQ6tU6nY6PRqJBqwHxkmQNPwCs8D7Y2RqQDFy/l+kObBGs8PpqZ9ft9WywWySHs9XrW6XTs8vIy7STUaDTSNbiuSL/fT84Sok4AMHIUmOcYeou/Ssprllm0w8wSj+AQjsdj63a7dnl5aa1WK41Htt14bEGmwEfswPPjxw/r9/up5gciMxAllas39BEEHsIWxTzS7/dtuVzacDi0x8dHu7u7s06nY1+/fk08BAgJmQUYc39/b7e3twWAEdERuUg+fV71VaK2Y44FL3nHzcVike7/9etXOzs7s4uLC2s2m694yDKpY5vBttvbW+v3+3Zzc2P//Oc/C+CpFkzepCyiD+BrY9yaWQJWAF7d399bq9WyRqNh9Xo9ycTz83NhpydEmCCaj4EwXlhQe07bxZ/VjuR2s22EsQdgBW3p9/vW6XTsy5cv1ul0EhCH5/BqdTIfAewDJL2/v7erq6tUo0bTSj8cqFks1kthWJdyq3+5NCgv9MwziLzrexPoZyBvgLORWpbSoOQ58mWKkI/nlXjcHzxi8EUdCu95sFKt98nxT9sZfVdAQB3Ksuu+J/G1o5VZoNjqDK4C1Hi/eYZoDizgsQC9wecoeMbt5+N4XHgOjPLJA2oUrMA1+LhNrlZw23PgEU80Cl5VuTbeeQUgAjJU72lKDZ/DYa3KNwZGcT9ewcf1I3BFxzN/ZkdYX57D9JGkwAobGTx2l8uXHQTYgIvkS/mlIIdGFoG0/8soAlvUUQfPdMVX2+oBNZHjz1E1npG9KR7iGbjvuX1c6BLyCD5qRI3Zi07hVXqu7+IV3c09r86nuTlNdcnx8XHqY44Own0RFaTzMF5cbwZOM4ePs7OhuyRViU54T1KdgXYgIsPsBfRG27ECrqlfnMoFR8JLl1FnztOn2kbvOI80pB7g4Gg0SrpkuVwmMI7BJtZHvNsQg0xwTnhHJS10u2mQBqR6VfmIWjWIpkBEDZwq8JB3l8E2zlpEmHVobl7ktlVpPwhjUVNG2u12ks/lcmmz2SwBFaxTWIcyHxHpBYAGIJRGRfFcuel5kdteq9VS+uhyubT7+3t7fn5OIAQDVSCkPHEBW4BvXjSUZw97bdN2esfiNwAz0HWIsqvVatZsNs3MUrTpfD5PPOSoUxDzgtMQkQY0GAzSluMRYLppG5Xtd/QFy+JgMEig8uPjY0ojYqAGcwaemYF9rVmn0bUqm9o2by5kG1l9y6enn6no0+k02dWwayAvs9nMGo1GAt6i4ABcD3oTaV1IfWI+cj2sVXVqZaDmowW8zPnwVpXQ8RB8XAfMUwcfzkIE1vC12RmpAvbwM+wDRQN+VbDG41vOkIxI+Vlm+HgOOa8aeud6v3v9UOWzGlxeezZF7MzBcOQxX5UXmkubu5/KS+TQqxypMQ2nwexlxQLX9LaQxhjV/vb4ELXHA0T0Gps0aMysoLwVeNZdgqKaImX3YXBqVcMN44gnbda9uLYHCrJe4YKJuK46+vw7/8aOHzvMnkPojYmPIB474CGMDn5+duw5kixnZKjTzM+sjnA08XvAN+sEvRf6EyuhGs3K0TwMmPLz50AbjQ5ih5ifcduAG4ekm71so4o0E45E8RattD855QvOlgI2ufHqLX54uh3t1/siOgq6BGADA+c6jlXG2Jhm519TorxIt02Q6gw4FHh2yAFqKEyn02SERyAHA1BsbGual9nrtF+PmI9sqyrp2IFTY2apCDTagkK66tyjbcwXfgauvcMAjka9KRj80aR6j518s5fotul0as1m00ajUUph43pRHLGHujB4fgB1rKsiW6KsrXyOOuUYdxhLKIwM5xDpWY+Pj4WoIE5FZKCeeQegBgAGImyGw2EhdY2LJW+KjzxvY9GiVquleRG8BQ+RzocX+pSLXyO6LYpIVB6uo3d0blSbEfyCHgVgCvlC2k+z2XwVqQhecrQeooUQ8cXRbVoTi+f8TRHfCwu/GIu8UAedirpLXKDdzF5F0eKZNCpR+ektYni2vvoW0W84HroQz4U2AjREDSJEK2oUOY4HP7lAOyLZEIEJ/coyuSofS4GanPHLk9+qkRi5+zHpJKbOgve750jqPTjsyMsHZSNbr+e1s6zTvfM9B/GjyFM6CM8HRVErVcnjVZX2gB/MFzZ6NFRfr8P3Y0AAv/FLw808BZD7j5UHp6joyui6E0UV4kkDSD7uBUNF0fwyfq7Kb3XEeBcM9DH6ADyDgRKlZYF3GsrvObaRXorklAEAngTUKPUm/o8iOO+QRX4WLVQayWZVvmkfMe/YWWTDnJ8fv8EpZSedUzB4QuM0H93NQdvFshMBbKwr0CZeNVZn8iNlEG3jNnCxWbOfaTJId/KKNkeAmzdm0S8IB1bjxhu36vxD/7FM8nWRWoEoEkQacNpWVJMF7dV7K38ZJGW9wfLHOdza/o/kI2QRzgTaPpvN7OTkJDlZvKtHBLjxc3sAlQIgapzyNXL2jJeyxOmoJycnycE7PT1NIem8wwqfzzzy+KUgEINa/J3TpDbhXHBbATKaWeH78fGxjcfjgiMBoE3HtM5tqls4NN8b63wdfNY+wH9wgFiO0GaAaoiogVMLp77VamXrJDEgqgAbR0gxv8pk8aOJdRJWuLlPjo+PU+QC1+aBbHL/sn7h5+NnUrAmAm3UCdT2egsTLDfQr4gOGQwG1u12rdVq2dnZWarRojWjeI7jKDakGaKGC3jFzi9AgW3UG0K/sI0KHsJpxS48HNnG9fhY/vAcnt0SgTWeLsV35hX/xr4t+IjvXNAbNWVubm6s1WqlLbs1KgrjAPO2B/wCSAT/mJ+Q/03XGWJif4eBadZNJycnqXYN2zoM2IGnbLMwiKjRNPyOdnj+sucbsM3DdhfrEIArAMc43Ykjo3iu5/5g4I1rooHP4/H4FTjFi1JVaaXUp8iBfy+QRu/lETOHw+v5HBVSL7fMu5f+vs7KdURloeibUJ7ePTylpgWbq5C34lcG1OCdHXu8s3BCsPgY5RnGptfHLKSrAG7ef55S95zNjyK9NoxxKD+zl1SLyKCPKOKXGiV4Z0XKhm3kXEBR66o+2odJEYoVvzNQoX3hKW5PkeuEzcBgNMl/JKnhxxMVJjCNKIr0URX95PGNDWI2CHNjGY6P2YtcMlizXC5fATLRc+SMqgis4WPUgVTDbRM6VWUAUSiYjDGeGWyuCp6a+foFPGJQjfmmzj7ayf0e6Up9LtwPToby1tMDer7qeNUXarhFzv1H61VuF1aBAd7gpUaogm7cf7gu6xo2VPle3hyiL6+9IE01VFuN+xpAnEYCRTqdxx2PNR1/Hhi1SeeQ+5AXZFQWERUV1RhCfzGvlG+8ILGqc6j3AZ888JuBJtQ1QTuwgq32La6hYJMHPHmLFB74tgn+gdQ25GgMzIsYf0dHR4XUBC+CAcfqePWAGU/+cC39zNFLuijmLSgrH81+8hepPHDuVS7RVjh5uMZ0Ok2LPBw944GmbOdsmtDfDD4yD+E08xypz876xbPbPPstxz8Q7BWVQ29BDC/MDRgDWKRBugwDTuyXLJcvNYbAK410A78YbNOIqE3KIhPkgxd8WE8ijS+SRZ5XmH9qu5TJIb8rMR/BH/3ObeK2LZcvO1NxpKXW8sM5bBcAQFRZBL+1/t6qclgJqPE6RSeXXSAPUQN5k7HXdmXmKvdeRYA2LWyesWf2uj6NF3VShaJxoMpOlSQb9mzImlmhHewAevfyUm8UvIlWPnPfPWBHFYcqm6iv30rRpMPGDJ47KqJttprMVl3tZydf+Yb2eQAS2oPr4jhcgyNq8F2dlGgCBnlOvxriOtFvYkJUZ5jBNt7tSQ0Is/XAYx2zaIP30uNwf7MiQIPfcSwDN+A7gLcc0KbjCW3zjo+cYBizzEsc9xHRGJ7xwWApnntdPuq41vEZOdNeX+F8BtTQZ+AZn6PRb7yixPLqgTPKS5U/dnBVDj0HfxNzpfIRhIgLOPce4BbpU68f1MnweJZzMvja3vzGY07vzdFSDJp6/NM2e5+jl8dHtAXt/AhiRwLPb2bJCUS/KEATLUCWyRrrGNWZ0VwN8vofv+N6rEM5ugJOgEYwqux57WaHD7ziMcl6VMGNTRPbDiB+Bjw7ikabFVOscTzPsdwv3riO5M97Z+edfQ/W76xveUwyaMqRCHw9b/xpFBvzim0Ivj7Pi5vQpUxsH4MYMOX0UY1a4POVb2U8xLme7OF7BLQpD9Fmncu4j5E6CN2iEeM8/jyAlAEZBteYz9vgHxM/P+Ydte/UTmDSecbjYyR3/NyeHIKf6gfpd46OwjV0IQaR0J6/yfpa9abHO8008MZpFaqU+rRYLFI1ZhRj84TqoybgsvaVMRkDipWmWREIYFLlq+HB67aTr4G2cp463/u9Cf0wGo0KSr9er6ddLt4KvkXtLnse5psKMf7ntkUAm94rZ4RF7Sj7LeckIlwRz/BRfJxOpwWjDaGjzEMu2PpW8vpb5UAdfJ3U0KbcqoXerwrvPAXutU+PYeeF+5KLRX6kPlsul4UVUkRFYVcdNuTN3l8vaD/gs/JNnQuzIu+UjzruqjpCXrvMfD5q23XCBA8xJlcF0VchhHWzTsUKYc4ZXFXHen2kDr73mc/ROc3jIetXlVdts6enPb5FPFVjjY0drEZtyjDlvgR4hVUw7hfuK29ce2NNeVPmUOQcDL6P8o5fzC8uAJ1zhvj+OZ7qMyhwoVEnm+IjtxvGMvhY1l+RftI+KJO1KrwDRfKnfFQHyAML+d7sEFUF4ZSPDGrwIsymCPfS+Rn9pmA3f/auw5+r8NA736NIp+b4ynxkh9DrA/Q760nvs3eM/rdpHoIUPDR7zbOIf6Cqchbp3jJSPeDpU+8z889bHPVkqwxs8uSS+28bPNT7w54ws/A9dx1+z32OfvPs0qgtEU/1P5XfsnaX8Sh6Rc+Yo1KgBoWReLKDMeIxa5PED+0ZFmhXDoDAsfoceLZazY8wWUWZe+31mPeRfdhsNq3VahXy5MyKfVIl4mhV8gxZM593Zn5BPh5n0aSmba7ViqH9EbrL9/A+545XoIbDoT9CmWJnB4T8sjzCMcVkgWPM1h9Xqyhcdcz0+VmOonGG++kqGo6JeKb31//1cxkizpPhR8gkJgXcV/Vq5EB4436d9nl9gd9zcoD2AKjH+cw/5bHXj97k5vGwjH98rvJxE6vA4Bfzkf9Tww6/8zFVKXI48B4ZAKw7eWxpfzI/0Tad9/SYiI98TK7NOM7jIeaBjwS9tX3MSxAA28iQq9qu6PnL3pn4nnxczrnhuQCgJV/D45+Op5yBiu+es6iOiPbFRxHGkhJ011sdRP0v+j+i6F65NjCf8Ayw4fiYdV7e+dEq9ybJG59qP64ih6vyMkeRXet91/948UAjpnD/Ml6sw9+qz/YRxM+xjoO/Cq9WeUbvnpFDr2PP7CU1y5NHvHv8NHudMhnJo3e9bZK2bVWbRtufe54qz8rtiObDsjmS+RLdPzcvls2X+t+qVArUNBoN63Q6dnNz8wr0KHOa30JlEyc+4zs7V3yMh6hF96pyrNeG3P/R+WrUfLQh02637fLy0n7//feUR4jnQxvemlqxLunKD/9u9npVXpFrHoMqqOpc6GceM2WOnR7LPOTwU4RJvjcfT09Prdls2sPDw6uVUdyPU2dAm+Bl1I86pjSEFN9XdVpZ7qPfcm3EcfxiJ9+bhN6LsPqi4Dc/RwTWfESbquieqD2aAsU6xbuHGt7edz0+uo5eAy8vbea9+wxjmcFZbWdVh7CqgVr2n3dsNJ/l+iWnB6sYm3z9MgM7mgs1H39VHbEORYbaKo59FarCN31eNULLHAy9thd9tcrKX8Q7vaZeY9MrwPxsOUdwFZ1alV8RRffPvXTejHgS9XUVXpY5FHr+Noh1jc6T64Kl+tn7HlFO7nKRUXqe2knMO/2M41fhW+64TVPU16s6+N61yn6PKAeWlvFQbTVuQyR3VXi1a3zzCHLHMqntK+PlKs9TdmzuXmWAmyeTq/BjHXtnXaqVTDDLdrttzWbTer1e+MB0/JsaU0arPGykBHICmrvXuopdKZrk1TCbzWbv1pm1Wm3Z7Xbt7OzMrq+vzcwKjv42eBndIwea5Qwvjz85Q5LPqcLLMuMME68a+09PT+/SkbVabYkaCdhutIryqXjtNx3v8cXjXZnhgvfos7fyq+cr5XgbKV7m4f+flN5VFnFdNVi0Xz5KBstkHd817aqMj1UctzJZ1M85yk2Kgby+mywGv7vv70lV5i/mC/Mwl7LGxifeVfZYPiJHrkxPerTKGHgvHprFfPz//7mf35tysriqPo3kEZ+9l/JSz2OqoktXOP5DZVGOqXKd8D/vOcochOhzFefBu3ZOn0bz4qr8WuX//3/MRmTROfa9brvSvVa1c/T8MkcvB8roNSJaxy/ZpCxukladK3OfI8rZNvyun73rvIW2JYvbojLf0XuPzmOqwkc+9r0p4mM2oubo6Mja7bZ1Oh17eHjIGniboGgS4/+j39ZtZyRwuck0RzlwAc7bew+AWq2WUtjwvcxxfu/7R7/lJr8q+eRVHPzIoUB/53iSe4bcOR8hxNgidzabuf9v2snPGSpRcbFovEWOA+ft4jg9D/evalDrOdG53v3eg9AnXFyQ6a2ORVUqMzw9HuK7Hm9W7kx4Dj8T88UjT1/i9xwPP4LQH+sUXjd7P/mMeKg6VOUwqvFgFvPRi3ZRefX4UKZfq8jhRxGPIaZojn/Pe0a/55y/XB0MPT9yDJmfWmCVn3/VZ6rqlHwEvXXsrHJuFRu0zJ7JzYlltmXEQy3iv+6zbpp3q9JHyibIs6Vysuj5RZ6NE72zDHpR9nz8gfJU1d+o8oquZ+brVZ0X+bjcNQ5UTpFM4j36nHsH5XhZhY8fTVmg5vj42M7Ozuzr16/2+++/u0a72WbBGr5fmcFT5VhQmaMWGSHrME+vCcUMY+O9B8TR0c8tDNvtdqGQWVTo8r1Jr+0JVdlkGDn5Klj6m9nrAsUeoMPXq0KeYHu/vxfVajU7OTmxRqNho9Eo7Bs+/r1Jrx+9OC3SK7aGY5jYCfSMlpxzuKo8RkYvrh05b+9Fx8fHdnJyUqh/sYqBsC55coj3Mj6uAriZ+VvWKi/LVvNX4eW6Y2Fdgg7l3cnwHvUNH/debeB7evdXWfTmcB1vng7TtCStJ5Pjo1IEimzDMcHzK+CWk8OPlEu+b+TY52TRa1sE1HCqJ2pl5OQod2397aN1KBOeOwIBvc/vcc/otyqyWFWfehTx0Oy13sXxVSmSxU1QlTFT1j+5/8vGR/RfFZ1ahY+5OY7nRtgFXn2nsufapNxFtOr42ZTv4fkVOh9qBGrUPs+GzNmr0bmR/bQLtC094FHO98BvuQhw/l2vB1JZZD56x210jtsVRhzoQAc60IEOdKADHehABzrQgQ50oAP91eljKgEf6EAHOtCBDnSgAx3oQAc60IEOdKADHWhlOgA1BzrQgQ50oAMd6EAHOtCBDnSgAx3oQDtCB6DmQAc60IEOdKADHehABzrQgQ50oAMdaEfoANQc6EAHOtCBDnSgAx3oQAc60IEOdKAD7QgdgJoDHehABzrQgQ50oAMd6EAHOtCBDnSgHaEDUHOgAx3oQAc60IEOdKADHehABzrQgQ60I/T/AA7FHMk69LCGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Select a random example from the validation dataset.\n", + "example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]]\n", + "\n", + "# Pick the first/last ten frames from the example.\n", + "frames = example[:10, ...]\n", + "original_frames = example[10:, ...]\n", + "\n", + "# Predict a new set of 10 frames.\n", + "for _ in range(10):\n", + " # Extract the model's prediction and post-process it.\n", + " new_prediction = model.predict(np.expand_dims(frames, axis=0))\n", + " new_prediction = np.squeeze(new_prediction, axis=0)\n", + " predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n", + "\n", + " # Extend the set of prediction frames.\n", + " frames = np.concatenate((frames, predicted_frame), axis=0)\n", + "\n", + "# Construct a figure for the original and new frames.\n", + "fig, axes = plt.subplots(2, 10, figsize=(20, 4))\n", + "\n", + "# Plot the original frames.\n", + "for idx, ax in enumerate(axes[0]):\n", + " ax.imshow(np.squeeze(original_frames[idx]), cmap=\"gray\")\n", + " ax.set_title(f\"Frame {idx + 11}\")\n", + " ax.axis(\"off\")\n", + "\n", + "# Plot the new frames.\n", + "new_frames = frames[10:, ...]\n", + "for idx, ax in enumerate(axes[1]):\n", + " ax.imshow(np.squeeze(new_frames[idx]), cmap=\"gray\")\n", + " ax.set_title(f\"Frame {idx + 11}\")\n", + " ax.axis(\"off\")\n", + "\n", + "# Display the figure.\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "78OrJXZfx66R", + "tags": [] + }, + "source": [ + "## Predicted Videos\n", + "\n", + "Finally, we'll pick a few examples from the validation set\n", + "and construct some GIFs with them to see the model's\n", + "predicted videos." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "ncMx34rLx66R", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Truth\tPrediction\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "v9U57leux66Q" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b90a786a416d4775ae3a591728680f66", + "version_major": 2, + "version_minor": 0 }, - "outputs": [], - "source": [ - "# Define some callbacks to improve training.\n", - "early_stopping = keras.callbacks.EarlyStopping(monitor=\"val_loss\", patience=10)\n", - "reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor=\"val_loss\", patience=5)\n", - "\n", - "# Define modifiable training hyperparameters.\n", - "epochs = 20\n", - "batch_size = 5\n", - "\n", - "# Fit the model to the training data.\n", - "model.fit(\n", - " x_train,\n", - " y_train,\n", - " batch_size=batch_size,\n", - " epochs=epochs,\n", - " validation_data=(x_val, y_val),\n", - " callbacks=[early_stopping, reduce_lr],\n", - ")" + "text/plain": [ + "HBox(children=(Image(value=b'GIF89a@\\x00@\\x00\\x87\\x00\\x00\\xff\\xff\\xff\\xfe\\xfe\\xfe\\xfd\\xfd\\xfd\\xfc\\xfc\\xfc\\xfb\\…" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "markdown", - "metadata": { - "id": "RxB7zZIxx66R" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "703b0dae94b74b0d99d678b44b21c7ce", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "## Frame Prediction Visualizations\n", - "\n", - "With our model now constructed and trained, we can generate\n", - "some example frame predictions based on a new video.\n", - "\n", - "We'll pick a random example from the validation set and\n", - "then choose the first ten frames from them. From there, we can\n", - "allow the model to predict 10 new frames, which we can compare\n", - "to the ground truth frame predictions." + "text/plain": [ + "HBox(children=(Image(value=b'GIF89a@\\x00@\\x00\\x87\\x00\\x00\\xff\\xff\\xff\\xfe\\xfe\\xfe\\xfd\\xfd\\xfd\\xf2\\xf2\\xf2\\xee\\…" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "qsujRd4Ex66R" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5f9b5b502ee04203a3b6e540d8a1d303", + "version_major": 2, + "version_minor": 0 }, - "outputs": [], - "source": [ - "# Select a random example from the validation dataset.\n", - "example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]]\n", - "\n", - "# Pick the first/last ten frames from the example.\n", - "frames = example[:10, ...]\n", - "original_frames = example[10:, ...]\n", - "\n", - "# Predict a new set of 10 frames.\n", - "for _ in range(10):\n", - " # Extract the model's prediction and post-process it.\n", - " new_prediction = model.predict(np.expand_dims(frames, axis=0))\n", - " new_prediction = np.squeeze(new_prediction, axis=0)\n", - " predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n", - "\n", - " # Extend the set of prediction frames.\n", - " frames = np.concatenate((frames, predicted_frame), axis=0)\n", - "\n", - "# Construct a figure for the original and new frames.\n", - "fig, axes = plt.subplots(2, 10, figsize=(20, 4))\n", - "\n", - "# Plot the original frames.\n", - "for idx, ax in enumerate(axes[0]):\n", - " ax.imshow(np.squeeze(original_frames[idx]), cmap=\"gray\")\n", - " ax.set_title(f\"Frame {idx + 11}\")\n", - " ax.axis(\"off\")\n", - "\n", - "# Plot the new frames.\n", - "new_frames = frames[10:, ...]\n", - "for idx, ax in enumerate(axes[1]):\n", - " ax.imshow(np.squeeze(new_frames[idx]), cmap=\"gray\")\n", - " ax.set_title(f\"Frame {idx + 11}\")\n", - " ax.axis(\"off\")\n", - "\n", - "# Display the figure.\n", - "plt.show()" + "text/plain": [ + "HBox(children=(Image(value=b'GIF89a@\\x00@\\x00\\x87\\x00\\x00\\xff\\xff\\xff\\xfe\\xfe\\xfe\\xfd\\xfd\\xfd\\xfc\\xfc\\xfc\\xf8\\…" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "markdown", - "metadata": { - "id": "78OrJXZfx66R" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2cdc967f2552419cbe9512f96434a6fd", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "## Predicted Videos\n", - "\n", - "Finally, we'll pick a few examples from the validation set\n", - "and construct some GIFs with them to see the model's\n", - "predicted videos." + "text/plain": [ + "HBox(children=(Image(value=b'GIF89a@\\x00@\\x00\\x87\\x00\\x00\\xff\\xff\\xff\\xfe\\xfe\\xfe\\xfd\\xfd\\xfd\\xfc\\xfc\\xfc\\xfb\\…" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ncMx34rLx66R" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1a3b4d93c8ef4d38a986796dbef26bed", + "version_major": 2, + "version_minor": 0 }, - "outputs": [], - "source": [ - "# Select a few random examples from the dataset.\n", - "examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)]\n", - "\n", - "# Iterate over the examples and predict the frames.\n", - "predicted_videos = []\n", - "for example in examples:\n", - " # Pick the first/last ten frames from the example.\n", - " frames = example[:10, ...]\n", - " original_frames = example[10:, ...]\n", - " new_predictions = np.zeros(shape=(10, *frames[0].shape))\n", - "\n", - " # Predict a new set of 10 frames.\n", - " for i in range(10):\n", - " # Extract the model's prediction and post-process it.\n", - " frames = example[: 10 + i + 1, ...]\n", - " new_prediction = model.predict(np.expand_dims(frames, axis=0))\n", - " new_prediction = np.squeeze(new_prediction, axis=0)\n", - " predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n", - "\n", - " # Extend the set of prediction frames.\n", - " new_predictions[i] = predicted_frame\n", - "\n", - " # Create and save GIFs for each of the ground truth/prediction images.\n", - " for frame_set in [original_frames, new_predictions]:\n", - " # Construct a GIF from the selected video frames.\n", - " current_frames = np.squeeze(frame_set)\n", - " current_frames = current_frames[..., np.newaxis] * np.ones(3)\n", - " current_frames = (current_frames * 255).astype(np.uint8)\n", - " current_frames = list(current_frames)\n", - "\n", - " # Construct a GIF from the frames.\n", - " with io.BytesIO() as gif:\n", - " imageio.mimsave(gif, current_frames, \"GIF\", fps=5)\n", - " predicted_videos.append(gif.getvalue())\n", - "\n", - "# Display the videos.\n", - "print(\" Truth\\tPrediction\")\n", - "for i in range(0, len(predicted_videos), 2):\n", - " # Construct and display an `HBox` with the ground truth and prediction.\n", - " box = HBox(\n", - " [\n", - " widgets.Image(value=predicted_videos[i]),\n", - " widgets.Image(value=predicted_videos[i + 1]),\n", - " ]\n", - " )\n", - " display(box)" + "text/plain": [ + "HBox(children=(Image(value=b'GIF89a@\\x00@\\x00\\x87\\x00\\x00\\xff\\xff\\xff\\xfe\\xfe\\xfe\\xfd\\xfd\\xfd\\xfc\\xfc\\xfc\\xfb\\…" ] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { - "colab": { - "collapsed_sections": [], - "name": "conv_lstm", - "provenance": [], - "toc_visible": true + ], + "source": [ + "# Select a few random examples from the dataset.\n", + "examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)]\n", + "\n", + "# Iterate over the examples and predict the frames.\n", + "predicted_videos = []\n", + "for example in examples:\n", + " # Pick the first/last ten frames from the example.\n", + " frames = example[:10, ...]\n", + " original_frames = example[10:, ...]\n", + " new_predictions = np.zeros(shape=(10, *frames[0].shape))\n", + "\n", + " # Predict a new set of 10 frames.\n", + " for i in range(10):\n", + " # Extract the model's prediction and post-process it.\n", + " frames = example[: 10 + i + 1, ...]\n", + " new_prediction = model.predict(np.expand_dims(frames, axis=0))\n", + " new_prediction = np.squeeze(new_prediction, axis=0)\n", + " predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n", + "\n", + " # Extend the set of prediction frames.\n", + " new_predictions[i] = predicted_frame\n", + "\n", + " # Create and save GIFs for each of the ground truth/prediction images.\n", + " for frame_set in [original_frames, new_predictions]:\n", + " # Construct a GIF from the selected video frames.\n", + " current_frames = np.squeeze(frame_set)\n", + " current_frames = current_frames[..., np.newaxis] * np.ones(3)\n", + " current_frames = (current_frames * 255).astype(np.uint8)\n", + " current_frames = list(current_frames)\n", + "\n", + " # Construct a GIF from the frames.\n", + " with io.BytesIO() as gif:\n", + " imageio.mimsave(gif, current_frames, \"GIF\", fps=5)\n", + " predicted_videos.append(gif.getvalue())\n", + "\n", + "# Display the videos.\n", + "print(\" Truth\\tPrediction\")\n", + "for i in range(0, len(predicted_videos), 2):\n", + " # Construct and display an `HBox` with the ground truth and prediction.\n", + " box = HBox(\n", + " [\n", + " widgets.Image(value=predicted_videos[i]),\n", + " widgets.Image(value=predicted_videos[i + 1]),\n", + " ]\n", + " )\n", + " display(box)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-02-13 21:42:41.774353: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.\n" + ] }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: saved_models/assets\n" + ] + } + ], + "source": [ + "model.save(\"saved_models\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gradio" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install gradio moviepy scikit-image" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import yaml\n", + "\n", + "import imageio, cv2\n", + "from moviepy.editor import *\n", + "from skimage.transform import resize\n", + "from skimage import img_as_ubyte\n", + "\n", + "import gradio as gr\n", + "\n", + "def inference(driving,\n", + " output_name = 'output.mp4',\n", + " audio = True,\n", + " cpu = False,\n", + " best_frame = None,\n", + " relative = True,\n", + " adapt_scale = True,\n", + " ):\n", + "\n", + " # source \n", + " source_image = resize(source, (256, 256))\n", + " \n", + " # driving\n", + " reader = imageio.get_reader(driving)\n", + " fps = reader.get_meta_data()['fps']\n", + " driving_video = []\n", + " try:\n", + " for im in reader:\n", + " driving_video.append(im)\n", + " except RuntimeError:\n", + " pass\n", + " reader.close()\n", + "\n", + " driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]\n", + " \n", + "\n", + " # save video\n", + " output_path = 'asset/output'\n", + " os.makedirs(output_path, exist_ok=True)\n", + " \n", + " print(f'{output_path}/{output_name}') \n", + " \n", + " imageio.mimsave(f'{output_path}/{output_name}', [img_as_ubyte(frame) for frame in predictions], fps=fps)\n", + " \n", + " return f'{output_path}/{output_name}'" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import gradio as gr\n", + "import os\n", + "samples = []\n", + "\n", + "example_driving = os.listdir('asset/driving')\n", + "for video in example_driving:\n", + " samples.append([None, f'asset/driving/{video}'])\n", + "\n", + "iface = gr.Interface(\n", + " inference, # main function\n", + " inputs = [ \n", + " gr.inputs.Video(label='Driving Video', type='mp4'), # driving video\n", + " \n", + " # gr.inputs.Checkbox(label=\"fine best frame\", default=False), \n", + " # gr.inputs.Checkbox(label=\"free view\", default=False), \n", + " # gr.inputs.Slider(minimum=-90, maximum=90, default=0, step=1, label=\"yaw\"),\n", + " # gr.inputs.Slider(minimum=-90, maximum=90, default=0, step=1, label=\"pitch\"),\n", + " # gr.inputs.Slider(minimum=-90, maximum=90, default=0, step=1, label=\"raw\"),\n", + " \n", + " ],\n", + " outputs = [\n", + " gr.outputs.Video(label='result') # generated video\n", + " ], \n", + " \n", + " title = 'Face Vid2Vid Demo',\n", + " description = \"This app is an unofficial demo web app of the face video2video. The codes are heavily based on this repo, created by zhanglonghao1992\",\n", + " \n", + " # examples = samples,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running on local URL: http://127.0.0.1:7861/\n" + ] }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" + { + "ename": "MissingSchema", + "evalue": "Invalid URL 'None': No schema supplied. Perhaps you meant http://None?", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mMissingSchema\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_129/3616858783.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0miface\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlaunch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshare\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/.conda/envs/default/lib/python3.9/site-packages/gradio/interface.py\u001b[0m in \u001b[0;36mlaunch\u001b[0;34m(self, inline, inbrowser, share, debug, auth, auth_message, private_endpoint, prevent_thread_lock, show_error, server_name, server_port, show_tips, enable_queue, height, width, encrypt, cache_examples, favicon_path)\u001b[0m\n\u001b[1;32m 728\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 729\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mshare\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 730\u001b[0;31m \u001b[0;32mwhile\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnetworking\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0murl_ok\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshare_url\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 731\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msleep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 732\u001b[0m \u001b[0mdisplay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mIFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshare_url\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mheight\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.conda/envs/default/lib/python3.9/site-packages/gradio/networking.py\u001b[0m in \u001b[0;36murl_ok\u001b[0;34m(url)\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 188\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msleep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.500\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 189\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrequests\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhead\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 190\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstatus_code\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m401\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m302\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# 401 or 302 if auth is set\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.conda/envs/default/lib/python3.9/site-packages/requests/api.py\u001b[0m in \u001b[0;36mhead\u001b[0;34m(url, **kwargs)\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'allow_redirects'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 102\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'head'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 103\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 104\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.conda/envs/default/lib/python3.9/site-packages/requests/api.py\u001b[0m in \u001b[0;36mrequest\u001b[0;34m(method, url, **kwargs)\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0;31m# cases, and look like a memory leak in others.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0msessions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSession\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 61\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 62\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.conda/envs/default/lib/python3.9/site-packages/requests/sessions.py\u001b[0m in \u001b[0;36mrequest\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 526\u001b[0m \u001b[0mhooks\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhooks\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 527\u001b[0m )\n\u001b[0;32m--> 528\u001b[0;31m \u001b[0mprep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprepare_request\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 529\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 530\u001b[0m \u001b[0mproxies\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproxies\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.conda/envs/default/lib/python3.9/site-packages/requests/sessions.py\u001b[0m in \u001b[0;36mprepare_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 455\u001b[0m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPreparedRequest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 456\u001b[0;31m p.prepare(\n\u001b[0m\u001b[1;32m 457\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 458\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.conda/envs/default/lib/python3.9/site-packages/requests/models.py\u001b[0m in \u001b[0;36mprepare\u001b[0;34m(self, method, url, headers, files, data, params, auth, cookies, hooks, json)\u001b[0m\n\u001b[1;32m 314\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 315\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprepare_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 316\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprepare_url\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 317\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprepare_headers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mheaders\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 318\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprepare_cookies\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcookies\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.conda/envs/default/lib/python3.9/site-packages/requests/models.py\u001b[0m in \u001b[0;36mprepare_url\u001b[0;34m(self, url, params)\u001b[0m\n\u001b[1;32m 388\u001b[0m \u001b[0merror\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mto_native_string\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'utf8'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 389\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 390\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mMissingSchema\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 391\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 392\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhost\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mMissingSchema\u001b[0m: Invalid URL 'None': No schema supplied. Perhaps you meant http://None?" + ] } + ], + "source": [ + "iface.launch(share=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "conv_lstm", + "provenance": [], + "toc_visible": true }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file + "kernelspec": { + "display_name": "default:Python", + "language": "python", + "name": "conda-env-default-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "007991c798294b8e93cdf3fb62ee1e14": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAAP////7+/v39/fLy8u7u7uvr6+rq6unp6eHh4eDg4N/f39ra2tbW1tHR0c/Pz8fHx8PDw8HBwcDAwL+/v7q6urm5ubCwsK+vr6Kiop6enpubm5mZmYqKioiIiIeHh4CAgHl5eXh4eHZ2dnV1dWpqamNjY2BgYFlZWU5OTkxMTEBAQDo6Ojc3NyoqKiQkJB4eHhwcHBgYGBISEg4ODg0NDQsLCwYGBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wBvCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzaiRoIoGEjSBp1CDIQMAIkBspNIgxsORJlBhJBBCAoqVJmBhDBMAgw+YGnBczAOhAMEIABTOAVoQQwANBEQIErFA6EUaBpk+jTqUakYWAACCySuUascPXFANLOIhqgizEqwACyA0Qdy6ADG4bnlgwU8CAAwYKRP2KIG/DFygSuxBo44GACihaGKZ4QYCGyRUrX8Y80UKAzZwjViYQWmJlAaVFC8CQGiIHASJay55Nu7bt27hz697Nu7fv3zhVfPgwYQJxAMgnqLA9Abnz586X04ZOHfmH2s2HXxfY3DnvD9An5FBW0f25dNvgqW+/XR76eebVAYjHLZxg+fm97/8uv553+fe7ddffbukBYJtwAN5QIHzWqSBcgfjNFp95B04IQIKzHedcccB16OGHIIYoYkUBAQAh+QQIFAAAACwAAAAAQABAAAAI/wBvCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaNHiiYSSPiIkUYNggwEjCB5kUKDGANTrmRJkUQAAShiqqRJMUQADDJ0buA5MQOADgQjBFAwg2hECAE8EBQhQMAKpw9hFIg6tepVrA1ZCAgAoqtVsA07jE0xsISDqibQMtwKIIDdAHXvAsggN+GJBTcFDDhgoEDVsQj6JnyBorELgTYeCKiAooViiBcEaLgcMfNmzg8tBPgMumFmAqUdZhaQ2rQADK0ZchAgIrbt27hz697Nu6GKDx8mTAgOoPgEFbYnFF/OfDny1s2jF/8QWzlw6gKVL+f9ofmE3Cq0M1J/brt7dOy3xTcnn1w6gO+4fxMUD783/d7Zl6PnLZ79bu377WYeALb95t8NA7Y3nQq/DVhfau6NV2CEAByYGnHLCYffhhx26OGHIIYo4ogkUhQQACH5BAgUAAAALAAAAABAAEAAAAj/AG8IHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKrGgigYSRFGnUIMhAwAiUEyk0iDGw5UuYEEkEEICipkucEEMEwCDD5wagDzMA6EAwQgAFM5A2hBDAA0ERAgSskLoQRoGqV7Nu5ZqQhYAAIMJqJZuww9kUA0s4yGqCLcKvAALoDZB3L4AMdgueWLBTwIADBgpkPYsgcMEXKCK7EGjjgYAKKFo4ZnhBgIbNDTt/Br3QQoDRpBN2JpBaYWcBrVULwBAbIQcBImrrVqjiw4cJE34DGD5BReoJw5MrT24c9PLnwz+QRu5bukDkyXff+LB8Qm0V2JU3VU/N/bn11uGXjz8OHYD32L0Jhn+v/cb8+teTn9cefv1u7PvtVh4AqfXm33bZTaefCr0NSN9m7YlXYIQAHLiZcMkBh9+GHHbo4YcghijiiCSWaGKJAQEAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f398vLy6+vr6urq6enp4eHh4ODg39/f2tra1tbW0dHRz8/Px8fHw8PDwcHBwMDAv7+/urq6ubm5r6+voqKinp6em5ubmZmZiIiIh4eHgICAeXl5eHh4dnZ2dXV1ampqY2NjYGBgWVlZTk5OTExMQEBAOjo6Nzc3KioqJCQkHh4eHBwcGBgYEhISDg4ODQ0NCwsLBgYGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AaQgcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkSYMjEEQ4CTGGDIILBIBg+XACAxcDY86kyTBEAAElcsrkydBDAAsvhGYguvACAA0EIQRIAINpwgcBNhD8IEAACqsHWxDIurXrV7AFUwgI0KGsV7QFNaw1MVBEg64j4BIcCyCA3wB9/wK4oJcGCQU/BQwwUIBA17UHCtNgUaLyCoEzHAigUEKFZIQVBGD4nDD0aMknOHCQIGE1gNcBTuuV8Lq27donCt/e/ZpDYdqqfQukXZs0QQ63JRg/Qdx27s/Idwv/3Pz2c+q8ASgnnZpg8+3GvddDBh9+eO3p5Wk0v56eOPry0QGg5sBeYHzJzemnjk8ebXbnqP0HQH16uTZef+klqOCCDDbo4IMQRijhhBRWaOGFGDIYEAAh+QQIFAAAACwAAAAAQABAAIf////+/v79/f3u7u7r6+vh4eHg4ODf39/W1tbR0dHPz8/Dw8PBwcHAwMC/v7+6urq5ubmwsLCvr6+ioqKenp6bm5uZmZmKioqIiIiHh4eAgIB5eXl4eHh2dnZ1dXVqampjY2NgYGBOTk5MTExAQEA6Ojo3NzcqKiocHBwYGBgSEhIODg4NDQ0LCwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBdCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTRgxhoIHKhixaEEQgwMNLhg8SpBhI0+bNhB8CCBDBs+bPhBwCTFBR1MJRhBQAYCDIIMCBFU8NLgiQgWAHAQJKZCWIggBXr2DFjhVoQkCADWjDrhWIwe2IgSAUgA2xloQGswACBABAWLBgABSeOiDMuDFjsAEKPHVMmbAACCJOKAagofPAxY8rzCWowbEDAaLnkgDdmESEAKmzlqasQaAEAQPGsnZMwjZY3ZUBOPA9YaxfgqyHXxDQYTRyxsOdG2RdW3pB1r2tP+esnTRj1RqyezAnPJc6Cb+zhc8N3lo1ewDi52rY7SB69/v48+vfz7+///8ABijggAQWaOCBCCboUUAAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f398vLy7u7u6+vr6urq6enp4eHh4ODg39/f1tbW0dHRz8/Px8fHwcHBwMDAv7+/urq6ubm5sLCwr6+voqKinp6em5ubmZmZioqKgICAdnZ2dXV1ampqY2NjYGBgTk5OQEBAOjo6Nzc3KioqJCQkHBwcGBgYDg4ODQ0NCwsLBgYGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AWwgcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyZMoU6pcyXIiiAQQWipUsYLgAgEdZCaUwADFwJs5dRr0EEBAiJ84hbYQsWFDhAgbAgCYGkHEzQxCI0zdynXrgwAKUujsSnbqBgECRujU2nTDiQIBtG7lgFatUoEkBHSNQDftXRFyuYr40AAtCKEbygZYDGAx4wstA3cVMOCAgQJoBQRAELksgAgmBLJwIGBCiBItmRIMHGFgBQEY7q7e2rrF69iyBwbe0IJCANy5BQYW8ZpA8NkANrwWcHxg4qmvLQhlKsLgcwAaBHDIunWDCKbXaysr9SxYtgjyAKoHd8r1afP38OPLn0+/vv37+PPr38+/v///AAYo4IAEFlhRQAAh+QQIFAAAACwAAAAAQABAAIf////+/v79/f3u7u7r6+vq6urp6enh4eHg4ODf39/a2trW1tbPz8/Hx8fBwcHAwMC/v7+5ubmwsLCvr6+ioqKenp6bm5uZmZmKioqIiIiHh4eAgIB2dnZ1dXVjY2NgYGBZWVlOTk5AQEA6OjoqKioeHh4SEhIODg4GBgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBTCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqVGERs2QIAgE4BNCCJcFoRgs6fPnjl1CvxJ1OaGFB8QPHDJM+ZRgTx7ClwgoINQght+Qpha9aqIqD5DDKRq1WVWogEomBgr4ALTojYzEHQQIMGJlmB/BtBAkIMAASNawiQIdutAv4CvDix8+G9gxSkyCOh51AODvx8gpyAQwGfnAKA7V1AMQkGAyQAMFCDwV0CAA5BLhDgLIAWKBgIihCDBEmZQrFJTTBBg4a1RETBpGx5evCVcn0ElBGje+zmA38MHCK3Zc2bB4QI0JygcTkE8QgwCOJhfz769+/fw48ufT7++/fv48+vfz7+///8ABijgRQEBACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/e7u7uvr6+rq6unp6eHh4eDg4N/f39ra2tbW1tHR0cfHx8PDw8DAwL+/v7q6urm5ubCwsK+vr6Kiop6enpubm5mZmYqKioiIiIeHh4CAgHl5eXh4eHZ2dnV1dWpqamBgYE5OTkBAQDo6OioqKiQkJB4eHhISEg4ODg0NDQYGBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AFsIHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTGklw4AABAksAMCGQQLkQAsybOG/OpIkwp0+YHHgitLkyqECbN4U65JATglKFJJDi3PnUIFOfRqsalJqTqlaCXHE6FYHgwVeBKgeukAphgQAQZw1GYCDVLdy4A0MEEDBC6lu8Az0EqJCihVQMgAVaAKBhINIEKhI7CLBh4FUAJeKqJEGAsuWbmc9KDdBB5WUBob/+zClAhObVMAPIBmAhLgcFOA0UICCgd4ADeFGMGH5CIIsGAiSMMJHYIAUBF5offB5desEJAapbH/h8wHaCzwV8JOcuoMJ4gRkEfDjPvr379/Djy59Pv779+/jz69/Pv7////0FBAAh+QQIFAAAACwAAAAAQABAAIf////+/v79/f3y8vLu7u7r6+vq6urp6enh4eHg4ODa2trW1tbR0dHPz8/Hx8fDw8PAwMC/v7+6urq5ubmwsLCvr6+ioqKenp6bm5uKioqIiIiHh4eAgIB5eXl4eHh2dnZ1dXVqampjY2NgYGBZWVlOTk5MTExAQEA6Ojo3NzcqKiokJCQeHh4cHBwNDQ0LCwsGBgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBjCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDiqR4ggOHCBFOAlgZ4cRIiBFWypwp0+XLhjRzruRws2FMkzwFxpTZcyIHmhGKPjwxdKZNpQuP5gwKdWFTmk+rJrw6M6lWhSUJNvX61eHYsg+bUkVrtSZbhSMSQBi6lq2LFwQXCAAhFcDbgRIYPNXLl+jfEAFkcjihty9Zth50Yv0b44Jkt5QfBNigUqaAx29bFNhM8IMAASgoC0whIECH0qdTq9bQ2sRAEQ1Oj1AdYzSAAMATB098gTIJBQFODzhgoMDp1ghUsyhBfYVAGA4ETCihgvfBCgIweDhHCF78eIMUApg/TxA8AfYFwQuA316ABfoDMwj4gL+///8ABijggAQWaOCBCCao4IIMNujgg94FBAAh+QQIFAAAACwAAAAAQABAAIf////+/v79/f3y8vLu7u7r6+vq6urp6enh4eHf39/a2trW1tbR0dHPz8/Hx8fDw8PBwcG/v7+6urq5ubmwsLCvr6+ioqKenp6bm5uZmZmKioqIiIiHh4eAgIB5eXl4eHh2dnZ1dXVqampjY2NgYGBZWVlOTk5MTExAQEA6Ojo3NzcqKiokJCQeHh4cHBwYGBgSEhIODg4NDQ0LCwsGBgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBrCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzakSIokOHCBE+AhgZAcVGjBFGqlyp0uTJiixjjuzwsmJKjzQFplRZc2MHlhF6XkSxc6VLoRN/xsyJdGJRlkebRny6MqhUiR0JFrV61eLWrheLMgXrtCVZmzPPUlQKQK3CjlEFsnWbUCyKjmy50i0oE+regyj6joz7l6BIlSALF5Qxg+ACASEUI5TA4MXAx5ElFxQRQICJy5A1F/wQwAIM0BlEE7wAYANBCAESxFAt8EEADgRBCBCQgraLArdz7+6tWoWAAB6E86a94fiJgSMa7CZBGziAANgDXM8O4ILoEgo6C1YYcMBAgd3HEahuYaI9C4E0HAiYYGIF7YMVBGC4jzD/fv4GURDAfwASlB8BBRaUnwAJGiiABQ0OpIEAIERo4YUYZqjhhhx26OGHIIYo4ogklmjiiQYFBAA7", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_6a73462ee50b4ce491a0287e5cb413b4" + } + }, + "07cd38701c8a4a43ae600e53eaed3d1a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "layout": "IPY_MODEL_bce88ef585c943349decc0b69611062e", + "max": 1, + "style": "IPY_MODEL_457dd638c37243c5b30baf79ae6f6103" + } + }, + "0a98bef4bb6a4e6080600e3e1e4bb81a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "0b9217699509434ba2ee5d5a812ce03d": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAALKysq+vr62traioqKSkpJ6enpycnJubm5qampiYmJWVlZSUlJOTk5KSkpGRkY+Pj42NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wA7dapEsKDBgwgTKlzIsOAlTpsQCYwUCdIjR40yatzIsaPHjyA9OoqUSVOfTpQoPVKUCBGiQzBjypxJs6bNmzFdIlLUCFOlS500TVqZCKfRo0hpIkrEyBIlS502VZLkaJEilomyat3KtavXr2CzXl3E6NElS0A3WRq6KKzbt3C7KiqL6RKmqGsftW2ps6/fv4ADC/Yrlq5dvGz5Dl7MuPHSRHMfYZqMWK9ix5gzP448+a7axJpDOy4smfJny6JTDybduXJb1bD/sjad93Xs25vp0gaNO/Zsz7Uv9xb927Xw4ZqLn7aNnDhk3cB5Nw+tPPh055x3o76e/Hnp6Nu5Y/+uLl18Y/LhzTNGz1z9YvbH3QOGL3+999bL49fvSz+1UtX9OWbTYy0ZMkggf/wBiCCFGHLIavdp155fRhliYUyGEBJIH3nUIUccctShxx+DOBhYgC7dZOGKhbTYIiGC/KGHHGyYIUYYYJBxBhtz6CGIibJFCN4iFNJkoYsrGlIIIYQc2Icdb4ixxA860BADDkhkYQYcegQCJH9CuibaIRkeKOMca1xhAwYMKNDAAxOA4IIRXbyxx48wgZkdeIrwNxYjjgSKUSOMLGJoIoXEuAeaanTxwwgafECCBxhkgAEHJ/gAxhx/FCKTTmGe1qdLkC3SyCORSCLJJJNIYtEjFin/UgggfNDhhhtkDCHCAxukAEIFEljwgQgesLAEG3qU+OlSe1Y26nOOoDrJU5ZYUgmrKUXiCCKD7EHHHHN0QUMEFHwwwggemECBBSWscMINZORBiE55Mguds/ZGG8lTdl1yViXVUuLqIobwoYcfcUiBArsgfNCBCCmUUK4MKLQgxR2EQMYSf4t852ypp0ryU2f/VjuJI4kIwocddODRhxlKtMACCA9w8EIOUChxQws2sDACEG8EkoihWInVMX55sUTWSCPXZW0lKU3CiCB2sDEGjmO4QcUNNLwAQrFLbFHGGlQMUQQPJdywxh9z7aVVs585MlYjkFDir7+UTBs1JIXY//HFFEgUQcQTQ8QgwgwwOMCBDFt8qIfWTghRgg1sDNIIRkSTJ/dcjkxiidMCQxLJtJEsogcbUZidxA88mCACBCdYEEACLnyxBx+D1PHFFUeQwAIagzhiEaFWZXVv3IqQFcnIl1Ci7eWpQoJIHGP8kEMRWABOQgUPlPCAAAnAMIYfgBiiexZFjMCCGYHQfREjhRrvMfKKPOL5v5EQmjyqkDBCRxlE2EHYrJAEG5TgBS64QAEswAQ1DAIQgagDF6jgAw+84Azte1+hsLIIRyDtZFepW7Wm0oiNJaIRq3oEH85wBB8AwQhI6MGkbsADFXxgBVhoQyAIoQc4YMEJMyABDP/QAIhTNcJQxRuaB3cjt0Usz1qT6F9LDlG/qB0CDkxAAQpksIMdoCAENBCCD2hggyykIQ98gAManiAEFKzgCHAgxOUKlcT9fbCJT7xWJBihFScWxBF9wIIILhCpGYxgAxJ4wQ16EIMkNG4OaPACE3iwghhwIQ+IyAgdi3Y0JiYvj5PIHxIZIYlqNW8RctABCz5wgiGMgAMUgMEMcDCDHDSBC2L4WxFWQIMnrIEQpkJi0eC2liaKzFoCcwT8ACUJf2XiEpH4gxNuIAIWxMAEICABDpoQBCPgoAhQ4EIVouADGfzADIBgCvyKRypiDiV5x4TaUDISqEnY5ZmS6AMSNoD/ARbgwAcwkEEPiKAFLjwBCVaoAhWCoIMgcMEOhyALHbPSzuMlbRHxzBskMAIru02mEotwwwoQQAANzCBwSLCBDp4AhilYYQpPMMIMglCFORhCovFTTKjyApk8ZitakJhWwFQIhQsMAAAUqIFLqzCEIDxBC1mYghOY0AMjVCEOg5jLOjdGqp2erCWPoFbeJPEI+xEkmYIQwwwWMIADlMAIVtjCGL7ghS2AYQtdCIMTquCFOQhiaFu9jOYQYQhSAmwtrJoW1PQCCBZqwAAMUAEPoAAGNuTBD32gQxzMcIa8sgEPWTVUTgnj1W0VAhH2GyEloCYJbSXiZUkggQMcQIIe/0xhC3DoA1kMEQhA+KEObahDH24q2qKR1p2mNUT9JnFW522LEHwwwxFOMIEMoABLUlhDH0gZykYc4g+CIMQhhiZatwUJuYhYknKFRxG9HEIQeDjDE2BwgQ+kwAZKqMIZ/oDCgoTyERm5CPGMe16LfnVJDQLsawrRBzZUwQfDUsE3rZCGPTBidKu9VighYZGqHIqiQfLqIxKhpBY9CDJZKQQf1oAFHsDABUAoQhPOsIdFQEJVGt0ooYiHYhCHGG7NgwSRcvKcjCTCD3CoAhGGwAQoWIHGF05VqzisTGGK5SpFuzKWk3eq1nCiNik6cfIY0YjXuuEKS4CCFLZQYYyqyqFVgcrcVrDslj95jBOZmAqACbVMelZlEHdQgxbA4AU36JYiU9YkmQd1OUE5+tGPhpUkMpGJu0BiE5eYCofLWlYOc9i7f8iDqOlg4VatiqyDAqqnV83qVns6VZTQRKU7AZVOcAIim8i1rnUt6+aJ7CclybUmNLHrYhv72Mi+ta05IZFhk+xu0HYKJEbFiBtnGGDQtgvJnt2Zbnt7MpSGSCcCAgAh+QQIFAAAACwAAAAAQABAAIfFxcXDw8O+vr67u7u4uLiurq6qqqqpqamnp6elpaWjo6OhoaGenp6dnZ2cnJybm5uampqZmZmYmJiXl5eTk5OSkpKRkZGQkJCPj4+NjY2MjIyLi4uKioqJiYmIiIiHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBJkQJFsKDBgwgTKlzIsGAoUqMeCfzkqROnTRgzatzIsaPHjx87iRrFiJSoUJ0yYbLEsqXLlzBjypwp81KmUKAejgLVSdOlSpSCCh1KtKjRo0iLVrKUqaDAUJ84Zbp0iabVq1hZUr2EaVOor095ZnJZqazZs2jTql2bNmbXUCfDdsLEtq7du3UtXfIqSpRcungDC2arl69fUjjnnk3KuHFStIXhHk4M2LHly0PPRu77tyzmz44175XcGSjo00dFGy6NujVR1aQR86zsujYls5snz/Zs2zXu0ZxlKzbdG/Xv1cJpFz99PDZl3stBNw/+nHh0zNN1D78uvWxu1tyxe/8Hrl15+NDjkVc/fzk7ePaN3SeHDv9xeue7rddPfZ96/vCLMSbfesUtRRUmmFRlCX2ZDfhfa6JxlaAllETyiCOOPBLJJK85uB1zS7nEVVWTQMLIIYQEEogghzACiSQNGqjeg58ZWNWBKlEIiSKB3AGHG2/IcYcfhzgCY1AemnfbWiJikolKCE5YCSSJ7NFFE0YMIUQRUIDxxh5FHpkkcd7ptZWETiL4pCabaKKSSlRVOIgZSNAgQgcfeLACDkuUoUcikCDZX3meGegkmxhxouhFmiDaKJxRVhIJIWgIIQMLLZgAggclnAADEGf8wYiYMuI3nKFsdtKJJ558QpGqFl3/1KYmCWbSJiaR2IGECSGcAEIHwJ6QgggvOEGHIYEi+d18qG7CCaufFOTqq7Ba5KaznGjCCBkztHCCCCV8wEIFGrwAgwk4pCGIIxzetuxzemGSaqsGUbTJVDZtsupFnVDkiSV9QOHCCyucYLAMJlyAAg4ouHCFH420W9Ylmpi6ElepRlsvJ5ZAgkgghCDSSCVPclKQJ4rMwYQONZTgghBKaEGEDTLowAIJRuSxyCS/VezfXJY4qW+0OE27CSWI8NHGGGOQkcYcgTBCCbSaBPKFEC5wIMINY9jRBxxR8ABEDRzsEAciPA/61CcpYcyJxqCwrSgmjuzBxhdcVNHEE0lo/wFHITZpIskdURyhwgIXyLCHI5AYcoYSTADhwQxrHLLkxD5Pxvabm3iSU9yezFoJInJUgcUUVjhRxAsuWEEH4x63McUQFgRQQAqCsOSIHFNUQUQHM7ChSIiYO7d5Jpr0+3noU2EyySBwWAEGFV5MAYQNLzSxBiGJDMLHGlRU4QEAAtBwiEqOxFGFFkVwIMMai1RCVfE/lwx3VBNaMkkhdICxxhVYCEINRqACJsDhD3/AQxvMwAUwnGAABugBIpznuCdcIQgesAEc4lcV+mnHTcpzVU86qL9G+MEMY5gCFWbAAQzMIAtyCIQd9kCGMHwhDTIgQAOAYDlH1IEKSajCDP9Q0AM8jKyDS8mcXEAYLYpIhSXywwQlFGEHNnSBCTCAQAI6sAQ8/MEOcuiCFcTwBh8UIAE1kIMhBLEFJhABCSNgwcMgAUUPLjF5TfSEVLYiL01YwhGDiEMUWkCBA7gAB2ygwx32UIYxqIEOSngAAkCwBDmcwQhNaMIPSECDyk2ijvJTonAaFcKK0OpQ+6KbHqaQggxkIAdQiEMd+vCHOJwhDHWQwgkSsIAZ8O0JVliCClIwhTs0ghILMgvFTNUoz8WNbfdC3tA6YYlAlGEIrBOCFdIACLQ1IhFzKEMaxqCDDDjgBDEQAhW0IIQU5KBykeCNHUepCWe6KnSNwoiqLkH/iCvcYAMoSAIV4IAHQ1CiUZVgxBu8AAUmuKAEIGhBEqxAhBnooAt9YJc85TejnuDxmXps1KIsgYgusEACEpBBE8AAh0A0onN6BBgWmGCEIuRABkRowhBmkAMq3GERMCLTu8SSiRA6MZ8cO0QZaBABBWxgCFl4QyAWgYlV6TET21JCEZIABCAQoQg2+IEU5nAISLRLKKWqHybeBrqKtIkTmEhEGXKgAQZogAdTkAMgElEJTXAilY/IwxmiAAQmQGEKTJACFuhwiEccCa1p1c5UPuovi2CiEXHwAQcm4AEcWEGqiZgEVZzlLE1MQhF6cAMDqTAFMKRBD419LGSHCrSu/9DLX5rwoRNQQAER2CAKaoBtJPR3KEVtAhOSQMQf+KCHOrzBDoBwkWxnS561AY0pz7onJyTRByrQwAMmuIET0oAHl5YImWu16lUr8YhFKCIR0p0uddXDNsBwxVmdOBogwCAET/mgCWKALiMcwYgNUUxRq9KuTyZxVv5E1rqAWYqTxqKI/iVBCEeYQhjkIIhG7OgRjyBZPvWpqovgK5lGgc3PpDgeruxPDl+Ywha2oIY7rCsSA3ZEJGyCvCdhxE1SWhBSNPOW4IgiP4bKxOjygIamtQEPhQgUJCLxIh6v6ccnxk0y29KS+1pMNFJMhB/ooIY15CERktDfJCQRzxzp5YRJbgalXbpc5MPsxBOnjJKTOqYIRCCCe5JAkI4kUYmVSBjOUIoSohfNaGmKZBQP6YRJePLjEY9FEo1ARIGDNhWh3ChwIwaJqBXliVFA2iQCSTVETM3qUZzkK5J5daxbPQpV2/rWuM41KTSxalnDGiegQzCrsoVHuP362MhO9rH7UmuBBAQAIfkECBQAAAAsAAAAAEAAQACHzs7OysrKx8fHwMDAvr6+vb29vLy8u7u7urq6uLi4tbW1srKysbGxsLCwrq6ura2tq6urqqqqqKiopaWlpKSkoqKioKCgn5+fnp6enZ2dmpqamZmZl5eXlZWVlJSUk5OTkpKSkZGRkJCQj4+Pjo6OjY2NjIyMi4uLioqKiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AY8WC9aqgwYMIEypcyLBhQVgCPwl85cpVq1asMmrcyLGjx48gP7aCKHHgK1arVKVaybKly5cwY8qMuQoWQYGwXLFSiaqnz59AgwodSnSoKoM4c+5UxbSp06dQo0qdKrWmzaQ6Vc7cyrUry6ZWIQ7MuWpl0bNo0/b8GhZr2VRq48r1ydamWJuuys7dq7bu1bF54fIdTNTvXbKCCSsGulJVW8B6F0tem8qxXbeJJytu/BhvZM2bK3dGDHox58uQM5fee/qvZ9Wr5bIcHTj24NmoX9vmi9s16d1zex+uDVz2Stqfi6cVjll5XOapnfc9nvu39LPQdV/HTt03cdCngpr/5W7Ze/LVLFGZIhUK1KdQokiZCk+5/PDzQU/p30+fKP9TppQyyieaVAJJI49Mkokno8yHSmv3wdbTf/wJJZh+pZCi4SigbFJJI4HgMQccc+QhSCOYhGLKg6JV951PFOo3lEuoCBhKe55gIkkhb2zRxBA+DDEFGnookuKKLZonYWEtgVXWKeyB4gknljjCBxY3oOBBCCScAAMPU8ixyCaksIhcZjBR5dgqbKZiiihTYmIJJYKcAcQNMsDQAgopuOBCDUvYIQkop3QXYX1rrgISm0wpulONHLq3iSRyHHFCDTWwAEIIKtgwAwo1ZFGIJqU8eCZbjl5UkUUXXZQRm6+W/xXghqJMkgYNNcSgKwwydLACDjSg8IMdlIhiqotviZYqRjs1xkqrqlqEUioAOihKI10E8cMMMgSxwxAtfEADDyXIEEYjhKZyaqPPSovKgJxo4gkp6kZbUStPNqaKJomEIcQNKswwBhlyUAEEDkKwcMITh3RS6JnstuLKK62kAgoliOzxBh13FHKJiqpstEpPGbWiSiWDbEEECi9IYcgklQDiBRFJ7GBCEYJwYoq6yEY8McWmTDLIHGyQwYUVYvzhyCWfFKqVfiUHXUcWMjwwAhWc6MeJHk1IAcQJP/ihyc6dUZQSmxIbxAooiMRhBhtwoEGFElSwMcgkn5BSSnzzPf/bSimNhBGFCgFQsAQpz5piyBVZDGFCD3qMzbNrZjvGys8FrdJJIXLAsQceZ0zB+Bh2EIIJKfoFmEqrpCDiRhclANAAEqVIfIohXYShBAo+7CF52Xkp2spBrqiyCSJ2+FHHGE3EQEMPWtQBCCalpLQTKxS1cq0ccuQgAAVTlJLRKINwIcYSKRQRiM6T30URSmkXZNEpnlgJh8orOGABDGXMgcgmRyFI/FwhCiv1wQgHuAAURqGSTOShC2IAwgyYgIhOkM1F8DOIRVZxilBYohBuYAIIGHCAAVigCoCQhCjCMjEBFpAQhHDCASCQA0qAAhSEYIMVthADHZzBEaBYEW3/MkgRi6iiRqLYhCG+0IEEEEAAIaBCIB5RO7tURH6lmAQjHnGFCBygBHQ4EBzM4AUp1GAIfLCEKMIzxFUMr4gmMwspKKGGDhigABLoQR0WEYlTuAIvlyPIK06hCUZUggwcUEAGmACHOJChDF3QgQ3EcAhOoK59WEHJz+6VEpWMghBPuEADMkCEOSSiEqBghU1OkgpVEkQVnViEJfRQhA1MYAdT6AIZzgAFHSShD5VQ0bG8o0n5bfCIo3iEFD6ggAj4oA2IgEQmTvGKVa7CFAGEhfYqkYg3jOEGLuhBE6AQhioQQQltWAQnRhEeTAKmmEXUCSpCIQkygMABCBDBFgCB/4hIhGIVBqlYKVZnTU/soQ1aaMISoBCELEjhB00oQyFSVKph3mcVm6zIKkbRiDTAIAILoMAR6HAISHQCFWkzYt+qmZNUWCIPXgADF4RUhSJYoQyBoETe2ulOz7jRmK04ha14oIEIaMAIaCiESasnsVWxYiXYWyUrRCGJPsyhC2g4wxfU4AZCVIJBDjKUW1SR0oppYg452IAFPtCEOBSiEZ2ont9UhS9FYa5iHkTEIOzwBj0IwpCeEIWDzISsepltE3swQgcugIInxIEQiLCk5WK1kaZmTxWmGIUnKvGIRDRCEpv4xChKIaPsICZkGBmFIJYgAgyIIAlvGIQhUnSclP/AJVXtAior3hWKT3iiE+8Z7WBNGxjRmEISYGhBBUJQBDX0wRCWIJTTUAGgkM21qZij2JM0pLf59Ie4R3yQKTgBiC30oAZIQAMd9iAJT5hisO91DLSgdcXsPapa3v2uWAET3ndRAg9fcAIX2rAHPjBiE+91kH4sx6xnUTZWcElwfn8CIaz0VxSR2MMazAAHOvRhTKQtlGCYohFHvaopicHvhCmcpAithBSVKEQf3sAHPsB1Z6hgSm0djBKR6Zi69NkPY5oUssL2pBSTekQkJOEI6j1FNCVeE4p/QqEZGUYgAykutTSbiUpsYhPsrIyYndRJrXiFyE9xI0Qg8gqT1NVBtqcYRSgaJOYHaSVRjCIzm/bM5z77GVatwAmWB03opIhlLHZBTaEXzehGE9oVWLYLQ1ZF6SuuyiGJzrSmEz3ogAAAIfkECBQAAAAsAAAAAEAAQACHzMzMwsLCwMDAv7+/u7u7tra2tbW1s7OzsbGxsLCwr6+vra2trKysq6urqampqKiop6enpqampaWlo6Ojm5ubmZmZl5eXlZWVlJSUk5OTkZGRkJCQj4+PjY2NjIyMi4uLiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBf39/fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8ATQkcaKqUwYMIEypcyLDhQoKaBh4kRbGixYsYM2rcqHEUKYGdCJIaNUqUyZMoU6pcybIly1EEBZYaaTKUzZs4c+rcybOnzZM/SxUkOJMkSZNGkypdyrSpU6WiYMYsSMql1atYX04tWNKn169gb6KUGrNU17Bo04o9SZboWbVwv47dalZU3Ls+506ti7evTr1l3/r1C9it3cGI2dIVjBiv4r2MG8d9HPiwZMdIF1u+PDkz5M2c1VI2HPruaImRS4M9LTO1aq+suYJ+LddzZdppY/PFHVa3a95/bZMGXjuqZuAsc/qeXbpmKFCfPHnq5OkTqJ/GP9MGxR26J06ZLFH/kiSJkiVNna5nv82zu3uedlU+/xT9uyZLjw4B0rPHz6BFlGwCynpuecVdTylBBcp0nGiCCSWO7GHGFlZEMUUXaehxyCSchNIWap1FlZRFo4RiXyaXXPKIH2NQcUQPNMiAwxBYwHHIJZ982NpOzoWyElMkigJKJ5hYUskkitxhRRJFDCHEDC24IMMOUNDxCCeiLIZTgk91KconDWJySSR8TOFCCzK4cEIKLMwApQ5ZEIJJKFpidxh01vnoEUZOfcnJJoBKskYNZ4awwQcrmNBCDDa88IMdk4BSp48mgcJJkZVcgh4oe1I0U0UjltgJdZ9scsgVM7AAwggXWLCCDC3M/4DDCzWE4YgnmrEVCieSMKIfHnbskYglnfh40VImcsKJJ6FYskcWPLDwQQc22IDFF1E4OcMKThzSiVCVIVViJogEUscdZnChhRl7EMKIJZwMOCJNn3SySXqgSCIHFDJ0wIEJSZRxByBvVKHEDyoQIQgn4BomYlWW/PFGGWywIYYTPhyxhRyJVLJJddftKSSgmXzMCSRxMCGDBA54oAUhkERCSBdRCJHCD35s0jBqD5ciiiV+wJEGG3GEwaQPT4iBBySaTGedKBSJ4omDlmACHiRwVMFCAAOEcMYkmmTCyBhVEJFCD33oDJlRpJiVSSBz2LEGGUrUIMIKTJSBxyKYTP8X8kgmbqLJJZZskokjeWRBgwAAjABHJuApQkYWRqjgQ847yzSSRwaR0kkjdrThRRQnVJDBDGLAIcgjAlLqUUneZZKJvY/oQYYPBxgABB5hW2KIF1gY0YLCDO81Utudg1IJH25coYMGCSiAAhirX8JsVKA+V52yoGwCSR9sJJEAA0LkIZ4jelDoAw1MIPKt8Zx3PoonkQTyBQwQLNBAD3E20rqH2RvSdzohipMBQg5TQEABSEAGRTCiD2mQQhNmoIMzNAJX8EPep0KhCUWMAQUOeIAGroCHRkTCE94JhadGAZ1lVUcUnYjEIPIwhQgQIANKmAMezKCFKBzBBkHQAyX/JJXBiZAiFJfQAxI6cAEPNCEPjphdiZ7GORZ+B2SWekQg/uAFDCggAi6oQhe0YIUlxAAHYCBEJuhURPlxQhBN6IADNiCEMTCCEp6AGlI0OAr6fKwT0dmEJPgQiDK8IAMTGAHSoFCFIdzgCHmIBAHpcryD9HERWBiBAxrwgiXggXUeKsmeJvKlTiyLOobrQx64UAUcmCAFPNDBFIyAAyOk4RCY+ESW2kiKTzyCDCqgwByZQAZEWM8u6iHJTIoSinpVh0GNYMMXqnCEHwyhBkl4khG+AAhKFEtHVOHcER2Bhhtk4AIlCEIYAhEgm0TnE3qKH026Uy9OOCsMTogCE3QQ/4Qg4KAJXdgD6+AJTrOIjBJn0AEHLCADI5QhEJHQBDzrg8I9Io8mz1lQJiqRiD18wQlEsAIWmuAFM/jhEZmAJ4FQQ5JQYOIOOeiABmRABTcIIhKZYFZ13kkp7F30KGBqkCQSkQc5qAEMWkiDHQaB0uuttDVCsgQflCCCDdhgCmwABCT6JsDpXE8snaLIWRakiUgo4hCFGMQeBKEISjRtQMJBDSg0AQgrtIBaVIDDSYk1HVMqS5fu1BOf9jTFTmy0Epa4BORQ2NOCzm8SWSNCErbwBj+8616aaJAmNgHPjAq2Ip/ik5Aomic7OfZzb/BCFthQh0E0wq2X0kTYOOuj56f4lCNQQVBcW8MJRcxhDXHoAyEWAbZLAQpQuqyJSUjEttehBDa++Rwf8lAHPiTiEh/bxClReJR4irUpz4XubrniCUo48BGv5Sx0ugNAUYZ1KeGtrXJ+5NhPaGISj3jEJHLK3ngehSTflc9qtAIZshoJXtY5kOtKwpbfbMk5VvHIVkxRFZt0R0RHEVdWNkzfj0z4wyAOsYhHLJKyOAQhYrXIiVeMkAkHBAAh+QQIFAAAACwAAAAAQABAAIfMzMzLy8vIyMjDw8PCwsLBwcHAwMC+vr69vb28vLy6urq5ubm3t7e1tbW0tLSysrKwsLCvr6+urq6rq6upqamoqKinp6empqalpaWkpKSjo6OioqKgoKCfn5+enp6dnZ2cnJyampqZmZmYmJiXl5eWlpaVlZWTk5OSkpKRkZGQkJCPj4+Ojo6NjY2MjIyLi4uJiYmIiIiHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBxCRxIsKDBgwgTKkToyuCthxAjSpxIsaLFiwJpFZRo66LHjyBtibSF8NbIkyhTqlzJsuXIkiZdypzpEuLLgzFp6typ8lZJkbWCCh1KtKjRo0hX/rSFtKnTp0NV/oRKtWrRlFOtaqWKFSfTrWCbdnX4NaxZomM3lj3LNi1Bk2zj1nI7EK7cs3QF2r0bNi+uvXy3+gUc2OrgtYWrHk4sGGVWxoode4VsWDJZypFPPsbsdDHnp54/C525mTMtWrNkxVotaxatoDcvf6Yly9WqVKZKkSp1SlUrWLNgl2ZM6xWqTo8I2XkjR08hSJtKsZI1dzhYxCNr0XIlipGeNFmcTP+xgiWMHEKXRk0nOdmszFqwQiFqg4VIDhowavD4EaXMn0qlvFKLdaChlBNKspAyyBY/vHDCCvodkQQSSSgBBh+crDILgbDJFNFJJtGiCiNgGPHCCCDcEMQNM9hQxBNJFHHGIqfIMhVqssCioyyvdTSRgQ+BaNIsn7zxxA0jbBBDDjagAIILLCxBBRFT2BEKLD/R1sopo4ACiinrSfSXRT4G+cokbBxZQgw/rCiCAxaUQMMUTfiAhiWvZMldJY4QoocegFiSCnUdbcSRRLWoEogZQNzQpg893FADByvskEQWWOSQBSKt/DSLKpcswkcfb5Qxhh2SiKIKLLQUqteYQfr/KBItoshRxQ9FIDFEE1KEocYQSVjRxRheKAHFH6r4RNYspjxShxp30OGGGFaYkQckAQZX5ocjBTmLJGQYAUQVV0yxBBl3JOKGF2iocYYZTSSxRyrKqsWsInWkYQccZnTBrhyDXKKKLLKCKGQtr/QxxQxEfGEGF0LAwcglgJyRxhpmnOFEEnqgUu9bttCCSiJ01PHGGE0s6cQZhlRSY5lM9XRLomQE8QISatAhxheAYKLJHlhYIYYYZ0TRhB/J4jRzK5TgAYcWQJDQwAVA5JFIJ6nQoixcKUFUyylX+NACE3LMscYblqDCCR1HDKEFF2YEbQgrH9c1pCmLyFFECAkY/zCACG1YQgortWx90lw+/lULKlpQ8QITc8xBRhqXkDKJGTrMIAUYaGRxRiR5Kh0iK5iAoUEAAgRwwxmVfOKKqwfG/JDiq5yxhQxFwMFGFU+ct8UNK5jwRBdpcIHHlTBBREspa2AAgAAPMOEHJ6LEIivi2YnkdStzjAGEE3K4QUQMMuCAgQUbnCCFGW+wccigyT80CyZQTJBABT/gUckoAtr0GvaI8xosBvEGKVShDXSAAgggcAACMKADNdDCGs7Ah060QiOiswWRsrABA0zgB2hghCayVi+DaWcuNpFFJeiAhjKk4Q9vsAEHCqAACZgACm2YAx0akYpYDEhptpAFKP/I4IEFIIAFWfiDJEBhvXqZJCKj2RotRhGIPgjCDYb4Ax2EUIINwEAIZ6ADHhQxilYE5yex2EQZTuAABlBACnRwhAW1trUn2gQ2W0MYJhIBCUT0wQ978EKulhAGNrjhaquIRasQYotYZOILKYgABT5whDkcYhMaSlysPoTHuogsE5jghCQewYc59EsNeJCDIzixKm0hhBaf+AIKHBCBFETBDo7IRCK3xTWU4NFws2DFKVAhCk8sAhF6OAQjFIGJT7QScThRxR1YUAEJnGALemhEJlThQ5gBpUPZQeGHZgGLV6iCmJ2oRCVSdQpWAAd7B5lFI4SQgQuoYAp8cAQmUgH9C3HG6isp+aVNmJIjVqyCFarATSpawSPssectqTDDCjJQgyvsYRFpY5U4D+fQbwaQW0xBjY5i0Zr/WWYgtdCEF4RwBC3ogRCQOAWreuRLmgIUSBeRiUFmAYkxXGENfDgEJPj3v6AU9YRlYQlI/nnSv8SiEXF4wx8IsYhPmHEoqBGKSUezEpDuZCMq9FMiFJGJQXWoFq4xKgA9dKCrsMQgU7yEJjiRnle0Kpzf5Ikv0aJUh7ziE54ghSkY+tEPDVR7QAooT+omkFoIc6EN1V5F9ErZh76FNq3B3iaZ6lG3isVDS+Fl7DhqlMr2ZCGoTa1qV1sX1urlsBBxrWsDAgAh+QQIFAAAACwAAAAAQABAAIfX19fV1dXS0tLR0dHPz8/MzMzIyMjHx8fGxsbExMTDw8PCwsLAwMC/v7++vr69vb26urq5ubm4uLi3t7e2tra1tbW0tLSzs7OysrKxsbGwsLCvr6+urq6tra2srKyrq6uqqqqpqamoqKinp6empqalpaWkpKSjo6OioqKfn5+enp6dnZ2cnJyampqYmJiXl5eWlpaVlZWUlJSTk5OSkpKRkZGQkJCPj4+Ojo6Li4uJiYmIiIiHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f39+fn59fX17e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29ubm5tbW1ra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wCDCRxIsKDBgwgTKkTIa6HDhxAfAotIsaJCYBgTYtzIsaPHjyBDipyocaTJkyMHbiyJsqVLkCxfynwZc6ZNkzVv6vyYc6fPjAh/CuXYc+jNokZnIk1KMyhTn0ufoowqFafTqjapYg2pdSvPq15ddg1LFCzZk2N3/lrLNqXZp2zbWj2Ida0vXrpy4cKVi1evX1zfDv3la1ctVqQ8cQJ1CtYtXr6ABlsp+CdhXawq3RHzBEkUMYA4ucoVmeRk0wZFxl0tF+QvXagEZQHS4sQKGkHKPFr1GDDqnqyD+3a9K9WeJCosTMAAooUPL34upcJV2mFH4cJH9mJVZ0eGBgoysP/QYYTKm0aaUtHiBdj6yOCBgf2q9acGBAMFFrToUSNHkTKFUALKK9T9RpdQKvHiCREUIECAASvYIAMPNxBBhBuReHKKLLwYmBpGdrWGmkgDzXcHCw88oIAIL7CQRBNA5GCDE4F0ckosunhYEIh35cXXLpBJRhBPwPiiShMfJBBBCi/Q8EMbjgwChxdnOGJKKa/couOQ8vWiCy620BLLK67EYssuvrTHpUe9bOJCBQ+IwAMNN7xBii2vfAJIIqO4soortWypUpe55DILLKRwMkklnZCyyiy5/GXaR7sYsoECEMwABA9VUGJLYa5EUsknsqCiyiyCDtpLLre4Uoonlyj/8scfhSzCiSmt3NKLR779kgsdGRwgwQ5CUMFFKbsA0wsskxhiCSuflIKqREXukssrolSSyCB91JHHHH08gkksyXK02i1hQCBABEdEkUYerETGCyt6rIHIKLfSkqpAGBWmCy2nfDIJHl9wwQUYXYBRRym1DCfXfFkkEMAEVKBxhyS0/BIML6KEIcYfmmhyipbU/tKLtbCEoggfYlyBBhhN4JBDIqikGRdHt3ixAAAVbAFHH53YojEummAxxiKbcKJKstQWeTIurUCCBxlSmHGGEiF8wIYnvfji9Voc5aJGBANc0IUbezBCCi7bQWIFHZJcwoksvkDEZi2iUCIHFlcs//ECBBSQUTNhX3OkSx4dIODBFnTgEQgem7RCCSJzXOKJJ6LkojG1KvmaCiVzkLFFERUwwAEbsXwNNke8OFKCAxgogccfb0TRBSOFPAKKKqiIMktkdg/ZS6uQFPIGFjJ0sMEUo+iSptdseqIDByTgAAcjbWwhxBl5dNLKLK/IwnRFXdriyieL0HHGEB5gkEMkuPQ63Ea+sHLGCCvEMAUhh8BhhRmI+MQrYDEL9uxrRya7xStC4Qg5qEEKGsBACeYQi/l95Be2kEQObjADHrDBD314gxwU8YlUiE9NEZGPL3QRC1JAQg5okIIMLlACJoiiNJK5zrzk0IMf1GAHXDADHf/2IIlUwGIXuzpg51ZoC1NMQg5pgEIOOtABITQiR2XhlS9uEYo4ZEEIRyDCE7JwiFC8IlK+SaEvVmWLVWSCDm+oQg1GYIEb/CFjHTkNr3qBi1IsQg1YaIIY2AAIT8xCF10z0JZ+wYtc1MIVocADHLSwAxRwAAZzkIUF3+MlWHhiEX4QBCNCcQpaOC+NXEIIH2uhilH8AQ7aQ8EGXvAGWODwgpvski5sIQtYyKIWiBzOjoRUIlzMAhWfKIQdsGCDE3wgBmtoRZrkwysRVVMuB6JMQXw1C1McYg9aqIEJPtCCNKzCgJu8GWXKspCvFGRV5zPEHJSAgxLggA6tgAx81Nl9To/o0Z0E2YUtVHEJP5yhCEBQgiBa0TXVtYWfaWEnQXTBylA8Yg5eKEMjYvEXwoBtddQk5qCOYhBe4EIWrAAF7jRBi9KAFCZrgopBmEgLVqCiFQXi10RWItFh6iQod9kFkCSlI4k+JSisOUtg+qnUpVrkqVDVSFT/OVWIBAQAIfkECBQAAAAsAAAAAEAAQACH29vb2dnZ1dXV0dHR0NDQzMzMy8vLysrKycnJxcXFxMTEw8PDwsLCwcHBwMDAv7+/vLy8u7u7urq6ubm5uLi4t7e3tra2tbW1tLS0srKysbGxsLCwr6+vra2trKysqqqqqampp6enpqampKSko6OjoqKioaGhoKCgn5+fnp6enZ2dm5ubmpqamZmZmJiYl5eXlpaWlZWVlJSUkpKSkZGRkJCQj4+Pjo6OjY2NjIyMi4uLiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2traWlpZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AewkcSLCgwYMIEypEuGuhw4cQI0qcSLGixYsYM2rcyLFjQV4gQ4ocSbKkyZMUT6pcyVJkypYwY7qUKLMmzIk2c6rEqbPnSJ4+gwIN2nMo0ZxGj9ZMqjQm06Ytn0JdKXUqSppWZVbNSnIr15kRv5bUKJaXx15Zd+nKxVbXLpBkoe7KJYtVKlSoWMGiheutWYtyb516xEfOGzyGNLGqleutwJBYj+6y9YmOFSVEjFhJE0iTqll9u0JsiusTGiArSsTIsQSNok+qZNnSNfahULS5SI15scHCBhU9trz5c+lUK1mMRTtUTpXgrlh2XlRg4ADDjipevMxBlCnUKVi1HIP/VQg35Npbtmzhcjv+ca5NQTJAaCDBR5MtW66AkZJHkyhUr+RiVnvk8aIWLrS4QsolknTSii2NwUUQL7PEIYIDE0gAQxZfyJHHGVT4UMUjopCySi0DEoiQgbkkWEoldYihRRduGMJJK4w5JtAuqkzxwQIXyOBEFGpcEsoiZkxBBiajmDJKK3/9tNxct9TySimIhDHDCC8g4UUflKxyi467eFIDBQmEgIQSZmASSy2jnPHFFY6YEsqTUapoEEi66GILLKdwoggaPYigAQg+bBEIKrj8pYskKiyggA1QaBHHKX3R0gcaSfDxCSahuJInZMuZR4sqnzwSBxU76ECDDDhk/xGJLH7lQogHBCCwQ2uEyGKWLYdUccIanmQyyiwDSVkqWrrUwoolb0RxRBNR/BDEFIu8UuseGARwgBBYEDeLWbkAEkQHaXwCSiu3JKvnQSFN9gond0DhRBlcHMFDFI3E4hcudUwAQAFOhNGIKe32UosbNmzwhiakBOguqaMZeAsrkcSBhRddYGFEDEM0QitIuMhRgbdQmAGJKu3ywgoZKZDgxyWj0DqxhDTVIookjIxRBhE3gOBCE5LQ4tctdXAggAFHlKHIKK7ocgsjXpDQAyGLfHLLX2gZiHNYuKSyySF0fBEFDBS8kMUoY4J0ix0eDJCADmcUwkklqmTiBhZTzP/xSCSkNPoYSH6lhIssCmaSBxk3oJDEHa00tstktxZQwAph+JFIHnCQUcUXi1CyySSs0Nb15IVLNBksrqxyiiWGjPEDFHCEcotbk98iSQsQGLCBFYIAQgcVTEhxxyWieBJKLOwRThvXtukySyqqiMJJJIKcIQUUbVgyC+qT5yLKFBU48IANeiCCh/Zf9HHJJ6TgyBb4Oka0i7OkaNJIInaQUQQWZGBE6QhHuFj0YQQXiIAGnuCHPsBBD2oYhCVMNAv14E4tX3PI/WJxilQhog1nCIIU3ECIVDSKJOILAwk8QAETNKEMbNADISrBCVYgpy+oY4/qbCGLVpBiEoZYwxj/lkCEL/jhE+EpyS5mYYkquKADJ5hBFtBAiEuQwhUVjBD4MqiQXdxiFrJYBScSoQYyIGEIXOgDJ5h3El3IohJi8AELgsCFOVACFLGAUPOUpUEE0eJKkJiDGq6QBDAAQhOvaJ5fRqILWnyCD2IYQx0kcYpYrAcyfFwIL3KRnlioghN9eIMXtEBFxUTIQIscyS5wMT1QiIIVtqjfhKDnkLXoAkGoYAQdytAhRYDiFaFB5UrU0paGbIQXfZoLZR7xBjDIoU6yOOXklPMRLl7Ea3OBxSgUEYc9SCIVs5DmNN91lsFNRhanwMQjLKGKWihynBQr54qQ2SJXoAIUqaDFHlNJKUvbxBMnB7IFGPPIT2tW7J88mVwy+ynPjCC0oRCNqEQnStGKhoWh8gwIACH5BAgUAAAALAAAAABAAEAAh/Ly8vHx8fDw8O/v7+7u7u3t7ezs7Ovr6+rq6unp6ejo6Obm5uXl5eLi4t/f39vb29jY2NfX19PT09LS0s/Pz87OzsvLy8rKysfHx8bGxsPDw8LCwsHBwb6+vr29vby8vLu7u7q6urm5ubi4uLe3t7a2trW1tbS0tLOzs7KysrGxsbCwsK6urqysrKurq6qqqqioqKenp6ampqWlpaSkpKOjo6KioqGhoZ+fn56enp2dnZycnJqampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3l5eXh4eHZ2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX11dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUk9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AKEJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGPKnEmzps2bHp89a8Zsmc9mznTS3FmM161atnL5IpaMWdCYz5TduuSHDZcqWtQU8iRLmLKnLaO+2mMlyQ8cQKKM6VOJlK1gyJw+W/ls2Ss5RmK0mFHjh9o6hSSNwkVsGViUz5jVYqMDBYkSLXhQIVPGTR9Bk0LdMtZsbkpnwgLxKMHBg4ghX8Z8mdMHkSFCmVb9WuZ54zNnzJQlS7ass+e6po6s+PChQ5EsX5J7oQInUCJIomYh68xxp7Jgrz51ehVMWWdnw+rQ//hA4kMOL2vqIPLyREgUPpM6obJVTK7O2hN14k4mjNWiL06IYcgqwQATSQ4jWFCCDl20gQcouDBiRhFQHEIKKq30YkxvQuFHkU7LEJMKImlE8QQQSLQBxwwZWJBBClJk8YcrTNmSBhBZWHKLLLL80lRQc3n4oTPL9MfHDiBwUIIPLzzgJAY3hHGHJL581YsdNjhBii621BIMM74FqVEzyfwCSyVzIMFDCydcgEACDEDJxiCmDBOUL3usgAQrs+QCDGdPCenQfQTp1AwysvTRBBJXXNEDBQQMoIAHPAwiii3G4JYKExccoQosvhxDmzPOQCNoQ4Saep8zyujSSBhSqP9hBhYVDADAASYU8QgrPrK6CA0SRNFJKcAkExSpQuVH6G1AEbkLJWpsgQYdWlQQAAAGsOCEJa4Ik0wzwZzBggRgSKJKfXM549tF+ulHpi6jqDEFFF3AEEEABSzgAhSYpHJLL8AwQkMIE+QBiCqcpQtkRvfdlgwtmcgBRhZEaACBAAw4MIMSl5iiiimF3NBBCSdUwsgtyJR628IMG3pdK5AMAoYLG2zQAAQQrNBDJZ9ccogQGYyQwx6ukLKLMkE2zDBQzCRjTDCxqFIJFR2cUAMKH5hwwg6IoELJID+c8EMepewySzDUCZSqRTsto8wxwOyyCiqWACKDCTjIAccTM9D/oEManZiyiLx0KAJLn8ccluxFuCFzTC+0lGJJJHAE8QEPbLgCyyJOQAHFFoxIIooiz5lSyy+FKZ6RuroRY0srkSjCxg8ktMAFKcckcwshZeCRxiGJaOIJKa708suGadvG09u9wKLJI3iRoAISlBBD6jGwPLLII5l0ksrpfx6jjFMHrQ2RobkRc4snjtCxRAosEAEIML45Y0wtqazySi667BLMMcwIYPIGYr6HuGsZx/jFKRoRBybQoAVO0EMu0rYTZAiDF74YhqgEyLJCLS4i+mmaMM70Bibg4AdaKIQtmFGbEC4DTB00iNIk0jB1JSMXrPCDFHiQBDVAAhcs9OAMbRlyKiIW6lC84EQbinAEN2xiFyz8TcM++JEPJgYZs2AEFq4Qh0/4IooETFYRbYOfZizDGLeQRBz0IAq0LY6KJHljbo6BC044AhRubKFK1rYTp/EiFqxwI0youLKmfWWMMkEkThbJyEY68pEFCQgAIfkECBQAAAAsAAAAAEAAQACH5OTk4+Pj4uLi4eHh4ODg39/f3d3d3Nzc29vb2dnZ2NjY19fX1tbW1dXV1NTU09PT0tLSz8/Pzc3NzMzMy8vLycnJyMjIx8fHxcXFxMTEw8PDwcHBwMDAv7+/vb29vLy8ubm5uLi4t7e3tra2tbW1s7OzsbGxsLCwr6+vrq6urKysqqqqqampqKiopqampKSko6OjoqKioaGhoKCgn5+fnp6enZ2dm5ubmpqamZmZmJiYl5eXlpaWlZWVlJSUk5OTkpKSkZGRkJCQj4+Pjo6OjY2NjIyMi4uLiYmJiIiIh4eHhoaGhISEg4ODgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1ta2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTExMSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1MzMzMjIyMTExLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AiwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyZMoU6pcybKly5cwY8qcSbOmzZsbiQkLFkzYMGI3iQW79coVLFm2dAH7OZPYL1OA2phRM2eQJ1q/mMIk5ksTlx03egyh8kYRKVq9hAF16ZTTkxUhTMzY0YTNI1GydgVby1JoqSYiLGTwkMJHFzl6KKWaxWvpSWLDdgIDxmuUFhATIlTgIESMGS9x+lQC1QoXMJPEdAbjNUtUHhkMHDyggGGHFS9ctERZsgZSKFe7ho2ELOyXr120RB0C0kDAAAYSSkwR4yZQGSNGcBQytcrW6ZCphQH/+wWs1y1Sg1wgKEAggYccUNBIUlVIShEflY7CwsW3Y+rIwQATTC+5wNJJFxrIpkEKN4yByS29pOLEETxsUgstssjSH0epEbfTLrGw8okeQ3TwAQ0qIFEGK74MQ0sXOKwQySyvwAKLcB5B1mFkkfmSCylxxOABCUvYkMUetqhVCxslrMDIK93ZsuFGP+lUHjA79RILI06g4MISRMQRiS4/4dIGBypMkooruuwC3jDDBPNLL74I6MssjIShgwtYTBGIJ72k9ooVErSACSewNCYSccDUuZMvt4giBwsdVFFFIqTwIowwmkhxwQ+aWFJLL8EsuuNOc97CSR0gjGBFE4Zc/wJLLrbAsQQHYEDiSC2OLSqQTrvoggsuqfgxAglJGMFHIpVEIsiEPkhiCSt6TQnSMLy8okoqrJDSxQkbwHDDHHW44YQTSFzRRympyNKiScP88sonmVDyCSJAWPCABSS8wUYaQASxBByJyDIrMNbm+MssqXASSSORsEGCAQocQMEaf9jhxRJc3KFJLLaQmjBH8c4CyymbUAJJHldsEIABACSwwxx52IEHwaLQoosvai06jC+2tCJivXycoQQIBAwgwAIe+OBFGXQIggkqOmflcy+2FHWKJ5Lg0UYTVdRwAQQGTHDCC0xwQQchm7AySy6/jJzRMFi74korp1SShxxOZMQhhxhO3HACDCsE8QQZeTAiSiu07CLMosHkkiEsrnQCSBpbXHFHII1gokklfGzBhR2HSHJJK7kEg2NIdN+yyy65rNKIG19sYYcinMTS2C+4wMJKLLXworrcGgl13Hi9jMLIHGPYwcgotmT136Y+Ec/hTpsGgwsoiOShByOmmFZlaip12GFxubTyySKQoKLLXuavNH54q93Ciien3AJ/hyzNH9lkvLCFLFJHPvL1pSCQgRP2rLcVA+LkgRCMoAQnqBAGxiQgACH5BAgUAAAALAAAAABAAEAAh+vr6+fn5+Xl5eTk5OHh4eDg4N7e3tzc3Nvb29nZ2djY2NHR0c/Pz83NzczMzMvLy8rKysnJycjIyMfHx8bGxsXFxcTExMPDw8LCwsHBwb+/v76+vr29vby8vLq6urm5ubi4uLe3t7a2trW1tbS0tLOzs7KysrGxsa+vr66urq2traysrKurq6qqqqmpqaioqKenp6ampqWlpaSkpKOjo6KioqGhoaCgoJ+fn56enp2dnZycnJubm5qampmZmZeXl5aWlpWVlZSUlJOTk5KSkpGRkY+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb21tbWxsbGtra2lpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF1dXVxcXFtbW1paWllZWVhYWFdXV1VVVVNTU1JSUlFRUVBQUE9PT05OTkxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0FBQUBAQD4+Pj09PTs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMi8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AI8JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGPKnEmzps2HxogJA/YL2LBixmoaG3Yr1ahRpljF0uUzaExjwEThARNliI4dTNw4OrVrmNOWUDFNseGiRYsdS8rkedQJFlNiX1MaE6aJSQkNImLoQIJlzZ1DlETN6uWV5TBTSjo0sMAhBRAraMi04QNoUqhYvuCqNOaLEA0KDiqAaAInzpk5egj5IZTplC1hxTb7osRlxocMQKpIkcKESpIvdxBRGuXqF1xjyEciz5kLlKE0PWoE4ZGiCIcQKG7MeeTJlKxewoLG/+XodHlOX7Mo6YmixMeHHEwyMHjggrWpU7R8BTtOcjmxX7JoEkgcTuCwwxVdQBAAASossgotqeASzE/JKXdMTr+4UgkhbwhRQhBayAHCAAJokAgrt7SSCzHEAPXVciEV48soirjRhQkasKBEGjUcAEADe4iSCy68FONibALB+BFUr0hiSB1guLCBByd4EYQDBkxwBia78BKMMUcOpKRHxeASiRdWWEFGCx+YwIEZQKxAAAZGHNKLcWAih+SFFXpEDCt/LDGFFnC48AEJEugAQgQClKDDI8B8CSZQe/ap0Yu3CHKDE3L4AcQJIzTwQQQHDPDCDZz8El5ORu55IUbijf9ZTC6NIJFFH4dwEYULFyyQQAEIPDHGK794ZeSk48Ga54u6FEIFEGKwMYYRNKTAQAEKjKCHJbMA0yqflmaELEHG7GIIHE4EsQUUO/gAAwQPgEAHKavcAhtQIo1L0C+lGGIFFVA4wUQYRKzQww+XkFILYZrlG64xwdjySR1zYGGGF3NoIUUZg6yyyy/7uZisw8PwAgogcJhxxhVqxIEIJ7HkErJ5J5k3zC6mEKIHG2DY8Ycms+TSCzANMzSyRXoWEwwunghCxhJHBGKJKrsEc6xDYyoLpjC9tKKIGDvIIAYkshCNL9ZZX7RcMcNI7EYOKPQQBynAHJ0QzR1tLQsjWZhXdcUmvth9d7gVxYUhKXX0YAMVjdBCDExxFcM1KnpcAQYjscAGOUHEBOMLKobYsYgrXgm+2TDA+BLLKJtkbvpKeurkiy8U3iTmsa/brvvuvPfuO++5xxQQADs=", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_78718a2f62854f7fa99cf8bc4adbc360" + } + }, + "0fe87ed8f6ac41ffb25c961d9580ef69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "11808d23e758498ea5cdaa046cace71e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "1524ea5364f2465393602221858a8344": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "1a3b4d93c8ef4d38a986796dbef26bed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_2bd3ec53bf6049a4b8faf12833645e5f", + "IPY_MODEL_33d22b2374124877aae12c49f857e064" + ], + "layout": "IPY_MODEL_11808d23e758498ea5cdaa046cace71e" + } + }, + "29a5c88b8d5d434d8c62b3cafa108062": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "2bd3ec53bf6049a4b8faf12833645e5f": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAAP////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pf39/X19fPz8/Hx8fDw8O/v7+7u7u3t7ezs7Ovr6+rq6ufn5+bm5uTk5OPj4+Hh4d/f397e3t3d3dzc3Nvb29nZ2djY2NPT09HR0c/Pz87OzsfHx8bGxsXFxcTExMLCwr+/v729vbq6uri4uLe3t7a2trW1tbOzs7Kysq2traysrKurq6ioqKampqSkpKOjo5+fn5ubm5mZmZeXl5aWlpWVlZOTk4qKioiIiIeHh4aGhoSEhIODg4GBgYCAgH9/f319fXx8fHl5eXZ2dnJycnFxcW9vb21tbWtra2lpaWhoaGdnZ2VlZWRkZGNjY2FhYV9fX1xcXFhYWFZWVlRUVFNTU1JSUk5OTkxMTEtLS0pKSklJSUhISDs7Ozg4ODU1NTMzMzIyMjExMS8vLy0tLSgoKCcnJyYmJiUlJSQkJCMjIyEhISAgIB8fHx0dHRwcHBsbGxgYGBcXFxYWFhUVFRQUFBISEhAQEA4ODg0NDQwMDAsLCwoKCggICAcHBwYGBgUFBQQEBAMDAwICAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wAZCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsiVHO3ZcMkREiMqKBgyCHJKJUEuIAECD8uBJsBASCAOCbmjCIcBQogLlGAjKAMabL0CfQB1o5ESKMHsEHgFqxmQaCQGWLEykKNHAIhYCmFhE8o+YCQIEXInoI8ADMSMVwTGRNy8QiHsoBMAyktAQAQEKC3AA6OEHoIxDkumQN3LhAH4aEroBOQCXN2MCeSQStEISN3nQtjC0UBEeHkFze3Cih2MFARd0CBIoIy+ZhXVu5E4g4gUMEEA9/FCkUQ2U0IwGyTgg4MTCLBmCOtLA8oc2o0J+kiQIACEHlI2L0LAo3AMN3YMxpgYooKIOQjYhREAAAhn1IYUKkEkWQBcIAQBUCVM0ZMUaGc0QFAAOoAAUABL0ZtANJShBHUrzGUBCGoAo4ocQkVGxFSNtMDFHQTREFseLB93hQAAY8IGjQSNABgZUdIxxhkFKADUbUVsoIIABO1RBByNxoFCAAC6Yx5MXneVVAw4LCIDAD4NsVYgNB3jWmQdl/MgIFxoUtkEUiLhp55145qnnnnz26eefgAYq6KCEFmrooYgmqqhDAQEAIfkECBQAAAAsAAAAAEAAQAAACP8AGQkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyZMc7dhBKRERISorGjAIcoilQy0hAujcycOmwkJIIAzYuaEJhwA9fSKUY2AnAxhvvuh8ojShkRMpwuwReESnmaoIEylKNLCIhQAmFoFt6CPAAzFrGe6hEABLXIYfdNq9i5DQDQE6ubwZE0hkGgkBljxUhIfHzscenOjx+EfMBAECrjisc+NxAhEvYIDQ6eGHIo2K4JjAjBlIwywZdjrA8seQwEJ+kiQIACEHlIuEhgBmLcABoIUxmgYooKIOQjYhIhBAYJFMB8wBiAfwsxCAzhJTGlrPWVORyM4KSdzkQdzCtsIbJZScJllBwAUdggTKwEyG70A1UHDHyCAyHCDACf4ZtAgaLLDWAxpqJdiHFCoMx1oAXSTIyAw7AeAACjoBIMFk/jVoAAlpAKKIH0JkR0WCbTAxR0E0ZBeHhgbd4UAAGPCBY0EjAAYGX3SMcYZBSujU3l1bKCCAATtUQQcjcaBQgAAuuBeXF9hhVgMOCwiAwA+D+FeIDQdkd6EHZfzIhQasbRAFIj/WaeedeOap55589unnn4AGKuighBZq6KGIchQQACH5BAgUAAAALAAAAABAAEAAAAj/ABkJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIDHasRMyIyJCVFY0YBDkUMmKWkIEmEmTx8uIhZBAGEBzQxMOAWzefCjHAE0GMN58mflkKEQjJ1KE2SPwyEwzTh8mUpRoYBELAUwsykrRR4AHYshO3EMhABa1Ez/MfAv3IaEbAmZyeTMmUF2FivDwoEnYgxM9fw3WuUE4gYgXMEDM9PBDUWKBWTLQdIDljyGBhfwkSRAAQg4of2MYDVBARR2EbEJEIIDgL4CZJaY0tLLmYxoJAZYkvFFCieW/f8RMECDgymXAcEwwZw7kOUJCQ/JOF+AAkPWCZDowzQ+wPYCf7wOJ0KyQxE0e4C0+o2dUQcAFHYIEymBOZr5ANVCcx8ggMhwgwAn+FbQIGixM1wMaY/nXhxQqaDddAF0kOANNADiAwkwASIDYfA0aQEIagCjihxDkUeFfG0zMURAN5MWRoEF3OBAABnzcWNAIeYGBHh1jnGGQEjPF990WCghgwA5V0MFIHCgUIIAL8lnnxXjM1YDDAgIg8MMg8xViwwHkXehBGT5yocF0G0SBiI901mnnnXjmqeeefPbp55+ABirooIQWauhNAQEAIfkECBQAAAAsAAAAAEAAQAAACP8AGQkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2pUaMfOxo8DERGisqIBgyCHQGrUEiKAy5c8VFoshATCgJcbmnAIEFMmRTkGXjKA8eaLyyc+Kxo5kSLMHoFHXJpJSjGRokQDi1gIYGIR1Yw+AjwQ8xXjHgoBsJTF+MGl2rUUCd0Q4JLLmzGB4D5UhIfHy78enOjRu7DOjb8JRLyAAcKlhx+KCB/MkuGlAyx/DAks5CdJggAQckCRPDBG0AAFVNRByCZEBAIISAsE4LLElIZW1shmdKOEksi7gwsfTrx4xjQSAiwxjvCPmAkCBFxhXlARHBPRowOhPpDQELrZBTjNAMSdTIfoAcIH8EOdyMsKSdzkSd5CM/MKAi7oECRQRnQy3KkBBXuMDCLDAQKcwB1Bi6DBQnY9oOEVdX1IoQJ42QXQBXczvASAAyi4BIAEgzH3oAEkpAGIIn4IkR4V1LXBxBwF0ZBeHAsWdIcDAWDAR44EjUAXGMbRMcYZBinhUn3FbaGAAAbsUAUdjMSBQgECuGAfcV6gF10NOCwgAAI/DMJcITYckF6GHpSRIxcaZLdBFIgAaeedeOap55589unnn4AGKuighBZqKFUBAQAh+QQIFAAAACwAAAAAQABAAAAI/wAZCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzalRox87GjwMREaKyogGDIIdAatQSIoDLlzxUWiyEBMKAlxuacAgQUyZFOQZeMoDx5ovLJz4rGjmRIswegUdcmklKMZGiRAOLWAhgYhHVjD4CPBDzFeMeCgGwlMX4waXatRQJ3RDgksubMYHgPlSEh8fLvx6c6NG7sM6NvwlEvIABwqWHH4oIH8yS4aUDLH8MCSzkJ0mCABByQJE8MEbQAAVU1EHIJkQEAghICwTgssSUhlbWyGZ0o4SSyLuDCx9OvLhx0mkkBFhy/OAfMRMECLjSnKAiOCakSwdSXSChIXS1C81wAKg6mQ7SA4gP4Kc5kZcVkrjJo7yF5uMVBFzQIUigDOlkVKcGFO0xMogMBwhwQncDLYIGC9r1gIZXzfUhhQrhaRdAF9XN8BIADqDgEgASDHYchAaQkAYgivghhHpUNNcGE3MURIN6cTBI0B0OBIABHzoONAJdYBhHxxhnGKSES/YVt4UCAhiwQxV0MBIHCgUI4MJ9xHmRnnQ14LCAAAj8MMhxhdhwgHoaelAGg1xooN0GUSAS5J145qnnnnz26eefgAYq6KCEFmroRQEBACH5BAgUAAAALAAAAABAAEAAAAj/ABkJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIDXasRMyIyJCVFY0YBDkUMmKWkIEmEmTx8uIhZBAGEBzQxMOAWzefCjHAE0GMN58mflkKEQjJ1KE2SPwyEwzTh8mUpRoYBELAUwsykrRR4AHYshO3EMhABa1Ez/MfAv3IaEbAmZyeTMmUF2FivDwoEnYgxM9fw3WuUE4gYgXMEDM9PBDUWKBWTLQdIDljyGBhfwkSRAAQg4of2MYDVBARR2EbEJEIIDgL4CZJaY0tLLm740SSixfHk68uPHjE9NICLAEucE/YiYIEHDF+UBFcExMnw7EOiNCQ/JuyxfgAJBzMh2mBxgfwA9yIjQrJHGTZ3mLz8crCLigQ5BAGdOR4ZwaULjHyCAyHCDACd4JtAgaLGzXAxpjIdeHFCqIt10AXTg3A00AOIDCTABIgNhxERpAQhqAKOKHEOtRgVwbTMxREA3rxdHgQHc4EAAGfOwo0Ah5gWEcHWOcYZASM91X3BYKCGDADlXQwUgcKBQggAv4EeeFetPVgMMCAiDwwyDHFWLDAett6EEZ3nGhwXYbRIGIkHjmqeeefPbp55+ABirooIQWWlFAACH5BAgUAAAALAAAAABAAEAAAAj/ABkJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTHu3YQSkRESEqKxowCHKIpUMtIQLo3MnDpsJCSCAM2LmhCYcAPX0ilGNgJwMYb77ofKI0oZETKcLsEXhEp5mqCBMpSjSwiIUAJhaBbegjwAMxaxnuoRAAS1yGH3TavYuQ0A0BOrm8GROI70BFeHjsXOzBiR6+dW4sTiDiBQwQOj38ULQ2S4adDrD8MSSwkJ8kCQJAyAFFaYymAQqoqIOQTYgIBBAoBaCzxJSGVtYovVFCCWfDyCWmkRBgSfKCf8RMECDgynOBiuCYoE4dyHVCQwBzyhfgAFByMh2oBxgfwA9yIjsrJHGTh3kL0oYrCLigQ5BAGdSRkZwaULjHyCAyHCDACdcJtAgaLHDXAxpqIdeHFCqIx10AXSQ3w04AOICCTgBI8JhhERpAQhqAKOKHEOtRgVwbTMxREA3rxdHgQHc4EAAGfOwo0AiAgcEXHWOcYZASOt131xYKCGDADlXQwUgcKBQggAv4xeWFetTVgMMCAiDwwyCGFWLDAett6EEZ13GhAXcbRIGIkHjmqeeefPbp55+ABirooIRqFBAAIfkECBQAAAAsAAAAAEAAQAAACP8AGQkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyZMoU6pcybKhHTstGyIiRGVFAwZBDsVMqCVEgJ9AeewsWAgJhAFANzThEEDo0IFyDABlAOPNl59PnhI0ciJFmD0Cj/w0o3VgIkWJBhaxEMDEorIIfQR4IAbuwT0UAmCxe/DDz718BxK6IeAnlzdjAtlVhIcH0McenOjRWufG4wQiXsAA8dPDD0U7s2QA6gDLH0MCC/lJkiAAhBxQWMaQGqCAijoI2YSIQAABSwA/S0xpaGUNyxsllIAOTDCNhABLmAv8I2aCAAFXmCuCY+L6dSCBCQ3JKexdgANAdsl0uB6gfAA/cIkArZDETZ7nLVCXrSDggg5BAslwHRl2qQEFfIwMIsMBApwg3SJosOBdD2i8BVcfUqhAnncBdGHXDEAB4AAKPwEgwWRlSWgACWkAoogfQrRHBVxtMDFHQTS0F4d0At3hQAAY8MEjIyMUBoZWdIxxhkFK/JTfU1soIIABO1RBByNxoFCAAC7oN5QX7F1XAw4LCIDAD4OUVYgNB7THoQdlBMaFBt5tEAUiQ+ap55589unnn4AGKuigGAUEACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pf39/X19fPz8/Hx8fDw8O/v7+7u7u3t7ezs7Ovr6+rq6ufn5+bm5uTk5OPj4+Hh4d/f397e3t3d3dzc3Nvb29nZ2djY2NPT09HR0c/Pz87OzsfHx8bGxsXFxcTExMLCwr+/v729vbq6uri4uLe3t7a2trW1tbOzs7Kysq2traysrKurq6ioqKampqSkpKOjo5+fn5ubm5mZmZeXl5aWlpWVlZOTk4qKioiIiIeHh4aGhoSEhIODg4GBgYCAgH9/f319fXx8fHl5eXZ2dnJycnFxcW9vb21tbWtra2lpaWhoaGVlZWRkZGNjY2FhYV9fX1xcXFhYWFZWVlRUVFNTU1JSUk5OTkxMTEtLS0pKSklJSUhISDs7Ozg4ODU1NTMzMzIyMjExMS8vLy0tLSgoKCcnJyYmJiQkJCMjIyEhISAgIB8fHx0dHRwcHBsbGxgYGBcXFxYWFhUVFRQUFBISEhAQEA4ODg0NDQwMDAsLCwoKCggICAcHBwYGBgUFBQQEBAMDAwICAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/ABUJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGOKpENHJkJDgqasaMAgSCGbBLOECEC0KA+gg5BAGFB0QxMOAY7ahGOgKAMYbrwQfQJUkZETKcDkEXiEaJmuhxAdGljEQgATiboa9BHgQRi5BfNQCHAFb8EPRPv6VSTohgCiW9yI+dMVkR0eRSN7cIJH5pwbkROIeAEDBFEPPxC9xJKhqIMrfQgJHMQnSYIAEHJAYRmjaoACEgIsObgmRAQCCFgCIFpiggABVhRWUcPyRgkTx48DwStoyOHoAhz46Tqmw/EA2APwtwFKpGiFJG3u5G6h2mYFARd0ABIo4/iYrmmgjFcUSMYBAScMlsgZLETXwxlxAbWHFCpcF10AXHQ1Q1EAOIACUQBIUJlNBRpAAhp+IMKHEOBNARQbTMRREA3gvTGYQHU4EAAGeryoyAiHfSGTHGKYYZASRLEXkxYKCGDADlTIocgbKBQggAvtwdTFd8fVgMMCAiDwQyA2DWLDAeA96AEZeG2hQXQbRGGIjWy26eabcMYp55x01qlRQAAh+QQIFAAAACwAAAAAQABAAIf////+/v79/f38/Pz7+/v6+vr5+fn4+Pj39/f19fXz8/Px8fHw8PDv7+/u7u7t7e3s7Ozr6+vq6urn5+fm5ubk5OTj4+Ph4eHf39/e3t7d3d3c3Nzb29vZ2dnY2NjT09PR0dHPz8/Hx8fGxsbFxcXExMTCwsK/v7+9vb26urq4uLi3t7e2tra1tbWzs7OysrKtra2srKyrq6uoqKimpqakpKSjo6Ofn5+bm5uZmZmXl5eWlpaVlZWTk5OKioqIiIiHh4eGhoaDg4OBgYGAgIB/f399fX18fHx5eXlycnJxcXFvb29tbW1ra2tpaWloaGhlZWVkZGRjY2NhYWFfX19cXFxYWFhWVlZUVFRTU1NSUlJOTk5MTExLS0tKSkpJSUlISEg7Ozs4ODg1NTUzMzMyMjIxMTEvLy8tLS0oKCgnJycmJiYkJCQjIyMhISEgICAfHx8dHR0cHBwbGxsYGBgXFxcWFhYVFRUUFBQSEhIODg4NDQ0MDAwLCwsKCgoICAgHBwcGBgYFBQUEBAQDAwMCAgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wANCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJsybFOHFsEhTkB4qKBgyABNJpJUSAo0h30PxjBMIApBuUcAigdGYbA0gZvFiz5SiTmkRMoOhiR2CRo2JqDiI0aOAQCwFKFNJJsEeAB17oDrRDIQAVvQM/HP2r148NAUexrPmypyahOTuQSvawpI5MODYkJwjg4gWIox58EHpZJQNSBxMECJhi6E+eI5sh4GjCEgbWAAVKqFb9gyCaEBEIIGAJ4CgJxLsFONBjUMoZljZIdFAdIHmAPDSFIK1wRA0dCQFYAKiiWUHAhRx8BMZQDaammSbYDfWJcUCACb2FyKzYzYPMXJp4PJECcrsFkEVNMiAFgAMnHAWABJbNtJ8BI5ShByF5BFEdFDSlkYQbBc1QHRuAGSKHAwFgcEeJIiDGhUxvfDGGQUgcJV5MVygggAE6RPGGIWycUIAALYwXkxbUqUbDDQsIgIAPfcz0Rw0HVFegB2HohIUGu23ghCAlhinmmGSWaeaZaKbJUUAAOw==", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_d9628e5ed42449a18fbe450b4de56e53" + } + }, + "2cdc967f2552419cbe9512f96434a6fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_c4168bd2a10a40cbab5bb60fda28f804", + "IPY_MODEL_3320ea0b0b5e4d488cb349603cfd78de" + ], + "layout": "IPY_MODEL_31a536c3d3ba4730be7b4c06f94dcc60" + } + }, + "31a536c3d3ba4730be7b4c06f94dcc60": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "3320ea0b0b5e4d488cb349603cfd78de": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAALe3t66urq2traysrKqqqqmpqaenp6ampqSkpKOjo6KioqGhoaCgoJ+fn56enp2dnZycnJubm5qampmZmZeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wBXrRpFsKDBgwgTKlzIsGApVaksCfz0yVMnTpsyatzIsaPHjyA9cvp0CtWiVaJEdcJ0yZKlSjBjypxJs6bNmzFdWsK0ydSoUqtQhVp5CafRo0hpWrqkiZQoUqtSjQLFKRMmlpeyat3KtatWS5QmSRpLqZLXs1czaepUihTQVKSGZjpL1+tLSY8UGRokSJChRY8kVVpaNyumtaZKmYoat9PcljojS56sk1KkRYLyzHHzxk2cO4ESPZo0mLJLw4gVM5YL2bRrl5UkOTK0pw0YJECGOOFCRk6fQ44mvUbdyZTx1Y5bv6YcmxGhOmaEvPjwIcQLGDqcqNmDCBIl18SNL/+Gy3q560mPDPFZkwRGiRMqWpAg4WEFkTSBGAk3Hf44+eTmMReJIoesAcUNLcSAwxA5gFABByPgwMQdiEQC3iWHFedfY3MFqFNMkziSyB5aNCFFFU/4MMMJIXwgggst+GBGIZBcmKF4yHUYIEyU9DhJI4cEEocZYJAhRhI3oIDBAxysEMMOXhBSI38YIrZheTuGJQklkjQy1iF8+BGHGDu0wEIGEVAgww1IkCGljVaOx6FyrlWipSSQTMIUJ5c0UogbXewAwwoqoMBCDTY8IUchFlJ545UAmmfnJJNE0sgknqT0iSSGyOFEEkLwgIQRQ9wQhBZ7KCJYaZNVqaGcWEr/Glsji1DiySiicGJIHF1I0QMRTEhxRRI+TAFHIJcqpZOrOP6n43IYWgLJI5FUwkknmkQiSBxTEHEDDjsYccQORKDBxyKRlKUsYZm8miOdlGGIyVKWTMIIIogEoscaUvxQQgYXtCBDCz1wwUci1W71kkyntdvsnNCypIlFmDTyhxtlgOFEDipskAABG3wAwQYvjOEHI5RcopYmmVgFWWkqc/JwrLBFlpUlm3wCyiaS8MFFEjysAIIGERQAwAEKHEAAASBIcUcikxy2CScYbcIyVlllIjOkmYCH1VqebBJJHlfssIEDDDxQwQQISNAAAQ8YIIAG9wXiSFlaT111y1fd/6ias60ahonWFC8ShxUzVEBAAAZo4EEHKqyAggokgMCBByj8oAUgjViiSdXXVs1yJpsU93dj89qcllqdUITJIW5YEYMFBAywgAk23KADDT8UUcQRRPigggs3GNEGIjh3YhEny3PCsiabeJIYrCsti+HKOYcy1CN3kDFEChdI8AENObTggg1JVKHFE0P0rgQRSlyBByQ8XeTJ/fd3solapU+PXOrygh7zQkGQUGBCEGtowg1KEIIZAAEHM7CBDrAgh0EEog5U0IERtuAFLqgBEMGxGulK14kSWg160jvdULAyOOh1AhSjIMUoQuGJSNSBDD7wQQxywIND9SAITfDCHv+C4wg7OGEJVxiDGvywiEY8IjDsGqEmBle6UqiQKFUqHQxJERdPaCIRauCCEr71Ax7soAlaEEMa5LAIToACE/rCwhaykIZBMGIRhzgE1DCUlatViRNWpB5LWvjCgogibJkohBecgAQmXKEJRiACFt7AB0Mg4hKeAIUl/JCHMXzBDHJIBCa61AhGSIJ0VslIWqqoQk4MknSfEAWuQvEJ52niEEhiwhOkAIUlPGENe3hEJTQBipRUog1qAGUa+sAIT2RCS5Mo3f6o9jxWwsqVrvqE9kCxPKv9YQk28AGUtLAEK8ABDolwxCOYgglFmKEMV2BDG/oQCRouzFolFKAtoxf/yP8tZS0U+cRFMKIJTSgCDDh4AQ3AgIY78KEPcrDDHe6QhzzQ4QtAWIIUwECHQkyChpcQzsQqMrWLFPRa/SSPK82iNeVdZGXFxAQfiiCDHTjBDXcQBCLwoAY0ZIEJWcDCEnKAhC9wQQ6GsNUzKYGJTHKTeZ6wJUpbWZSd6O1qmQiFFT3hTiVA4QleKIMaKEqHM1iBCUdEgg+c0AU28OEQluiaWXJWkRIuD3pTS2lc+AQTqVltcFpNzCcm0Qc1bAELVJjCE6ogBjOQwQtQUAIQiHAEKpABNDUiZEXqmr/nfU6voeDTd/iXEU6EghSmcAonKIEIP7hBDFq4whWoEIUo/1DhClNIwhEcCYc8GCI4ehop/ga6v75pDbR8VVlJb8XFGWLLEl0SxA0Pa4UvhCELXPBCGMbABpzu4RCAIc1h+DY4rBAmZv77z7wOc61PoLYttKzK4C5BiUYAYg5vWAMazHAGNKhhDW/YjB4AoUdIQGJLkzDwJHrUI5gsxW9yOuRcWnpa4ziFm/tbi/4q0QhDBMIPe9hDH/jw0If2wQ+CUES1XhIWmEFGcBCOSilE8Yn9la7CbREFKARKNahqArrTeoQjGJEIROhREY1IV/1KSNCCOrllVulbnIJSiqnozxOnbcsMQbHjizB5E/VaMIMZPBgqXsulzoOymqPct0ct5v8UOb7fU2RIS51RpJtyVVYW9UZQlxWmP29OzAxliStQePl+dd0EJhx8s4UFrtEeAnRQ4CzDlNAQI1YhHCK1Ut6XscpDjpoyKlAh6FA8VRP0FYzWMD3Iq7TGwaCGk7tGnRgaR7VrkohEJPTEtxezJNaglnQqSN1FbMVG15IgDWyU/eqcADvU7hp2aqny40pFItnqCgtpvsIjWD87cG6Oyil8UuNMxGYslCoLbMpyMzs1+NPftl64UwHnUXhx0WJm8HkVtq54y3vKqUitSjoUkwaft2+edra//x1tn1AFa7CBtbwQvvDhMMs/Vf4EqinuaMIgHF4VZ3izZqzxiTeaVVyYCbmsHybhlN/Teiq3+Lyd4kyFfQjeMV851yCd82cLG2I9/zanAT7je2Ptz0hP+lbaTDp3qaKLfla61KWelimr4hSN6XHVQhISrXv962DXuvJAcYpxr8ITqagyN/HH9ra7/e1wj3vcdSYKVJh9FAJRBURSwfe++/3vgA+84AcveL2vQu8SobV4Fs/4xjv+8ZCPvCnKDpFVBAQAIfkECBQAAAAsAAAAAEAAQACHsbGxrq6uq6urqqqqqampqKiop6enpaWlpKSko6OjoqKioaGhnp6enZ2dnJycm5ubmpqamZmZmJiYl5eXlpaWlZWVlJSUk5OTkpKSkJCQj4+Pjo6OjY2NjIyMi4uLioqKiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AU6UqRbCgwYMIEypcyLCgqVSoKAkkNUpUKFAYM2rcyLGjx48fRZ1CFSnVKVOiPHXaxLKly5cwY27SlAnTJUs4MWXSpEnmS06eTJV6iKqUqE+caGZayrSp06dPL1GCxOhQoUKIGkWqdEkn1KU9PRUUaIpUKE+cOPlc2zKt2kyVICki5IePnj2AED2qtDOm206gTAkma9STS56IEytO3JKmpUiI+LjB8gQKljFq7ghiNAkT4piATZ0kLKrT4tOoec6EC+nQni5HYKg4QYNGjyhs+izqjHoTp8CnTpE2nTr1TsSZLk1ClAeLjhYubPBogWJECyNpBj2ydFyxb+DCUwn/LZ34q3nEmCpFCiTnSxUmSYrkKGHBgwkdTe4s4guW8W/R4Y1HnHlf0YRYJZJAMogdb5wBRhQ9qEBCCSjA8MIPZiAySVP+gTccTwQ6BSJYcF1yySF9yAGHGk4EgYMIEWzgggw7eHHIhkx1COCHSoVYHiY29bVJJIQAQocZPKSAwgcZaAADDUiUcSOHn/0XHI8hdgdiepNw1wknmCwySBtc/BBEDDbAIEMNNThRRyL89aealQEaNSCBn62mXCSRXMJJJ5kw0gcaTSShhBJSICHEDD5o4Ycj3FHZE51Ynqeab5tkQskjkFSyyUqT9AGHFl1AIcUVVUgxRA5SzFGIJJeI/zinh+LZOWKBPfmm0iaWcOUZJpREUogaWSiRQw496DADC0Cg8cdeXuU46461ktcjVJd24olK3CaVySSO6JHGEzKE8AGTGZAAhR2JSGIJkLJ+R62Atz6V5yY6+aYJkJZIgkgcaTQRQwUOYCABAQ18EEUchkBCSVfxUlrtndgiZskjjDgiSSSPzPVHHm+sQYUPKFxgwQMGABBAB7gBwtm79sp75cT1SvqtIoDUIYcdOsPxRhoNagEFEDJ0UMEBBAywQAhNvDFIIw9rotaIPHHyyby2XivtvpEookcZUyhRxRVZhCGGGFcgEZ8TPZwwwQISZGCCCzxc8YaGmnTyySdfsv806dUz03vtZ5pcAokhdnQRRAswBFEFFl1ogUQNNDw5gwcOQJBBDUXI5wMTU+jxiCaeYPSJSmrJXCd50rKkFiaSGBLHFTmYsEINSnihRhhfQMFD5TGkwAEDHIRQxBZZqBrFGH9MsoknoVwEyulfhhZ41sf51slKlSQiRxYxmNDCDEWYgYccanThhA9CAHGDChNMcAIOOiyRhRheuGGHIc5/Ev1F1PsTrQSXK21taxOT2AMXWgACF9SACm/QgyAOgYc2qEoFHSiBDCpXgzDMYQ94cMMUyJAHRnjKf9HDiEq2N8Cs+QYonwDFWSDBhh18YAQ3yAIa8DAIR0xiEXgYQxD/NqAAC8QgCmKowh0KYYg+vAENZfBDIyzxvL1ZcYXWW51pWKKtGIqCFJ9QxBZIsAIZMEELbGAEJUjHiUbIAQkgYEACWgCGObzhEJTABCRyxi5JSM0tQEGdAEXzkIm5zhNeJEUpOtGHJZCgBUAwQhTmcIlQkIIUoLAEIt7gggEIgAJRUAMc8LCdm03xU32bSVpm4hvAFVJA2kvkJTMRhyLsAAdLCMIRABEUoYSiE5RIhBRSVoAVNGENecgEKETBieT8Znrb4+JKuHi1wRiyi6IYBUVEUQk2BCEIPzCCEI7wB0x8sSIV+cQfPpAABDiODXnwhCLPsolPiEIU0+MbKtUy/8jRXNN/97xnKCYBhyEYwQdRsB8dGHGJSvTEf6BIRAwmgAAmgCEPhwgMSkABvVFUxHTbE6T1XkmK0nwqhv+bHiXq4D4iZAELangDHv4ACEA8TS5rMMEFQlAFN8BJFIKpSCg8uk18bmtbaSkdIclS0pXAMIV8owQdjLCDHBwhDG9wwx76MIc0lCEMajDDFWpzhTDooRGaEAVBRnERom4zn6dLy0iZatI/xRCanLDEItaQBCIAIQpfCMMY6DAHN4yhC17AghSE0IQx5CERk+DEOfEpw2wK9YpfsutSxdPUWE7vqKDYRCLIMITPJYEKT6iCGeDQhjFkwVBK4AIdemgJT/9Y1iLRy6ZAP4uWF7qSrk5FpEa0KYpL/EEMUlhCFaDABCMUoQlW2IIUmvCELMjhD/ux2lCFmtuUoi4xVptXZ/Umw1CodTyceIQg3hAGKlThCU+wwhSowAUwdCGmefCDIvgCmOjxbYWCpEm0pAa41aEFkdEbxVDG8wlNLCcQdHBDGbZwBS2AATNtiIMc+lAIRvTJdVPzCpBsYiJ4Va3AhBkF31BKCsEIpaSgME1DJZEIPsjhDXOgQx728IdAACIQiHDEJT6FOr9ZqidZFMgpSjEKjsqwxYIpRUkvsi1t8eoRiTAEExGhCEY4DBPaDSgAT7fCVYLGQ6g4iVlkqOAob3P/zHvzRCYsQQlKTIIS75Ja6czrUaHms8yHyVOS0zyeoRakImIe80oEbGK7ljelZN6emammoyuhIs1M1uZbMdJdjiYFOTXRSa7+sr3Mpg7UspoUmglNkSlTr4sATKWR4dWdmKAaV6re0aVPwmSLxHVfeYsh31K3mlDTOkt4mpalWW0RjuKrxERe9HGccmxk41p1AiE0W50NJIhhKlPUHnG0rH1tiWnb06EWUrGnPeKujJvc9lJ2eAh9lJW0zi0zQQ6JRwzvI2MbIiepd74v9SdTr0bc7+63pP6N6bPIGsSllnSxE67whUtMzRyVNLG1F1KJa63i8c71zDAe8YfLtdRTmfs4yOUk8vAsWcURX6V/8F2zlW+t5SlGCiDXXetb21xSOK+WYRqj8mn/HNdBH49hfH50ZC/m34JrOsi9k2STMHnoxcm61rX+k6or3W9bD7vY76U9WhWlyUdNu9rXzva2u/3tXhzJQ0RhdcqC5O54z7tGEnzph4RHIIAPvOAHT/jCG/7whP8ERAjt4sY7/vGQj7zkJR8cVAA+IAAh+QQIFAAAACwAAAAAQABAAIfCwsK9vb26urq1tbW0tLSxsbGvr6+urq6tra2rq6upqamoqKinp6empqajo6OhoaGgoKCfn5+enp6cnJybm5uampqZmZmYmJiXl5eWlpaVlZWUlJSTk5OSkpKRkZGQkJCPj4+Ojo6MjIyLi4uKioqJiYmIiIiHh4eGhoaFhYWEhISDg4OBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBbtWK1qqDBgwgTKlyoSlWqh6kaLkTISuAmgasaPkTFsaPHjyBDdjxlipSoT546fRJVytQpkRxTVbw4cBUqkqVy6tzJs6fPUiY/bar0KJEhQYQSTdq0ktTPU6wICmSlCpUpoKSyat3KtSvXUaE8ZYpkKM8YLFvIuKETaFElTqFGeTVlcCpVq6by6t3Lt+9eoKNAbZqEaA2VHzdkAAmyJAwfRphAkfILNardqld/avYZVNMjP1x8vIChQwiNFidiNJnTSBNLnXorVxxI9VROr7i5AhYVqlMmS4TuiLnihIkSHik2jFDRI4qfSp+0wpZ92TbW3NhNhvr0mxIiPnPWkP+hwmNFCRUsasQYsgZSJ7lOc7qMOjuqKtvZcWMN/Mn3Jk2K7EEHHW9EAQQNIkwQwgw0+CDGI+9lNR191V2Xn3SAhbWJJ6CIIkomjCCyxxk2lGDCBx14IEMNSqgBIXwTWkbbfRZeqJNJoHCiiSejXBWKJYrM8YUQQbxgwww12GBDFHpIwiOG88loH34XSnjjSf9FBxQokxxCRxZTSPEEFU0UQUMQYBRyCSjwxRdlfbXVmB1spYzSH4c5jeJJJIKMQYYWXHTBxRVG9IDFHo5sEspW8lE3I5VVypcXYFnJJYonlOCBBhVFFHHEDzW8cEQciGDySZtuOjqlnHO29NJIpVz/CmAfXvSgAgokfKBBClkAMkkncTHqKoWPsoqdfBFlhEopoGTiyCB4hIGDBhZwEEECDoRQRR6PaLJSmzqpGmeV0pmS7CqpjJLJI4LYkUYWQ6gQggcUNDAAARcowUYhlDAlCow5iUtjdqOIAsonKIVibkGpkLKJI3iocQUUROBQQwkYLKCAAQxkwAMZfzRyCSdsYigwpF+B5VslkjwSySU85iUKJ5II0gYUTAwhBBVL2JABBA9U4AEJLhxBRiCQeAtuKSezWjB3kBSCBx569FEII5NcYkkkiiTSxxdYOLGEFFhQEcQROMyQAw8wxNCDEnUwsknJVjbdFViceFcHGV58//EFGGe8kYcffcSRxxxooAGGGFl4kcYaaMixRRNB9OADDEaEEcgknry2k91bgbVJJH+gMYUPPAzBxBRfqKHGGU/8gIQRSUxhRRhdmMHGHX0wokcWq1MxRRp4QBbdX29WyNXMkOgxBhI3EHkEE1U40cUXYUxBAw03nFCDE1GQIYcgkGDiySaNlMWGGHYcUkknLJ1CUmzEriodKZ9MsgcYPtwQhBFH4MIZptAEJDhBCzjTQQ5YUIQoZEEPiZAE/Egxik1AghBHMcT7QuGq+eUFFfWLE2xGoYk+7cAGSHiCGORQhzbwLwY3YMIVqKADJGABC1WYAyQ4GBPbbCcTl/AWS/9cIr+9NE1SopBEGoIAgyBUoQ116AMe+BCFGZwABCFIAQpq4AMs0CEOjgBFRCByEwoCrCVENGIIaYTGU3xiEFJIgQ6YEDlARMISjECDEloAAgpQAAIaOAIdFnEIT5yiIFVBhUZuUkRK9eSIROQEHYZgAhxIAQxsSAQoSvGJRuAhCzSIQAECcIAbrKERjfgEKgqCilGUQiPyw0mdPKQVuTBtFVKKU15e0ok37AAGPMiCFdQACXOdgoKaAEQWPAAAAbSgC4OAhCdkYhNRkAIVEcHLpMx4GwkdMpc0ImIqPAEHGsRAB8ILwyJEoZdlfeIRWUBAATwQhj44ghOqiEorR3H/ijHGspFOyUzA1mgbl2DzE3jgAQ1sIIUsnEEQ5sPEJjqhI0rMIQMSwEAYBCEJUKxCIKloiSI1spGbxGZSySuWQVMRikEoAQc7wMIZ5qCHR0giEX+4AxzwAAcqWEACL2DDIjIxio+2IqT9NMhDHJIKk8aSflLKiHUMOgpIhGEIP2DCG/wAiEU0wg9iqAIRhPADIJSABmTAAyQyQYp8smJZpmgISUkqP0ZCtT4ZyYxBS3EJOiwhB0XIQhvoUIdBEIIOZbCCFIbQvya0wRCW6ERbGwIUU3wEIqmIpUkz8028qqIkrrKKJxIBBiUcIQpPGIMWwmC4FnZBCUtoghcRIcFS/2xkOjEhIyNlmRVT1C+vTqnrMTmxiJv54AljggIVtiAGM4zBClUIwx0I0S0OvsSDRMRmUzd7FTPKxbdR/WxoPTIKScChCUOIAhSswIUvcCEMZSBDHO4QiEE8gik9kh9P/uJdD/n3uwQdbyoQyVdDIC4MYAiDGdKghja84Q55IEQjKqEJulVqFPDBcChAweEOgyIU/5LLyQyqSFwSJKSeqARO+cDVPvSBD4JABCIUIYlMcPAvO6mUh0LBYx57CMPBDaFNXqUKE2ekqaYITCc2cYlIOKIRkKBEJjyxqH5GhKkeKWJmagnkuhGrJtstskEWqeVYeYITKrEm07ApV6aW1P+uAu1KuL584nMdGbMcKaJ3A/oqzG53JPO7kVfmLKMZtfnPMclzSfSDxl1iV9DHGmiha0JmD77KOjzRzWbIRejZTOXIJnXkUzO9Z3K1imlfHohDTGoS3lhTLzXCsKxRZWo5S9rTquZISXb8r/iYMXSz7nKtbY3qSd9l1yDu9W1kDewQC3vYwio2rlmR2V33Oj6QvrCznw1tK0lbILSp9q8lhONlB5vb3e40uE+ME934pZtc7ratUwrmSfXEL1uWd6TpTRBt2nsnfcm2vjXNb5vw5UYA//fAc9OoNfob3hgS+MIJfkSJT5zTt66QsS6O8ZSuauMct9GwwIlpiOdnMyhK38wHAwzykDM8Rp4+9r9TLil82/zmRpTJQFrxUXb/8+dAD7rQh050zaZiKuBOutKXzvSmO/3pUBeIKtZNn6pb/epYz7rWtz7pgAAAIfkECBQAAAAsAAAAAEAAQACHtbW1ra2trKysq6urqKiopqampaWlpKSkoqKinJycm5ubmpqamJiYl5eXlpaWlZWVlJSUk5OTkZGRkJCQj4+Pjo6OjIyMi4uLioqKiYmJh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AQQkcCOqTwYMIEypceJCgQIYLCVIaeNCTxYsYM2rcyNFTJ06bNmnStIlTp04aUQq8RNDjR04wY8qcSbMmzJMfN2GqJOkRI0aNIlXCpIlmJ4cFPcIMybSp06chZTrVhInSo0V11Jxxc2fPIESOJmUqCbLkp4IEP7k8eROn27dw2ZalWmnSJER2siTxoeQIFTJ7CkG6tAmnSaRJbSpeLDLTJUt1IQlqs4XKESI2WqygwUSNoEiZZB5F+ikn1NNOpWbCZIlSJUuSFu1J86XLliUrKmQwkWPJHEaEY452WLos6uMxRe6EbMmSo0J/6pCBwsOECBIeWLTQ8eWQJbKHSZv/Pn5aKl1LmDJZakSIjx0xPFpUqAAhA4oVM6oYqgR+eNrx5D2l2iUEYnIJJYnkcYccWqxgQggVPDCBCSbgwIUh3wmHWHEBlpdcJiBiwlokjSRCiBdVCJHDCx50wIIKIeiwRiIZ3rQhgB0yJdxSmlwyiSSQTCJbGlZEEUUROeBgwwknKGGHI5j0d6NxOTYl3EmNGUiJIoT0IccYXCjBwxAxpNADGoJIMpaG4lFZpY4oKbWUY5VAgsgcXwxRQg0lcMDCFXg4YglJbBKHY5UkxalUScrxVIgbSHwAwgYNaACEG4hQMpaUbZJHko5LmXQRW5uoR0lPgaTRAwkkYFBAAhUA/6FGIZJcQqiNnT41koHMEVXSSRiRmkmdV/3BRhM1yCACAgAAkMANX/jRyCS2Fvqfm8pZtUgiiCTCCCSUYGLSWyBpUicjg9DxhRJAwJACAwcEIAAELniRhyGOaEqWfxQBqIl6jxiCRxttrMFGG2/sgYgk6EXViUg+MuJHG1UQcUQPMFDAwAIDHIBBCEKAobAkUeJqaFNUUbIIH2dY0QQUTyCRBBRdlNFGHX84QlhIq1GSKhQ72BBDCBaAwAEGFXDAgQg0HPHGICTveyNTVEliyBxaFCFDDDsA0cMPPNBgww9ObMGHIuF+t4klgXxBBA4eXMCBmSuMoIMLInRwAxV2IP8yScnhnaycJI9WkQMLMtwAhA+LJwGEDjbwcIMWeigy2MOW9AEGEyUoYMADL1DxQwghdCCCDFKo8ccimlrbb0jmHtJGFDK0kHgOUZShxRI+gB0EEkY8EYYfiEDimCOArFFEBQREAMIQZKihhRJJqAiGHYdEEpzJ/4WEySN1YFGDCzvwAMUYcbBRhhE67KCEEkMkYW8ghkBSyZaJqCFDBA54gIQbehBEH9TABTCgQQ6CGRSnBHcJQ4ThBivAQRC40AY51GEOWyhC5H5wBCMsYQtzKESaJEEJRhSCCzYoQRDMsDpIRMIRhiBEIMASLvBwr18goYQenmCmImyhDXs4RCL/9JAGKjABCk0owg96oIU8NOIQjgCSDMWQBTD8gRGUuMRq6jIJ12jxVy8J3LU4IYk2kKkITPBCHQ4xCRIV4g5sqIMd1KADGfAgDYZQhCMegYhBHAIQiXDEUD7VGBCB6FaimRInIGGGHQRhCVoIgxObIyLItPEPT2ACEsiAh0M8QhKMeEQXD0nIT5lyJKnh10NeEokxyMAISJhCGu4gGIatJjScaIQPcJAEOPghESSrxPbkwihdRQVOipyEGm5gBCBQoQ188AMhAkgIQjyCEpOwgwxeIAQ89AES4hKJqOIEl5mAR2pt4kQl7gAEIPwACm0IxB7m0AQnHAEIVxhDF1aA/wAL8EAPhKiEJjzyK7UYJFgWcctNEpnOSwzCMj8IwvUAUYcjpGADErAABiBwgAGAYAt9aIQlOEHQwiSkI+S64SphkolGuEEKVVBCFcSwhjd8IQk3EAEGNqC0EDThaTojaU5IetCOrEUuYnxdDgvBhi9wIQxWqEIZuiAFJgiBBirgzRLIwAcaHjMkccHJqBTqulWSRROSCIQb1jAGN4BhDGVQgxi0gIQb1CAIWdBDIRYhyDWlEi5HNUyopmYSTmhiEobIwx7ugIc3oAENbIDDHODQBjrsIY+itMSmYBcVo5DVTZxQJE42cYlKRIIRfeyDHi5YBzzwQQ93EMQiJDEJzf8WE5W3HYkpRaJb3KqyIB8BFkY4oR5JPPEQh0AEIoSY3LDYCmWGHEmIRERd6kbXYVMCFkIWxZrmQKYn4CLKuF6iq38Z8ryk7Oxv1aLdk8ppvMKxSEXG+lnylDUpcXIvWxSVke2iNIxLEdB9QSHf+QYruDNxi1EFG2APJZUiBhauSxqcGtF8FlsO/m1BiipYwXaWwjY055sGzOGcEIqYb0oxqB78kISW61+IVLGMF0icRZkXt7AjZI5xPGMrqXSlheSxblE25B4LmMUE/siNCQniHevYyB/WsFJ6u+LkUO3JUI4yYgjc5BBbOcsZ3pAnpOLjtnwZzBVmsVpoUuXCnhlbzVpOJ5nb3GU037c4Ik4znKHCUEPNec8j/jGHAC3jPl+L0IW+M4AXw+hGO/pKiny0pCddk/UumtKYdrRKEPPeTHvaJmLdsqhHTepSm9ohniAORFbN6lYrZMsBAQAh+QQIFAAAACwAAAAAQABAAIe/v7++vr69vb26urq4uLi2traysrKxsbGwsLCsrKyqqqqpqamoqKinp6empqalpaWkpKShoaGfn5+enp6dnZ2cnJybm5uampqZmZmYmJiXl5eWlpaVlZWUlJSTk5OSkpKRkZGQkJCPj4+NjY2MjIyLi4uKioqJiYmIiIiHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBhCRxIsKDBgwgTKkRoyuCrhxAjSpxIsSJEhBUFsioo0ZXFjxRdiRwJEuJIVxhPqlzJsqWrVq1YrWJFs+aqmTRhtlqJ8ZXLnycnvmSlapUqVamOpkJ16hQqVEVZ7TyZEqjVla1UoSJVypQpUqFCaaoEydImT6JInUrFimRVnXDjyoXJstWqVF1JjQoFyhIkQoP8KBrUB5GlTqNSTUV50OfLuZDjqox516neT5EAE+Lz5g0cNF7yMNpUatXIlJFTw51s91SpUqE8TUqkqNAfMUCAMPFxRc6jUKpON36sOnVQn6xKffKECdPYSoG6xCDBYwiQHFz2dEol3CHx4pFFRv9kRUqTJUuZwj7qEkTDBAwrcshQ4oYTd5GowUuWbJKVqEySOFLJJpPooYMI7m0Awg0zIAHHJvcx5p1+q4mkk0f9nRIKJ5hcQgkgbTDBoAgjBJEDC0f00Ulw+A1HIV0jwfhQjKqQ0skliyQCiBxulBHFEFtIgQMMVxwiimktTgieSzOqxAoqonRCSY6MIIJHGnHEkcUQTehhiSltJcnRd3MxaVKMMLGSiimjbEKJJJFceUYYWCxhhR2QjKLKYvmlaVQqSUmFoUQCzQgXTTfh9cknlxByxhZN/HBDE2s48glbVLlIGSqjLOdJKGqpEuZDBDVJ2U1GKaeJI3dg8cMQP4D/4IIQcTgCCiqrwIiamqNkssgfghiySCSYgGJKKrl6NJBJdhV1lymhZMIIHWIsUYQRNkjgQAplIKJJKagIKiFHMZ3iSSN1lOGFGWi0MYcgj1jCSWKjnklUoqeIckkhb4wBxQwpXNABBA680EUgl4BCCqbjEuQKK6ZkIggZT/wQhBJWbNGGH4EcgggkmYwCVZhDJQpoKZkcIocaaFRhQwMJZMDBCDoYQcYelnyCq5gOn4KJHlz8YAMQQxjBRBdj3MFHIYIUkkgliIUL001aoZLKKZswclsaWszAAAIKfACDCi/4UMUYi2xyCpIIscKJHlbYMMOrRnghBxljfHFGHHgA/7IHIZIgxnByn7xmSieL0EFnDxgMcIABFvRwww8zNJHGIpycEmZjqBziRQ0zGHGEF3P8wQccVQDxAxVfpMGGH5VgojNjrogyyXKhVMJIHkqcoAEBAjzQQAU59LCDD2PgAUknmivrUChr6MBCD0+gYUchiCgyBhEzuNBCCzEcsUYimmzH2CunVMIJJZdUQsgUJSwQAQUiqGBEE0s0gQQPZghySSiK4VmhMoEFFOxACWKgAyEyAYpLBEINQ3iBCzSgARAkIRHnMcX5TpEJRyBCEIJgww468AEcaEEOb6hDG7wwhSqQrhGe0NxUDuKKRzAhBT2AgsYeUYqrgSIRj0KCB/8CkAATwOERkfgEK14BC/Rx4hGL0AMakHAiJ9TBEZnQRIAK4bdDVEIUuOKTQVyBiCLQ4AdTmIIaLrGnmKRCFJ5YRBUAUAANSIEP8WoLLFyBCkYZgg1nuAIWtnCITnSFTaDwxCdAMYq1SUWMBXGFIXpggx40oQliiAQpZqITNRkCAQm4wBn2UJYlNrEVqSDFJzChCEVAQhOmEFVMakLLncCoYQJxBSOAcAMbMCEKaFBEJhbpFVGlohIuCIEH4rAITITifD5J09WQtZhBOaYlNKwEEmqQAyl44Q6BkEQjGNGIV3qiE34wgQVIgIdK3IqJTYxIPK0ZEmw6xBNboCQRuqD/B0AE6INz6EMf9pAGHAhhDYb4xChMGU94FqokjrmmAJtYijwc4QdAQAIZXtcIRxzCD3wIhB7eMEg6PAIUmiPVRSBaz+6UShWTMIMRfpCEILhQDYHIUSDy0IY1nGENgqjEJ0ixJ5Ww1CRNypRBWiGKRYjhok1IQhWccIU12IEOaWDXGwThiGKBK1cVkihJhGLPMapCFI1wgxSQkIQfHKEKYRBDGtQwBjjw4RCNoMRQcSWVR1ZzJRHByoUwUq5OJEIOW6jCE54AhSuAgQ1umIMcCvGIS3BiYTjJCYzkQqbwvOVJodgEJPrwhjW0QQ5zwMMgDMGIhJ1ClrOsSZpoSdva72p2hsMJbFag5YlNYCITnAjFa8V1TQrZ9kIuLZU85znLm1SzJECBjEp6cpGGHhW6V5luY45qppa2pELa3S5Ishtd44TXIR0RT1LJiyb98IS6jkFuXV7k3vNyxFQxuWVn6Vuc9273Mbflr4D1O9FCAdiv+x1wf+27rGje9iQKfpF/79vZ70bYvEodU4UtfOEyMdjA7bVKhzn74Sayt70jJjAuQQxh8LImxSquSotdnOAOT7hUM4YxhW68LAvpmL4skbGPJXPiIgNWyEZOMlAcqmElO/knSH6ylMUT5Sk/mckLybKWt7xlLHP5y2BOSEAAACH5BAgUAAAALAAAAABAAEAAh8jIyMPDw729vbu7u7S0tLKysrCwsK6urq2traqqqqmpqaioqKenp6ampqWlpaSkpKOjo6KioqGhoaCgoJ+fn52dnZycnJqampmZmZaWlpWVlZSUlJOTk5KSkpGRkY+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AFkJHEiwoMGDCBMqRHhqocOHEB+uikixosJVGBNi3Mixo8ePHAtiVEWyZEhWHS+CXOlRpSpUMFPJTEUyo8CNGlnqBDlwZKpTpoKWIjVK1ChSpVDRPHlwp1OQJFPBBGqKFChOmSxdurQJFKlTqWw2fUp2Y0mpqEyNuhoJUR89fAxBwuSpVNicZZ2iXKVq5KlRniw9CuTnzhwtWdYEctTJ1ESEeVfWfNwxVSlPmSAx+kMHjZcnOoZoqRNplCq8kTv2tclRlWVQmixJOjTnSo4VJkoIqQLo02nIqcnKLPWp06dQmfBoCUGCxYoVM3y04ZQKdXCdqUyF8vSJOKQ0PDpM/1AQQkWMGWM2VQd+faflTZcsbWKEB8iJEQwUeIhxosYZ9da1B9J7lzjiSCByPPHDCRCQcAMMG9xwRye/jcXXZE/d1FpHqIiCiSOINEKIHXNAYUMRUxCBggZFDCJKhQb5BJNSq6Vk4UfZjfKJJpU0sgh9XayBhhg+jKACG5OU8liMrpkiCiifgBLKKKbQaCNBUP0UlCmlhNJJJoacoQYXVvQAAghWGBLKXU11mEkjhiSiyCKQyOdJKF8ttaSGqqElk2unkKKJIGs84YMMGEhAgx2cnNIXQql48ggfcrDBRhptwKGHIIc0Ip8opoQVUkZmyUSja2l1kogXSNgwggMENP+QAx+NsinSJ4a08QUUSDSBxRh28PFGGmbEcYcjm4wCFoaslXRWWqFYwkcWS9RgQQAAJGDDHJaMggqMA5mCSBpVIDFEEEVUIYYYdbwRhxlukBHHH5F48tWppLb20imieFKJIW4k0UIECAgwgAQwxMHYKOsRlMokZTyRRBA8FAHGGmBsYYUYZKgBxxpy5BFIJJp4S9Nqe5WqXWaKJPKGEhQUYAAEEnDQAhV2SOIJKgWpogkdSjCRRA9dvGGHG1rw0IIPXFw6RhxxNsKJKEvV2Kwpn0iCiJx6GIHBAwtI0MEGI9SghBaFZMIzQaXwsQQQSSBxxh59DNIFDyeUEEQPNwT/IYUdjFSis119MbuRZZo0wgggcUSxQgIWJCCBDDq8YIIQWKTdEEGfiGFEE0yEEcghlzQyxxY+0BAFEjm8gIIYjXTSCZVK6TkRX1KR8gknlfixRQ4aWBDBBxdk0IILMLwwhRqKNFoQJldAAcUUawhiyXacNAJIG3qQEYQFIvzghyWfmHIKUOejzBdQV11CiBMZMABCCTogQYUURQAxgwpX3CFJKGsbCCWm8AUCzmERm/jKKVBxilKIYhJVIMAEcmCGRmwiVD8BitVUcYpPYIIRhdCCCA5ggR10wQ5+0IMbpECEIRChC4bYRCnARQkmgEEKXMCDIijhlQVGZRRvUEAF/2qABztoghRRYaBYVGGKTliCEGgAggk68AM9YAIUnqCEIvLABjX4ARKhAMueWGGJJVCLC1+ExCUkgYlMdOcvbVCAA0Jwhwkh8SUwWSIqOMGIPbRhCU0QAyJAsUB+eUITmfCEsvRUEE44IQpHyAIfHiEJRzCuDWzgQyH8QAMEKCAFb2BEd0z1rSXhzhSgiI8kNCEKR5nFNX+6kkBGAQcnFKEIbxgEJCYhiDZcwQg4EIJ9HCCCLPThEuWTikzEMhJUwQRlIuGJwyYxBSgogQpooIMhEOEHcinBCD/AQQ2e8IZEXMIT5sOXRlTyEZG0LQtXeEIWovCFNNwBD3HoAhWIoP8EJYQBD4ygxOzMdzKrpaydPVlJjDIxBy9ogQtfCIMWtlAGNqyhDGEYAxsKwQhLJLIuNIplhnZykFRQwg5nMEMZtpAGN7T0DnwQGSEY0YhMcAIUSYnKyfRltbwgxBSbWIQf8pCHOsShDnSrGyIUUYlMdCIUVXKWSC/kLGd5xCSyxBIqrLIJSSQCEYxwBCQe8YhJSMISoDBFjc5SUJ1W9a1vzSqWUAWUUoziKKUIilL21EyeWpWqcDXcGLF0VcNFU0AsyYlI2CkW9kQGIoiN7GAPK1nELqSykr3shjD7WOtglbNkYWdV9fURwUbWJZ9tZk9Ti1m8sBYqf+Wsa3sqmdc/ZtaxoL1OgHLb2RvxNjW7/W1ocSvcsgS3uCQlLnL1otzl6uS4zkVoc6MrTd9SV6HQvS5OLMLd7l7Wu+DlbkAAACH5BAgUAAAALAAAAABAAEAAh/Hx8ezs7Orq6unp6ejo6Ofn5+Tk5OPj497e3t3d3dvb29nZ2djY2NXV1dDQ0M7Ozs3NzcjIyMfHx8XFxcPDw8LCwsHBwcDAwL+/v76+vr29vby8vLu7u7q6uri4uLe3t7a2trW1tbS0tLOzs7KysrCwsK+vr66urq2traysrKurq6qqqqmpqaioqKampqWlpaSkpKKioqGhoZ+fn56enp2dnZubm5qampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpCQkI+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AJ0JHEiwoMGDCBMqRMhsocOHECNKnEixosWLGDNq3MixYLOPIC+CHEmyJEmPHwk2Y6YMmbFjypYxSynRpM2bKmk6W5kM2C1ZrGj5MqZs5sSbSE8KDLl02bBXjea40VMJFrBjy5odTZoU4cpishphqTEDiJU6oXYZk7mVq02vTkm5cfGBAgoYTtSc2kUMWdaabpV6ZXbsFR4fHzRk4AAiCJpHtYIVS9YwYuCRC1cO07SHihEZJli8ANLEy6JTvbBqhXgZs0JmwCDJ4RKGSxIaLUh48NAlEi1iylY/dI3yLUpnsCvlwbOnEJQUEhYgQNCBTKpgwS0LH759KUhmwj4F/8pTx8yOCQYEBBhAIQglXpQBl9Q+kpmxWIvudCFSIUEAAAEwgIIXm/QSH2vMLJPMMQwig0xR3Rlk0zLAYIJGDyE0UAABB0QQwxiKvCJMMhHChcwwu+AySyuoqDKLL5NlVeJ8OyWTiyM9OKAAAglsMIMXiJgylFEONbPMMb7Y4oopmzgCCCCOaGLKK7kAp9NAxK0kTCRBXPAABBOcEIQbkbwCzF8P2cdLLaRoUkklhuDxhhlyBHLIJancMqJMwl25EjK1KCIECRmIYAINW+jhiS7HEJlZT7ScskkkhAiSRxlyyJEHHWyQcUckpMDyi2pLqUThKXjw4IEFGmiwQhBZ3P/hSS6NlmgQM8TgggomhcjRRh1stAGHHHXYYUcaYpSBByOj1LKWTl/BsogSKoDQKgks7IBEGHNoQquMDiXzSyua8BHHF15YkcYbfwzSSB9xgCGGG2J4OokvwY20TDCgqOECBRFY8IEJMdCQgw5cuGEJL8jMZCuWxtwSyh5rSDFDDU70UQglmCTyRxxjfAEGGEL0oAcuy+z0kVOTVNFBBA50IMIKRBgRRAgxMGGHKMCs5ShC+8bCiBtToPACEYKMQgstsXjyCCBmwCEIGjOU4IQs+f4ZyxU4WCABBim4kIQTStCQgQtXROKJnslAqNAyu5xCyBMrdCDDIiMqc0wxvrj/AkkeWNThBg4l5KAKiR8xM8wlWdzggww/HBEEFlg0gcJdT1yiySarBFOrQsrkUoofR2zwwRG4VLYTS7e8ssgbbdgwghKtKKMyM7/EMYUMYYTxBRNOXCFFGE0EMUQQXrThBiG2FOM2QsnoUgodQUiwQRFYb9cMMbRo4kgdQ7zwBS2VfSSMHVAc0QUcXjCxRBeGSIIIHGtsgUUWXdQBC3CqH5SML6EwRBQ00IEWBOIWRFlNM4rRC1ZsAg9cEAIebKG6ZhiDE1xQwxfSEAYlQMEPq5iFLDbhhzIYYQhY2IMphJGdhChjGKa4BBuO8AIWZEEQm3BFLoRBDGHU4haj4AQh/9TghED0YjvIeAUa0vAFJAxhCGcwxTCSIS5QIAIPfWiEKn6Rr9ccgxabgEQcruCEKLxhEIwwBCMqMQpRkKITjziDFqCgCWMUZBm+iEQe1kCGNvgBFcRwmDKEwYtc8CIYCXxIT1phCUfYQQ1pyIMhDlEIQjziEpWARCQQAYYpsAEVtlPJ/2JhilLEQhfFIFLimOGwh93RGLk4hSUgMYg5yEEQiihEJQOxCEIgYg5HQMIebNHCpbAkGQ560M9Eggxh5CIVboIEIhKBCEIUAhGDIIQjplaFNWQCO27pCHKOQchZgKISk6jEJj6xiUdIIhLKqcMbKpELyrSGKRZZiTKM8boLXLyiFKMABSg6kQlMQMISkShEJ3iBlVbeEydFStw+gcGLWayCFKRIBSpMyQuisNKhrHyoYGqSIGUoA5lt45NIw8kR7WWERuKMqUy9MtN8XglLroyoSWyaJdfkFKddoQhEL+Mdogp1pUjFp3ySutKjMhWpTn2qSKNKnKJKdaSsgWlOrlpV+ihVQlz9aUK+epCwYuSmYOXqS9Fq1auKRKth7epSvxpXsdb0rnjNq173yte++vWvgO1rQAAAIfkECBQAAAAsAAAAAEAAQACH29vb1tbW1dXV0tLSzs7Ozc3Ny8vLyMjIx8fHxsbGxcXFw8PDwsLCwcHBwMDAv7+/vr6+vb29vLy8u7u7urq6ubm5uLi4t7e3tra2tbW1srKysbGxsLCwrq6ura2tq6urqqqqqampqKiopaWlo6OjoaGhoKCgn5+fnp6enZ2dnJycmpqamZmZmJiYl5eXlpaWlZWVlJSUk5OTkpKSkJCQj4+Pjo6OjY2NjIyMi4uLioqKiIiIh4eHhoaGhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AhQkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48Dg4kEqVGkyZEkH540CSwYsJcwg6Vk6PKXr5s3Yb4UuVPmzIPBfu3CNSsWrVi2cPHy9atpy50/gfKKZYqTpUeSJJlipauXL68tTUYtGMxXK0t36oThsmVNIEiobOnSteuX2LEEg+WKZChNmydCeDgR44aNpFS4dNn1mZIxQWCz+sQJM6aLDxsyWIxQkUfTK8UtM558CAyWnjFgzNS5IqODhAcRavTh+iv0RJ7AfvXitWtpWJQHgcXiA4VKFzZMUihYHlsLJlldbUN06UtXLVioNClS1KnVLbp2EQL/q6WoCpYqWW6o0OABRIshZiaFelWrl+OGLnvlkrVK1CRDdchxBx53DGLJK7n48ltIu4QSBxhVTIGEDUD8AMUWYxDSyCWctMLLfQsF1QsutagCCiSLANLHG1p8sQUYTmiBByewJMiYS7vA4gkeY3DhIhlsyIHII5dQgoosuwCjEjC+8ILLK6NQIogccbCxxxx4qKFFED0cYYUcksTiy41M2qKKJHeY0YUYYsBBSCWcuAKdgiCK91Uus6CCCSB7IAIIHm6oMQccaEjhww08NIEGJLkoKQxLvthySiN7nOHFGHA8kopcS9UGXEJB/eJkLJ8QssYYbAjiByGFICLHFk0g/5EGEUH8UIYrvjwaKi+1rOKIHFhEAcUUZUyCyi288OLpXQm95MsutXjSCBxUHCEGHohQookkeJwhBhVsPEFEDEx4oktuvFjnSiiKoKFFEkcgYUUbkKyyC1O21UkWk7y0YgogPNwwRSKmvAKLKp04oocddSDiRhAbuEAHYrNA2QkjfZTBBRAulOABEmccEgsvUDnkEjC97BKLIzcgQEIhuNT2VS2tOMJIHIGYkcMDGAAhSCaNOJJHHWI04QQRN5TAwAU40HHJLUmGZXJLX7niBwUBhDCKY77UEsopmtgBhQkIOJABEmh4wYXRR+wARNIIELCAEIBE8ootvfTSlL775v+2iyp6JADAA5M4VtYrCDuCxQ0HGDDAB15scUYRStTAgg41kGCAAxCs8Ecgi3QyCy5M8b3vL2bOoYEABiQRyy8h9fJKK5pg8kUQEzQgQAVVDHHGFFTcIIMOKMxQAQQWeEAEFlnQcazepueVGy6nBMLEBhyMEIYiqnSliy2ikEIJJXc8gUEGBXjQRRVtvDFGDC4oYWkQJ9Dwwgw/MBHHKLaMqVJTuliFJfAAhSL44AlmAAQmSrEVT4QiFIzwQw44IIIN/MAMl1rD4obABkpwIhFpWEINPjCCHIDhEraA3f+aJItRFOINfvFDIBIBCUqIohTb0sQi4gADGTBhCn6Qwxv/2CAFHgTBC564RcpaEYg1iAENM6JFeCCCMl7cAhalmMQd0nCGPBTCEJCIBCY2sYhF7MEJNCiCIDixikkUAhB6qEMgPIGLp+yiFZ/YBChSoUTpTE0/smAFKUTBCUqgqBCDUJUbBLGGL/DACGpYhVJsEQtVhKIU3vHfo3LjlE9Npyy5oMUrQMGJTnCiEo9YRCHqYIg8dOEIS7CDJxLEyZt4xVO68qRF8pOLWlTyE5NYhCEMkQg0jOEKXogDJmhBp/usZDQcyU8tWCGKTkwiEHqYQxz2AJeY/WYkzwwnNEWDsqHc4ha1sEUuerGgkOgSLyyJCV7mSc96isaeIXonPkE1NM59KuSZ/synOANqEHHq05/hJCg/+6nQgjKroQg5KEQnStGKWvSiGM2oRjfK0Y569KMFCQgAIfkECBQAAAAsAAAAAEAAQACH8fHx7e3t7Ozs6+vr6urq6Ojo5+fn5ubm5eXl5OTk4+Pj4eHh4ODg3t7e3d3d3Nzc29vb2tra2NjY1tbW1dXV1NTU09PT0tLS0dHR0NDQz8/Pzs7Ozc3NzMzMy8vLysrKycnJyMjIxsbGxcXFxMTEw8PDwsLCwcHBwMDAv7+/vr6+vLy8u7u7urq6ubm5uLi4t7e3tra2tbW1tLS0s7OzsrKysbGxsLCwr6+vrq6ura2trKysq6urqqqqqampqKiop6enpaWlpKSko6OjoqKioaGhoKCgn5+fnp6enZ2dnJycmpqamZmZmJiYl5eXlZWVlJSUkpKSkZGRkJCQj4+Pjo6OjY2NjIyMi4uLioqKiYmJiIiIh4eHhYWFhISEgoKCgYGBgICAf39/fn5+fX19e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsampqaWlpaGhoZ2dnZmZmZWVlY2NjYmJiYWFhX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AtwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4rMqK2ktpEktWXLVpLgSZQNTb4UKLMlTIU1Dea8qTMbtmvXWM50aZMnTW0/ozl79qyaNWwri26bOXSkNmvQkPXKdUvWLGTQgF6rdq1qR5VQzU61BuwVJ0yB+sAZJKoW2GnXrGUDWRKbNWnRpJHFZjPbs0+aFi2iU2WJlDBp3pAi1gyvWotI/xJj5WmULWLFjjWjRvhasUd/+ADqoyYKkBMkfMCBVawpNo0ls42FluxXKkyF+OwBNAmTqmDQlq0qZOfOn0J5hGBIgMDBjj2miDmjdtlhbt3WqDH/K6YLlypRjvz4QUMlCRYwfhS9YcPGziBHblgcCKBgQgwtlcBCGWEUqYTUNdTw1kstpKSSCSWhbMLJIXIIYYMKMyTxQxZhxIHHGjyAwAADHKBgRBuTcNLKMdZ0h1Nf4SW3yyycfOIKKp9UgkkolBQyRhM3rAADDEiM4QceYyhRwggyDNHFH5iAQoktyFwzUUsq/QWNMrScskgllXwySiyzwJKJH3CcwcYTNwCxBSSZQBJGE05cMcYglJjSSiu8CAPNbRLZ5Jc0zRTjyiFblFFHI6PUAgwvqERShxpxADJFGHe8AowtjASSBxqIUOLJK7008ww0el050FXSOAMMJE30/zAFH50Ik8wywcCyCiCOPHLKGVrkIcsxw7AiSRzNLcKJLGGtVJBUCu110lXVLMOKDguEIAgxgU0TDTXO+LIJI4V48gUOSTySiy2LxHHFFWXYMYkuzbBk0V40YTMNMo58AEACigB64DTOEHOKIHfooEEIXWzSyB1SCGEEFGno4UkyLVaE1KrZWOPMITYUoMAVz7x0UjbTJONJJGSgsEAFQbghBhM8wNDCC1C4sQkz1Nh7Jb5T6RaNJSQIoIALlhxTTVTXSGPMJodYcYIEH7xAxBNM6BADBSQ8UUYiyDzzlLMRFVVS061wYQIGHBhRhybAMCONMsC0EogbZazAgAQY5P/wgw4cMDDBB00E8gguxUQTDVSqHoUNNME0UgYTRUhRRRiOgJLKLaM08gcbb9gggQMe4LBCBg8MYEAEMazBhyCB6PKniwx9R40xsFCSiCGBBHKIJaR0MoskhIChhhYsWCDCCymIsMECBDQQQQhCINFEGZoYkypmPv1lzCuUCPJlJaRwEsoqmyjShhk6XLABCx9swIENIlTAgQs0sGADDEAEsos0BMLMT6axJWPk4jyj2MQnQNEIQ/QhCjLgAAQwgIILdOAHbJjDGaZwBCb0AAY8SAIcVqGMjF0kS+ACRixU4YpQnIIUkrDEIOxAg/hZEAUr6MEcXAGMYLjCEXwggxeuwHAHTyjNZxhBSjWgcQxg5CIWpvDEJfwQhy3UwAQgOMEOhhAFOrCiGdWohjR6Uwtb/CIZAIRWErNBjWYQwxdPDAUmFvEGNaAhD4/QRClqYQwAssQn2AhkWmi3Rr9M4xnKOAYymPEtp1yDMIS8iUpWIhSjWPKSmMwkR0yiSYjIpJO12wkoETKtT46SlGaL5ClXuRA1spIor4ylLGdJy1ra8pa4zKUud8nLXqpylAEBACH5BAgUAAAALAAAAABAAEAAh/Pz8/Ly8vHx8fDw8O7u7uzs7Ovr6+rq6unp6efn5+bm5uXl5ePj4+Hh4d/f397e3t3d3dzc3Nra2tnZ2dfX19bW1tXV1dTU1NPT09LS0tHR0c/Pz8zMzMvLy8rKysnJycjIyMfHx8bGxsXFxcTExMPDw8HBwcDAwL+/v76+vr29vby8vLu7u7q6urm5ube3t7W1tbOzs7KysrGxsbCwsK6urqysrKqqqqioqKenp6ampqSkpKOjo6CgoJ+fn56enp2dnZycnJqampiYmJeXl5aWlpWVlZSUlJOTk5GRkZCQkI+Pj46OjoyMjIuLi4qKioiIiIeHh4aGhoSEhIKCgoCAgH5+fn19fXx8fHt7e3p6enl5eXh4eHV1dXNzc3JycnFxcXBwcG9vb2xsbGtra2lpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXlxcXFtbW1paWllZWVhYWFZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AJkJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypEmDy05WXLZMmcuUKh22VIYMWbJkLl3ihBmT4MxkxogNM3bMZjJkRZXx7MlM2TFivnbt+jWsGLFiO5UlWxqSJcuBLY0Bk/WJVKdWuYIVO2YMWUqvPrla9Kr12DGcWofxgsXJUJo5dTS9GmrM2FaEXzG2TPaUlypPqHIJG3YL0h86arZUaYJlTydaapMehDu3JTJiwG6p0uQoUSJMlOpM8UKFSxMlNngwyfKFUy7DykYnnrjsJttivWyFyoRoEaI/j+o4eeEiRYwfOGRoT7FCEKpgxpSi/xwecRmyYpN/9ZK1apOiPW4E/aE0aEuMDyhA8KjRoUIDCBH4AMgtxbjFUVi9/LILLq+AgsgglTxSiB17KCIIGVHMAMMJKWjAwAAHKBBBEFykwkt4HGk1mS+64GKKIxh6cYcfk2jCCSBYDMGDDzNwgAABARiwQQtCxDFKK74YI5dEdCET1DC/wLKJG0js0EQSZQQSCiqXDHLFETqsIIEBAhCQQQ9Q3FFJJaKwMkxwF7GklXHF4FILJUzo8MIRUBDySSqsdCKJHFVYUQQGBQCQwAtWBJIJKKGAUoswS0akFGPH0GRMLpdAcYEKgMhSyyu0/MILLapM4kYYVIjAAAITAP/BBiGXkNIKL7wcI1elCaV0GlbIDFMLJ004kMElyTBjWjG73FILKmdMwcEDC3SwRBx+bDJpUjB5RV5DvgZDGDCxZMIEBx78oStdxvziCyt67DcCBSU8AUchptiC1VbeelteU0IV1e4mRlyAwhup/CKMTUgBU4wri+zwBAwUsNAEHH1gkkumpIHFK2LKOslwMKjs0YQUYoBBxhuPoMKLL74IQ8odWEjBgQUh4CBGIaUE49bH5YUVHjK+yKJJJIrkcYUQQVRhhiSx0AKLJWacwQQJG0xAwxWHwNLWt3Mpe0wxhhEzLCSURLIHG1V8AUetqHASCR1vIHFCBRjcYIUjqwD/Q8xOHZk3DDHC/EILKYfQ0YcdeBgCCCCaZMKIIHFwEQQLFVBgwhCOdDJKLMMYGDhQwexiSyusmKKJJIrQIQcgkBSSCCB+aFGEECa0IEMOV6yRRh2xFCNe4MqIxYstpnTiySeI4BHHG3EUwogeaNCRSB1fUHHFE0ok4cQYngQD50fFEfMLg2YZsoYXarjxhiJ8BCKJKrCcwkgbWPhgAxFdZPJLsiNRRjF+MQtXXKIQcqADHOpQBzkQAhbCYIsuJiEHL2xBDI2gBYpKIidj9IIUkehDH/aACFD8ryXFyEUqQCGKVyRpeCpxijB0MYtX1AIYP5PTTXYCtAAehVtM6VUPNoNIxKAV8SH9OiJD/KVEhSSxib3yGBSdOMQjdmyKwsGiFrfIxS568YtgDKMYx0jGMpqxikoMCAA7", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_45a52d40e2d440c8a2b9ee596712f1ee" + } + }, + "33d22b2374124877aae12c49f857e064": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAALOzs6+vr6qqqqenp6ampqWlpaOjo6KioqGhoaCgoJ6enp2dnZycnJqampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wBPnfpEsKDBgwgTKlToqaHDhghDmSolSeCmTZoyYbrEsaPHjyBDihwZEtOmUaQOnWqYidIkSZIiyZxJs6bNmzhz1pRE6ZKoT6FOkerUcpLOo0hnQlrKtGnTmZMsgfIE6lSpT5wwVaLkcpLXr2DDih1LVixXsJQqWcoUClTQUqCIVipLt+5XSWHxvvzqUu8kSmtFhRJlNW6muS9hKl7MuLHjx367noXpFXAmwYThyk0MubPnxX/VWrK09a9XxZMqXRaV2fDcz7AXz6Sc9hImTJkuSeaMVzXr1ptjCwetFpOm47kRcyWO6Xfh4MMfy0Sd1hJuTZw4ZbyknBJz55oP8/+OHnO63uq2j2/Kvik56pcyUzdn/Vw8+cehLV3Sj3u9p07tcRcJJJHgVZ584Lk2nmezgZbWXJE88ggjj1CSSXbacTcJJI9EclqBCA5W32uxmfcXV2dBwkghf+hRxxx5FOIIJbdx5J2EkUzWW3MihkeiZ2ap5ZIjhvRBRxtaSCFFFVywoQchjaR1oyOQpFaaV5XwCJx9nVX24FaVbCVJInzAEcYTQ8AgAgot6NAEGHYY4ohXAz5SJWlgZYnZiAu+h95+rxmVSCB3oKGECyBY4IAFI7jQwxNoANLIaRxWGWaeWvIJ2XSTXJJJbpRAglckixAyBxY/wPCCCBhIsMINNAT/EQYgj6QGn6imJaZnjwo6FokjjTDSSJU9VRKTJPsx4ocYWEhxhRRAqGACEVAYQQQZg0AS5qUHnsZTpj4uCMkihQhCCCKKQGIJdu1hhwkie5DBRRdmnJFFEibgsMMSUaSRrXW2WbKhqH19u2e4i0HSyCF9yMEGGGTcgQglnbTVyXGUIKJHIHsYIggdUdCwQQw4XPHFG4lYiBEmAtv517E0HtyrJAofAkgdZkyBgw9IlBEIJaCMIkonllBCKiGM0KxHF0rEcAEFO3TRBh6OVKLJykZ3mFiBu25pbISKCILHwzugEEIMScSRiCWeiAIKJ38pXDUmlPSRxA8reDDCD1J4/4EHIzSCOiCu5UnS9YiSPJLIH3GQAUUNILQqgxVyCMLIJQRxsq13iwTChhEmhLCBCTPggIQUaPyhyCOjLlVg4SF6Pe4gdqDBxAwqlEBBBCkoocUbglDsySa4aaVIvD6gQEEGJeRwBBJCQOEFHHjsAci5FDa4o8xyPcLwGlEQQUMJGUQQAQctICEGHpJ08l97kgiSxhM26N5ABChYAYYWRCyxBRliGAMa3qCHQmTvO7ySiyMGcQcuIIEHLhiBA0pggAqUYAhgKEQmQAGKT2QiEoA4gxBe8AADMGACLliCFrQAhS2MoQxhmAIWziCHPgxCEVT6Dn185IiPXUEHMWgBCf8WMAAAEEABPBhDIjYRilB4ohKCYAMVhECCCoiABkYQgtTmQIc7xKEMUUhCFswAh40lYljEWY3XHkEIOnThCDQ4QQUEEIABGOAESjgDISwBlE9UAhBx8IITlkCFLmjBC2nIQyAIYQhFHIIQasBCFsrABjXgQU6iokxq1DgiSGhMCz8ggQUKMIAELIAENpDCFuTACE2wRhOHyEMczKAGNcBhDneYQyDS1YhEHCIQeZjDG9zAhjPcIRF2eo9vdugaUu3BDEH4gAY0cIEGYOADKqCWG/pgicF0AhGH4EMc4nA9FxWiEY9YhLAe4QhGHGIQNtvYsF6nl2V6TRKM+IMbovD/Ax3koAQTuIApcdCFM+jBEUDxxCMMkYhBtDMQhiDEnFzincQ5gp3uPCPrDIQXyySIKN5pBDDRgIUqbCEJMqiABTrAgyrcwQ+T8IQTKyGnxAmrEIuIxCU0gYmXpIVDMEmLh/ZCm8AwsxOYkIQjEMGHObSBDWhIwxFEoIAEQGAHUGhDICTRx0okghGpSWciIHEJ9/UUoxvtjSb38hejAucSj0AEIOwQhy9U4QlVEMIGEHCACsRACW4AxCQ24Qm4DcIPh5hnljTxH0xEqBGKQJeoKnEJyvjJrYXhBCUU8Qc7qGELYADDGLighBqwYAJnq0Ia/vCItVhiEX0ghLY+ZRtO//wHrouILCIQwQhiDfWynIQLJyQRCDpcIQlCCAISuvAFMEhhCDJwwRFW2QdEVOkRhQCEIiiBnAtx4hNIlUQjEFGIQyiCQq7jTWUwK1xI8KELRJDBD4BwujGEtglCQAIUypC63tIsWJCwUCcG7L7CakJACzNvIy6aSeAmiBOQ2AP/bECEIRgBCVgwQxi20AV6mSEPiUUWd9KyCaDEpROfeB/LvqYwYeUQNG0N7tsi8QcvRIHCS1DCEYpQhCZkWA1tyMMgFiEJ42AkExVr4oAhcrGNzAVFNIsPjD3KTM0aYg1SSAIObrCDHyjBx1kgQxv0UNO1qIcqbutEdjrBwSaPuP86BVNvjD9qCUbwQQxOQMISppAFLmghDJYcMrEo2x9PEOQ/nEBxB7MCKK5cyTHrlXEnLhEJMrGhC1F4QiHN8IY9GJBAlAmTp9ZDYPe55RMHDpOjVd0VxkT6oz1VESHw0IaovgEPgeBth2ACor/stMAQ+cRUktMV0xRbzlTeknc4BFlwHgIRi6DSdDj1EtUk2n2lPvBoikYTTbp6zkflEoNmMyBJrIs969GOVhxNGu9wqjGvDvePNlWTSqkmI5kgrJrpxpdtJWZB8fZan2RjHpksJSq4uZChwXsYijr62PAGt8DH/TpOUVbhCx8ey7btb9REPNma6sxOUqMfTQCbwKn/JnSNEIMfiYdcOju5+CYKrOZrB2g0ttFI0bz1bZAjjN40kQ+p1Zxu9iBnIxxpN8+nzN6ZwbzbPck3hjhx5BrlXCMjHvh5mg4doENlLTNXM0/f7GhP0ZblkHb5z70en7UkWt07Vy+hdbN0pkta3Gw3XL4DVJrCUUdKXVK7grTO65jrR+mFp6eXtM4X9jpRE0U7C10Y46EvQdwvJ0LRsb1Udk6awjWbJ4tjNF/s9/BF82Rht+dHgRWN3Ob1SCcJR2Ave9u8HiSwvw4nRiG0U2iiFKHAynGGT3zif+pTxR/+8ZeP/OQfP/nqsS0pev8JgZhiIqXIvva3z/3ue//74P/+HvVPcf2KkGL6v0m/+n/TxPa7//3wj//61c/7iZwiIAAh+QQIFAAAACwAAAAAQABAAIe0tLSurq6rq6uqqqqmpqalpaWioqKgoKCfn5+dnZ2cnJyZmZmVlZWUlJSTk5OSkpKRkZGQkJCOjo6NjY2MjIyLi4uKioqJiYmIiIiHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBBgeJEsKDBgwgTKlzIsGAnUJ8WCdykKROmSxgzatzIsaPHjx8zefqECJSnTpkqUZLEsqXLlzBjypwZqabNSJImVerE6eEnTpksTYoEqajRo0iTKl1q1CZTnJUKCuy0CVOlSZNmat3qEqtXSmDBYu1K6VKns1OBVnJ5s63bt3BxssQaNixWmyzLdjqZNhOluIADu50bVqVYSTdzWtrrqe9fwZCX4pxEqVIlS5hVUh5adPJiT41B8fR7k6np0zgrW8poSSwlzpA8M3Zc87Tto48cMVKEKNGiR5IqXbrY2ivs2JM+hx79+Pbp3IsQCeJjZ86cO38OPaK0unhOxE2Tz/8WDbS5c6WPGikq1GfOmS1TnkzBEsbNn0XBWyMujVw5baLnIfUII4j8MYcYUgxRAwkmnMACD1GsEYgjla0UG0sARiIeaP8FiFQjiQxiBxpOwAACBQ9A0IEJLOBARR2KBMeZhll1tuFy5dV2XluNIBJIHVgEAUMLIkSgQAUmjNCCEWwUEslrREny2n6KjcecjrfVNNckjhgCSBlZYPGFFDRMQIELNszAghBsEAIcURqCReWNHe6Y02uODMIHG2ekwUYaRJywAAgasHADFHC4Cd6TKs3pH3mkAXiUW5A88ghylVXyCG/ShYgHEyosEEIFLdSQxR6JQMLZnUPZRCek5jX/pSWGuTXiCFTdiUVUIGwccYIEHMywQxBtNrIZYjllhdejV0oKoKWOONIII4sosggjkAinCUWYZFIRJYacgcULFHwQgwwvnHHfk4fJBaAkzOYIZ03pVatIIokgcgghhTAyCSbbbhLURZMcgsYUOHCgAQklbAACEWXooV1lreL0bryR2uTIeoF0PAghg/ghiL+XaFLRJZQMiAggazQBQwYhqOBCCw1coMIRWayxxyGN5AacJJVCAq+V8hLVox9yrAGGGHLs8UcghkBiSbeXVBLJInysIUYTPrTAQQUjCIHEDRuMMAMOPyCRBRt6CJJII7U9oiHGf0GiHiF6nDEFD0Ys/8FFHHf40a9iKi3ihxpO2GABBRxwkAIPSgxBQw0/FCGEDkA0wYUbdwzyW9BzE50Jl+u1N4YQavbwhBnX7ZGHH4tQ2BrWZywxQgUq/BBEEExkYQUWVVhRxRGZV6EFGXIE8nZ4GEeiiCB4wIHFDy+IEMIPXrARhxtu1OHHIY5YElQjgqQBhRJZiCHGF2jYccccdthBxx1iWHGFF2BswUYfy8cWOofkwcQjCqGHOWThCDhowQc2MAMoaKEMbpADHgDxCEts6xKNAMQbxPAGOtRBDnnow73Uc4g/5EEOcVBDGcLQBTcoD26uitclGAEIOWRBCk7wgQgqQAEPwOAIYTjD6/8UIT6TVSJEd4hDHgRRCEIQIhKYmRomLNGIQPSBD4Twgx34cIjY3eRVPLlEIvpwBicQAQg8GEEIFnCBEOjgCTorxCMwgglMSIJa1ZIbIxwhCYAFjBOasMQdCxEIQADCEIromf/+h6NLIEIPX9CBC1wwAwcUIAAJgAAPpCAGPxDCEJdKzmvKUjVKYKIsmSiIwC4yHJRJYlqOuJT/qgTAMCYCD2ZIwg5EYAEDDOAAGagBFbBQBjpskRCL+FcdN9GTqkwRYJzYhCuJYsptYUJSnZmMWWrJCUwwgg9ieAINQPAABkRgAzuQQhjCkAYJ5mFCJatIT6gisEx4SxOnRIylVOX/x0rERlY52SaOMOGIrDUBBSJAgQs4gIIeHGELa7NDH/5QCEhgYhPO3MRZKGIRk03RQtPaY04iITeATkKgfXlEIOyghSDUIAc5KAEGKBCCHlxBDXjomCIm4a2UVEITBTFZRfB5FZI2ohH/1I0jgjbLk4oOEoT4AxueEAQlGIEGC4DABGqQhDXEgQ9u+2kgWSJFP24Ln6WEhLSENpRo7RMvTq1lIGmohw1ewWUVIAACDMACJrRhfoBYhClRBpWLEgSjHL1IoyZ1KVnCFaUDuUQkSniHNBwwBycgAAAEwAAPEIEMcbCD26SEGJ1cdKNDxaclLFMX8PxzkdocjyYkoQhA/8wBDWfQghF+lYADGCADMLjCGdywh0IowkbiCyorT1YcylymUU5JTFxDg4lFBCIMWdhCF6pAhBWogAIM2EAKiHAFMrhBEIfAlpQq4S2K4LOO9pyiZbJyp5U4BbYBHc8lDvEGKQgBC2dYQxWWAAQWfAAFQYgCGMjQB2RuBzOXaC9GK5IJbgnFOPStTYYeq19DqGEJOTDCFszghS5sgQlGeAIWxkCGPbjtwXSs8GHtGTCrzIgyUMLSIvMLQEwkgg1asEEQmqCFL3RhClY4nhjUsMRFQEI1q4kwM+sp4Y8u6lg65jAAM+EIO3zhCTWYwQ2MgIXjmZcOxb0Vji+zmntSuP+9RJ2SXDCEJelCdhOTKMQasjAFKGThC2LoghjScAdAIOJWhAHLZYZjz0ZvKyivyYpXkHVfO4+nm4+oIRq8EAY0hFYPUGPEpWa1Ge50y2SN9paNqfSd/ejI0rXcBBXxNgc5SHQQiNgjbCfzlQhbpI6tFEpL5iUrWWlpummxoyMWkYhD9GYRiswyhoRm6ktgBthrsVGNmDopLeOINHYCWlG4E0U/BkXcyLmLUmD97VgtZdTDVtWiS8ZMQOZzztNOCrvr9G54b4k7UlZlUCxjGPtKxtv8Rs8+k8VmgCHWvVVzbneKis1sHhuyzTKNpS6VE+GcesL3zEQpJY4Zg+v74qLvc3dSNk7tNp/VIo0mTmYILud1o5ybkdL4W3UytVRbxNqsJfdqofSUm7dbxyvfeGpWc2qRa2ZOANdP0WOLc5ULiOVza3rEn+VY55r85FQ/+n0VDm+PKxY8G3csvg9u9P9U/OpvXS90i5J2i7va5lrSCwA9Aci10DkuTUm0srKMb7a0hSwYL8/fAbPjZC3e2DEZTEsoA9lPdEITVSO45jVfl7psvuCdV/TnR2+ZNo/kIZkwCVBAwhoIfySKsGe9R+qoiU9Y3iQCyb3ud8/73Nv+97/vvfCHL3xLQOQTJzmL8pfP/OY7//nQdz5oPpH7gAAAIfkECBQAAAAsAAAAAEAAQACHxsbGwcHBvr6+vLy8t7e3tbW1sbGxsLCwr6+vrq6ura2trKysqKiop6enpaWlpKSko6OjoqKioaGhoKCgn5+fnZ2dnJycm5ubmpqamZmZmJiYl5eXlZWVlJSUkpKSkZGRkJCQjo6OjY2NjIyMi4uLioqKiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUFBQT09PTk5OTU1NTExMS0tLSkpKSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AV61SlaqgwYMIEypcyLBhQVUCMwlMhQrVqVOmMmrcyLGjx48gP56CKHFgKlOlSI1aybKly5cwY8qMWUoVQYGqUJlSKaqnz59Agwod6vPlUFIGcebcSaqp06dQo0p12vJpqatYU0ataVOpTpUzwxoN9ckTp02cPIESNYpUVqpVuUIcmLPUSqJ4gYYC5UlTpUeJCA0yxGiSJlBttTaFKder3VF585LldAlSITtowHT5YiZOIEeZQrlVDJbtysZ0UdmNjJdvJkiD4HRp0gOGDBpBrrwJNMmTW6iQTY9CbVN1cNZByWqKFAjOFBspPFzQcCLGDypxFnESlbLt4p/Dbc7/Lb4aefJOlRbh4TJkhosTHSh8gGHjCBlDmbiDvQueeN3j5vkUyiaQHJLGFlh4YYUOHogQBBJCDDEGfvoFx1JR/hkXoF4EFkKHGmq0cUYUOXRQgwxGLBHHI5wMR4oooQjX02niOQbghqJ0YskjjxzCiCF6XEEECj7E0EQWfmASynCQxbhYSxmWh+NKoXSiSSaXXLIIH2k80UMPVZghByPbdQejdy5FeWNkLLk1SihqwZiJH3FsIUQNTowRhyGafNJTKE7CRWNXqUmJl0tNXfXmJ3tlgogbYCCxQxFOXDEGHIVEcokmcf6WZo2FrlnUSk5dVWoponyiCSWM5BEGDivs/9BEFVZM0QUYbsxhByCNXOLJkvsNOt5/QlWVKFajjeLJJH+w8YQNI6hggxFjqGGGFll4AUYVT2jBBiCQbLLWp4SSJ+qMcR2LqiR0KAFDBhOQEEMQWpjhhRhu0CHHGlYwkYUZehgiySZL3hVeucQW9dNeZnHSiZ+kmHJKKZ0AQkUMHEQwghBObDFGGnfoAQgfd6DBxRhnvIEHIIxg8glPbKl5XEupbvLXIpJk8nJGolByhxVAEBHFGnLg0YYgijgSiSWUMAfHHH3wkccfimCCmIUyo3uXjoj4MYcehUDi8nCeNMKHG2z4MYhgfBQyySaffMKJJZIwgggihwSCx2eHWf948LDGQdYSnJcgcocZVWQhRhxu++kJJIYUMkgjkgAGGnco8dRJJphoYokjj1jSyVrCyXwXWZ5g4sgeV/xwgw85DMFGIp286HkmllyZZe2nUHSRRqSA0kmWmcBNOktRmiYKKJ90wkkmiZxBhA431JACDFoY0snEonhSlveIlYKKQRZdZD5KozA/LpSgmtskKMx7UkkfVMBQgg42bKBBEIeEYhEpnxgOSnZiivFRxC6mKsUpKnKKUbEPYaqJCig24Yg4IIEEHkgBCSiAASD0TyfKGo75LpIKgkzsO2wp4ClexJj2LWU0V4FRJQZhhRZIoAEfCMEEKCCEQHTCLlUKhQL/K1IRg2DEFKP4BFoY5ZYzvcQ/J4EhKdBTiDXAgAQMWMAFSqCACuzgD5p4EZy4Y8AiUgSJfOGEwzxhmhjNqHQujKBdSKEJRxiiDlhIAQMAQIAEWGAADfiBD5sCo6YUsIwHfJOV4CaKJwEFeXFEIClCoTpAxOEKJjBAAAoQAQYIAAE/6MMmkGXI8RHxiJlL1cOEAyBIQjAl3fHEa/4QBh104AEbuIAnD2CDN0xCFBkpJQPPpxFTvQkUbnyksByTKJV4IhKK4IMahvACE0iAAQZ4AAuycAhPJFBiqCxmVpAlKlcCjikslF/d9uCFIZQAAhMAAQhSwIM+hDFRGblKRn5H/xoprsmczISMn5ZjiU0wQg3Wm0AJchAEEdxgDpQomFvAeRGL7MRvT/rnMk2ywuVxAhOXiMQkIkGJQVjRBQ6gQRKS0AIaoGERoxPiAkdoEVTtJUZtoZky/4aTVJwifZuDRCIC8Yc8+EEOU9BBCkZwhCvwQAU7gIMjOIEYioLzf8uL2/outFPi+FSRmDjEHEwWBjGYoQxOdQIYtmCDGnhhEJYIoAIXWL7fvQhG6ktmsRIDqlWc8U2S4EOkejAEJ3ghDF3QwhrKsIQdOMEOkfCEAA3ou5qKMZmAyiygwMNXQg1EJ6hanRmwQAUlYIELXIhCGcYwhSNAAQ6K2MQoMjI+gv9YhIg7gdFm+aNZzrqlr3V5ESX2UAYxYCEKVKhCE7bQhSlMgQptGISShkg+81UEfbqVUW9H9dty+fRFnrAEH9hQhi84AQhGoEIUrGCFLbhhEJWQbCkkdsqKXnc/yvtTZn3r1Z+KghPMYS0SlCCFJ1RhClwIwxwKQQlOLGm+1i0fAx/TJt7ul7v9nSQnJjGIOIwBDF7wgha48AU26EERogNWxOhKxFNKiVTBuTCG20eRF6lqEojgw4fMoIY35EFgmfgVW1QyxPpepDv8EdB2Z+xdVNxVeJd4BCIKUYhEPIISmOAEo2Qkwt+BE7uBivGS0dXd8RzwT8xz3iY0gRbwuZH/PwI8Il0n9iacOkW3MiZz8mBElM2iqycTpS/5LspKMfuZyYAzlF56KzjvzNeMvnsLCjWrV9OU2UZDofSbE/PoMl5XK/PNXJPGbGk1ZZrSM5ooi2/76VOJGtX8jeS5ND1kCM/ZvuF8y6jzXGpZn3q7+Byhl1Giz3zyZC/IPLSefS0UTdvZ1uUzZptCfVFAJbvSpDJ1s2mdmIpiJCXFGs2xr91VZm+b0XH+9q71SjNax/qV58LzhbNtJlgXWt7K7jUEkQgTorSJKns1SlAQFTFZxzvgXM0uZ3WK8Evj5CtSCUtUZDJxgkNFgRCBSCo4Os6Oe/zjoAa5yLMiMZwI5OQoHk+5ylfO8pa7/OWoOLl4Zk5zmjvkITXPuc77uoqAAAAh+QQIFAAAACwAAAAAQABAAIe+vr68vLy3t7eysrKxsbGwsLCtra2qqqqpqamnp6elpaWjo6OioqKhoaGfn5+dnZ2cnJyampqZmZmYmJiXl5eWlpaVlZWUlJSTk5OSkpKRkZGQkJCPj4+Ojo6NjY2MjIyLi4uKioqJiYmHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBTCRyYCpXBgwgTKlzIsOFCgp0GHjxFsaLFixgzatyo0dQpgaAInjJlqpTJkyhTqlxpktQoUaFiihpFiqVKUwQFohrZkpTPn0CDCgU6KpQnTZUiOXIEiRKmTqFoohxaClVBgjtJkjSptatXrydJifKUSVKiP3v08AF06NElT6NKfdXKNafOUzbzphTr6VIjP228PAFS5EgUMnkOVfpEiu5KnHZRlRxKmfLYS4z8kEli4wQHECxi/JgyZ9GmuHkh55RcqrJroKE2UUI0h4sSIC48ZDghQ4YQMYU0jSppUzXWya9dj/qESVIgOWbGULkB4gQRITeEhCF0WqXPk8YlIv9PXhlUJkuF5rCZU8cLFBY5VOxAsiaR8L3f60YeT35oqE6aZELJJZUkQgYTJOCQgg9HxOFIJ6jV1Fp+ctlVEH/9BSUKKFGJ8gklgqzxxAgq6OBEE3lI4klNQU2o32oYZsjiS3GJRckdYijhAg00uNACGYZoIopPNEkoYYX7TSjjT60VFconmzCSBhI8xEDDDCQs8AANZAhSSSegDPmYhawtyWRronByiSN6cCGECiLAgEMOJxwgAQg8UKEGIJBoAgqFLx6npIwnpelIHmHcBgIEEaBwhBIxXABCDjz0MIQUaBBiySdSgUdmjMmFBYokbf7QgQMPWGBCD0sAIUMRVFj/kYUSU3BxBh+MZAIKaoGKN2ioKI3CyaFg4GCCC0TwgEQVXmyhxhturCGGF23AEQcfiFDiiSgohacTqIA+RsonlSACRxhmkOEFHHQUIgghikAiySJ4vEEHH3vUMQgknXDraZItAiVXV+DhFdskgQDCRyCFBJJII5BUYokllUDyCCKEDILWIZL02+2nSvZ05lcVleJhJo4w8kgkhkS8SYCddMIJJwFicskki0DyVoRIwojfSzNJ6BFFWZkiliiidELWJZkw7Uknn3ziCSeecPgJgJUwvauL3l4YFpGhgBJmXEOPhNxLNRUVtSWZ9EsTjTKNMgoom2yybZG9ftvTS6DE/wzVcB4ZrfYnSA85mScvwyUXkW8XHgonf1PYdZkvPcnJy6HUtNW4ak7y1kxAX004tyS5JDdMQ7oUE97/wqh635xkwsnWJr20SSKB4GFHIpiEgrTv3zVGUZNy0wh68UfmfaFYn1xedUwsejgJIWqEYcUVd/ALyieZB37KTjtNWBTojIc7uSlzz5y5WKsvR8kgepQhxQ87eCEIJp+EKRfRE30/0txhOpL5PrUcTXjMFEmTGidAZIc1oOEJNxiBEPBwCdCV4nsNKQnQWHcTAvalEqFozX8udwlIAEIOXKCCD0rAAR7sYRNc8chOMDhDszkmNWQ6xXIw8aWqdWITl5MEHf+ysAQY0CAGGqCADwrxCQx2hDgDowgUz6S8nZCCbjazxCYyoQlNOGIQVcDCCUYgAhEwAAJHOEQonCjFod1wYFOkYs+wcgpSPK5pWqzEIwZBiDGkAAMEaMABECCAAvCAD54oG08ItpLKtI6OLnnaDzuBiUTY4QpJEIEDHLABDCQgAAZgwRkoIYq5aKVFxKHMIyWCl+UAKGbogYMWfBCD0AxBBgoAwABGQIVBQCiGFtlbp5RUpOSdzyXbq1rTEuEGNPDhDmNAAhFooAECRCAEQpBDJUh3kfEU05Gr/BZMOPSkTVgiEYewxCUSAQcemGADFegACEIgAzVEYjj+s2Epiof/N3BW0Y75+x0JLYEJT0SiDip4AQRKwIIdgOAFaaDEBdt4SpcgTSr+nONATvEfwllUTY6IBCQYIYckmKAFBUDBDHYgghas4RITNRtPfsJPmn7TmBYyBVn+VBJRZEIRekgDFdLwBR2wIAITcMENVJABG8ABExesoRSbFBR+fvNjdjFFJyoBigsajROMOMMSjMAEJkBhBx/4ARGAEAIOHAEQTTRIN8XXKdPJTWDhTMUpPpGJFZFEFJoYxGZ2UAQrICEIUojCE2zQgRdoQRKkkGtFZgguquT1FEmD3JCY84g+uEELURhCEZwQBSocYQUreEIeOBHTyfIkLL8SClZXc0WZ/1HtEorgQx7M0AQdLKEJR2DCEGoQAyW4YRKlxEhWXPQ1VeYVFSYDxeUsoYg3nMEMYnCCEHIwBCIUIQc6eAIbGtFVNgazRbHFaxUFByVKGEIOT+ABD3xQhCIkIQdCEEIW7OCI0yiSooP65k2peD409UUReEBDF7iAhSl4d1loCIQkZqc5is70rsJEHno1qjfVbVUReyAqFrCQBWfxwRGZ4J5UumIRwXHQrgN+7tn+gwlIGMIPeuiDIBQhib5GZcVaoeFMK3PXDReYphu62ss0sQmoRWVkMkTIa6cC4xivN7021TAwaUhZ8DjGprK9MpGtKjT+SdVsXt4ckSzLYa+NuYqmUcxnN8HSXCuLmTJWBXJGTLkV4hVZvW0u05sxHOeKpPJIBGOcnQNd2Sp/R5FqNrIww3znQT/ajWejtPicW+kxQ/nQlq3qgHGaJJuw2TuARnW4vAwyU2uayhtu5KplrJfYyjrWtU6JRyykVyjmGjy/DjYcP8LrYhv72MhOtkgi45BmO/vZVrFQQAAAIfkECBQAAAAsAAAAAEAAQACHxsbGxcXFwcHBvr6+vb29vLy8u7u7uLi4tbW1tLS0srKysbGxsLCwra2trKysq6urqampqKiop6enpqampaWlo6OjoqKioaGhoKCgnp6enJycm5ubmZmZmJiYl5eXlpaWlZWVlJSUk5OTkpKSkZGRkJCQj4+Pjo6OjY2NjIyMi4uLioqKiYmJiIiIh4eHhoaGhYWFhISEgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AYwkcSLCgwYMIEypEeMogrIcQI0qcSHFiwYoVBba6GPEVxo8VX4kciXGkyVcIYZ1cybLlSFetWK1SRVPVKlatXLk8mVLlzp8mYbJSdYrUqFGkSqFKtaqVSIkeH45MCbRqq1WpSoHSVOkRokOHIGUKdappVaqvXKldy7ZtW5GtiIbaFOmQnzxx5ODRAyjSJ1Q5gaJ1S5gwXFSjOkVChKdOmytHpKCR40eSKVYef1ItzJmtSFakFCPSI4cNlR87mIhhU+eQKMw+XW7u3Dntqk+WCNVR06XJixIXWBDxMkdQJ1WZd86m3VlVp0V5smg5EoPAgAMrcmBRA6jTquSyD6r/ZE47Vac+b6owQeEgAAAGK6CcoePodWa1LZeTf+tqVahFepzBxQ0KIFBBCDowUQUblJDilEj4saTffhG+0koqoEjChxdMyFCDCTf4EIQPXiASSio5VbjShPuddGFoj2y4AxBLIJHED2wYkokoSqkSmITipUWhimmxkoopoGTihxVCFNGFF1kw0cYhj0xSySWdlOKjTjwFOeRK/SHmSSR8uOHFE1OQoQUWX+AhSCKLOFKJJqKU9eNUXjLHkkqsIPbJI37EYQYTRfxARBJYkBHHHX3wEdYknZCCIpd4OiRkbXv2V0oomBQiBxlSKBEDCxucQEMTXJBxxht9GMIIJZ1c/+ZKbCjl6dZPUmG4iSN4jOHEEDFUAMEEI8zAQw9NRFGFGnos0sglo6wyq0kTAhWRK6VYsggeZmAxhAoWfBACDUeA0YUSOwzxxBZ2EJIIJaGoQqlIy1krESugJLJHF1UsocEKM0RBxyOhbAoJHVQo2AYfjljyibxdWrrTWlFBJFIqnvxxBxdFKFEFFYBsMmmRpFyySCGLRKIJWazMW6vELMGUIoSt1CzTKJocsgcbZ5RRyCWozKqSVGGacsopqKiCk8toncTWVaxELZMqqJhCyieheLJJJpuUIm3FUF3KpcsvX+Q0xVehgnQqRZHiySecYOKJ14FBJFBIREZs9kspwv+0iimffCKKKJ50gslXgwximdB2wxKLTxO9lF+QEK5VsyqmcHIJJppocokieZTRBRda5BFKKxY9/lRV1FJ+aUyY09UIrJssIocYThAhRA1hZMJKRANJVXneQEqs1lWrrIIKKHRZ8jYmdIAxxRU/tJABD4is8hBHFtacN9llExSbKzIlP1QpoowiSu1rXJHEESp08MAJhKjiePBE1+z92WQ33b1OalFFKrJiCTlAwQcskIEJNsCAEQjCfvjziWHE1j/XOS0mqziFJwRhhByEAAQd6AAEGqACPqQicpcKygRbJzGo1Cwr+fKCCC5wgAgswAEEMIAJ8HAKsL3EM8MDIgv/zdYRuCgvFI/AQxNMYIEJgAAD7SFABrrgCacUkYI/FGKliCg8y6HiE4mIQxV8gIMhIAEGEhBAASpgBEbYDyoUWpEFKxQXTzAiEIb4gxqyIIUZYCABEaCAC/qAisjdqjByNB7F4IIhT6TvEn3gwhBW4AEQeOADKqADKcA2nuPhB5F6E9/x9AfAm5giFKbAmCCOYIQW2KAGPeCACcYQCh9SEFNDFKXMkjcT5ZViE4EDhSPyUAQuwGAIQVjCBzQgBlKEDYicSaTZyDeTpaQCMZlAxB3McIc2VGEKURhCFKTQAwqMwA2m4KTYsviWUAavSLyk2ik6kYgxJGEJUADDGbZp/wYyZCEFE7iBHtL5zEWCMpfvpKbUVjGKSbjhCSNqAhjssAc33AENTdgACYTQCO2FjX+3cufdaKa/VYCCEoaoQxqqIAY3xGEMblDDFmYgAh7EYZMFVeEKtyg+vuGEFdkqxCDssIY3mIELXPBCFYQgAyCQwXfqXGcQtUivOV5FFaWYhCECgQcxMCEJUogCFYzQAyKoQRKpiOon9SRS1fk0FaTQRB/UQDotOAELSFBCEagAB0oEzZCLvCVVw/fOoBhpFJ2awxrKIAYqhPUKZQiZvCiCxakOlkV9wpkjBKFYNKAhDpURhbQkcjcJsnOnVbUUYc73iUtIAhKTuAQnRDGy7YdFEEy45GlCCXNVtRmNKXWz7eMsRpLxHVS3I43jU0BCK/AcN7XTbBEnQYJb1BI2udKdLnUte1lbsVW7zS2uBJ97XdV9abqWjRl5B5PdIoa0uu1sq3G/G5XTtsS6T/Ef6/bL35PcD2b9DXB/9QtS4tlXwCQhMIIXvKeFOPjBEI5w8CRM4QovJCAAIfkECBQAAAAsAAAAAEAAQACH39/f29vb2NjY1NTU09PT0tLS0NDQy8vLysrKycnJyMjIx8fHxsbGxMTEw8PDwsLCwcHBwMDAv7+/u7u7ubm5uLi4tbW1tLS0s7OzsbGxra2trKysq6urqqqqqampqKiop6enpqampaWlpKSko6OjoqKioaGhn5+fnp6enZ2dnJycm5ubmpqamJiYl5eXlpaWlJSUk5OTkpKSkZGRkJCQj4+Pjo6OjY2NjIyMioqKiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKioqKSkpJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AgQkcSLCgwYMIEypEuGuhw4cQH/6KSLGiwl8YE2LcyLGjx48gOwoMyfEiyZMTgaHMaJClSpctV8r0RbOmzV6+ZKY8qPMkTZw/eQndtUuXLl45UWrsGdJXr6dPd92yhQvXrVmxaulKSnIpU49OefXipQtXLVisWrladQrUKVm7uIL0+pWjL15Ey2JF1UlTKVCYFEX6dKvXSbp1MfoyWvaWLFmtMAUK5CePGz2PZvE6jDBxx8W5bNW6pSvXqEFt7By606UNIlmGu3b2vLGXLseyqtb6VOjJmDV3ytSpVEvuR8SJfe2qimt5K0JbamQJkyaMn1C3jHtEXvdu6Vy4Wkn/OhRmCZY0bNYsUoUrdkjun2s27bVrKCxOld6M2cKFSphEqNhylHYbwaeYTSTdpAstpHQSCBlL+ECDEXeAEktz7m0320cIzgUWL7WcMskeZ0wxxBFwUEKKK7JoBZSGPIFEk2wvKcZLLq54AkgfeLgRRRRtYJJKK6aU8opWSIm0IVg01kifLaxoYkghkBASRhNsKNIJKqiUMgooorRCS5IFLqlTQU7ZZosplkAySSBvQOHEFW3gQUkmnpgiyiaYiKKKLhkaOFdBv+Cliy2xcLJnH0648IEJN2xhRyJ9EDIYKJFsQkp7JZn5i00zlknocre8IosqmfgBBAQEDABBBzIQ/2FGHYIYAokjjHiCyi2biRrTRqCGquGnudQSiyqpaLKHCxEcoIADJvwghRNblIFHIZtcUgkoqdgS6Iag4mSXfAUqNwsrn1zCRgwTSIABDW1ccsopnTAiBxptCJJIJaGkUlinMQYL7E9P5TRSobaEwsgaV/TQAghB1BEKkvTd4konkSgySSeqzBIXwC2BGt9TYhmsUi+4nKLHF1FsMQUag5TCq7ifjmXWY7RgqGRM5B5Y01g0Y9RLLvfR4UQSeHyilbA+E/zizoR2+OnPBXc09MWDOBGDFKHowpJnnf3EVZpB18jLLaZAwkcbQJiAxCi8DGQXU2GnSXVSck+tiyuTAP9ChhoyTBCCIrlwSOB7PImt+E4nRzWLJ5aR8cYMCDjgRi20+UrQ1AUnRZPcJPOCSyyelHHFE1CIsMAEc8yyUs8wRu2UXE5lFBZ9s2wShwsptGADBgZQMActr8MO8uZTG5dTULbNMkogWmzggQUdKGBABXfcMhPTx+fN/biiz3LKIUuMUDkCEwgAwANpYJ4548h/v/mCoDQShxAmXICBBRAIEEADRVjF4XoyG/kNxBe3aMUoFpGGJNhABjcAQQMMUIAErGATu4gP3RI3KJUgkBWb0EQmDrGFI/AgfxjIAANAUIjsMMlnTdqcdph2tlXM4iyXWIMUdgCCEgThBiYQgR3/aHE4gXUwap/pnGJ2MZpb3EIVhQDDDkjggiJgQQMmiAPx5jYu42nugMKyG0dA9ApXsGIVmdBDF1LQgRdU4QkmSIEctpig731xJMGa0UhQ5opLEEIQkfjDGnwgAhkAoQsw8AAMBKG9pkgtdjK8CVLkxgtb6MgNWfACGKrQgyFgIQxMUMEGdFAJr9WRMyGbEU0mOZJdyGITeeACFKwwhSWIwQ1yWIMQNICCK5yiV01RSozsUjViyaIUl1CEGaLghDKcQQ5xQkEImnAIWmRoYI88zjC7SDJbpCITj7DDFbxwBjCEIQtHYAEIduAGVGRQRiJD3DaJuRxYUCIRgOADGJJA2IQlECEHJOBADNRAinfW0Y53PBiHKsmKSqyBCktQwhN+8IMTgABWbChFBvPGIcXEEHkLvcUqLIEHLkwUByg4wQhOMIRAvGIzHI1PNqFGqKboQhajYMQZmsADG8BgBkSQgyj+lRKUeLF7MQXL0GaBCkwgIhCFmMQnWMErvCUVLAiFSU3hSZ/G3AIXR/nWr14oz7GeaZ476eIAtQpSwxnwqiJR60cVitWZtrV4WYXfXesKo6+sNaE1ep9gATvYwup1r4YFm6cSWxeTMJY2FomsZB1y2Mla1iEBAQAh+QQIFAAAACwAAAAAQABAAIfh4eHf39/c3Nzb29va2trZ2dnX19fV1dXQ0NDPz8/Ozs7Nzc3MzMzLy8vJycnIyMjGxsbFxcXDw8PCwsLAwMC/v7++vr69vb28vLy7u7u5ubm4uLi3t7e2tra0tLSzs7OxsbGwsLCvr6+urq6srKyrq6uqqqqpqamoqKinp6empqakpKSjo6OioqKgoKCfn5+enp6cnJybm5uampqZmZmYmJiXl5eWlpaVlZWUlJSTk5OSkpKRkZGQkJCPj4+Ojo6NjY2MjIyLi4uKioqIiIiHh4eGhoaDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29ubm5tbW1sbGxra2tqampoaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wCPCRxIsKDBgwgTKkRobKHDhxAjSpxIsaLFixgzatyo0ZjHhhwHfhxJsiRDY8WKDQsWjFgxkBtLypRJ8GNKYsSGCRP2MuSxmUBHijSGM+VNYjATJnUYtOnQlB5/RlX6UWLToDV7ChR6cirEq0CzviSac1hPj1qlen0IdmbNncF+3YI1KxewnTuBId26lG1bkjWJ9aKlipQmVKle5drFi5ctW7zSUvzLVWSwWaxGfUolSxUnRo1IleI0KlawYhcprxVIDNenRpZa6eLVCtKbP478AHKEqtew1V//IhT2ylEjULV6zarEpoWTLGXC7BGlC2lfv1eVCoPFSFIoWq0QOf/BcULKkStW8lA3e52pU4XGhtGS5OnUqD5NgsDgkcUOn0Oa2HJaZcGZdFBfxgiziyyzyJJKJFuIoYYfethxBh2V6IJaaoAZROBWxAgTDDC8yAKKJpUAkkcaYWhBxyXVYfRhTUoZVUwwvuCyiiWE6NFGGErEIUktA6aGUTE4ichLLKX08cYgZUShxBudtHILL3pB5VNNVW2l0y+81JJKJ4f4IQgfTvQgxR+fyAILLLXsAkwwv22pllfGBNPLLbKIwggjgaiBxQ8uxBAEFXYwsskpq6wyC2R7TVZQWAKp5Istp3DSiB5ixMDBAww4oMELU1SBxiKjpDJKK7UI055VIxn/FeswvcjyySR+yGFFCgwYQAACDEAggQlCUCGGHoQ0ogqRG1okU0rDROsSMcDskookh5xBxAUIHGAAAyXMQB4IKfzARSCBHALKK780O1GsY6E0DDBzCkNMMLm8QkkcVLSgQAEHUJCDHaO4kkolcjwhBBJh0IFIKK8A4+5CQEElb7W7+EJvmJmEoYMHCQgwgAdqpOKLWZbG4okjiUwyyiy81FlgSUblVK0tuPTiy56q/BGEBxEEAAAFdODCE0khgrlLL8CwN/NUKOEUbTC72DJLLbyA6UolejhBgwgKRIAFLNZN6lZElZEVrTC/9GILLbv8AowupBhiRx5MwCDBBnb0/9Kege/ChNa0OI04Z1y0dDJHGnIUoUMIJgziy6sdTlYVvETZG2IvogDiBRJT+CCDBiL84bdaZndpOdQ24SS1L6/MUcYRQfyQwggYlBDI5B3SVBFwlSKp5y6uZNKFFCusoEEHFCwgghu7xCs44B1tVYwwvtzSSiiNlLFEDTegQMIEDWQwtnVC+d4R1MPsMksroHD9RRNREKFCBRZ8QAQnwbTFYUNoAUl85KIKVZgiFH0QgxSG8IIOoKBchuhFvPhCPb9Q0CYjWYnVbqEjRcDBCksggg6AUIMd1CEXE7yg6p6GFhu9RCXD4AUulhYLS7xhDE74ghXIYIMeuAGF6VMfdv9iVRadDKNwyqEFLWqhrz8kQgtsMIMbdrCDNwBxKEJ0D9JEFIydRGsYv6hFJxhRiElAgg+F2AMb5kCHL7RACHeIHp6ySDGareSLa9OFKPagBi/IgQ+Q2MQhHlEIPyCBBVCAxC96V0EtChBJLkHSvGiRCTlUwQhb2EMmNoGJTTRCDTLIARhS4SqwBG6OkESSXA5mCDkcohKWSMQlHqEHI9DgCYnQEOvOhrYV/gRJKRGGjjoBCUNUAlCCAIQcvHYEObSilLtsZB2B45Ek3eIUnXCEHsgghjWoIQ1M0AES5kDKLr2nl8CrpjB4YYpI5EEOchDDG6aQBCFgQQ+rKBKXeDl6M4ZQKxengEQg8PAGLEThCVZAgyJkUcquVI6Fa/EIGGtBCkfcgQxfAIMb/BAKXkSKKg8dIuCqqSdcyKIVrGgFLHZxNEf60qVNkSQX7SUZh4YUpliRER2nmZ313RSnO50UT1+aEeD9zqh2SqpSl8rUpjr1qVCNqlQNEhAAIfkECBQAAAAsAAAAAEAAQACH6urq5+fn5OTk3Nzc29vb2NjY19fX1tbW0dHRz8/Pzs7Oy8vLysrKyMjIwsLCwcHBwMDAv7+/vLy8u7u7ubm5uLi4t7e3tbW1tLS0s7OzsrKysbGxsLCwr6+vrq6ura2trKysq6urqqqqqampqKiopaWlpKSko6OjoqKioaGhoKCgn5+fnp6enZ2dnJycm5ubmpqamZmZmJiYl5eXlpaWlZWVlJSUk5OTkpKSkZGRkJCQj4+Pjo6OjY2NjIyMi4uLioqKiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUVFRUFBQT09PTk5OTU1NS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AiwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLEiMWIdQw4kNuyjSIwfU34sCfIkRZLCggUbRpOlSZcNVQ4TJgzYzJUqb+JMSJJmSqMgg6ocipCk0KVOk6Zk6jAqTJbFhFJVSIwnTWG/eP0SNnUr15i/0vrSdQvWLF5kzRId5osXr123bNV6ZepSqFjAhsk9uDNsLl21UEWCFElQHD+XcAVrOVggsWC7dqXlpSpRlzyA6FTRAmiVL6yVhe2qZcuXL1yTzqi4AuaNEiR2WP3aWXIwXVmzavWSJUlKCg9IimBx4aIKqcBIqaYUlguVqVSm+iDZsYJGkSVSdEz/0ZOql1etIoNiplVLlipETcKcWcOlCxUoaRqx0hW4bHqowwQDzGuugMIJKIgIEoYVTlzBxyew8PITZR0FVdB0YdFCiiaIxEHHH5icIostufTyU4X+HbRSMMNtEokjhughxyKu6IIYLbqYR6FFSnE1DDC8zJJJJJQQIoYVdmiySi243OLkLSbuOJGFTU23yyykZOIHG0rUwMQYeGxCCiqvyCILLSUKxmOKI7Xk1DC/vJIKJnQYIcIDEnjwwxmA6DFIJam0kgottsQ15Y4UFpVVTb7YUgokZqSwwAEGIADBByb40IUcfjwiySWtzAKMlDmp2GZvXQXDyyuZGEKGBgQM/1CAAhOYQAMNPSDxBR2SSELJKa/8QuqhbaokjC+1lFJHEhYMAAABIaDBCSyuZGJHFVaMsccgkIii27ASpXgUMLNUUgcJDiAQgAATMLILWV3x0gomhfzRSCev7KImSv4VtZMvpeSRRQkUKFBAAkjI0ptlP/KSCy5iLZyRVl3FBMwtlrxxRRUkaMCAA27wQiqVHN1Ekky/7OLKJXeAYQYNLmzwgSC9MDVyURb/Issja0TxwxU91LDBCoSIXNlKwADzS9K2iDIHHDkUYUMLI1QQQyJGHx2g0rzc0soiVNywwQgTXCCBAy38oQu4Nh9riyqL2BHECyCMYEIHD1CAghmv7P9bWTGq8SUJHEHcUIMPOXzQwAUjLNHJqH8LFIwvt5jiCSeVzBEFEDzEEIELLPRgSNYlX4jQTrzoglcqfywRAw0ysPBDDTPgkQvbh1K8lGVdAdMLL644skQSMTThQxkpqFBGLbjnfmG/dOkiCyuQtIFEFShgwQUbJ5QwxizNO8+7VnTNC4ceaxChBA9CfAFHExuUAAcu4Yc71VGUXXbLJGggEYQRV8DCE+rQBznAAAM0UEQv6hcRcUEFGK8IxBZwcIQuiIENhzgEIabAgQ4wwRSTOQl6ihEgYfyrFqB4xBnS4AU7DMIQiThDCzIgAzzcwm/S6UkwfmGLUdBLDWj4wx2c6LCHMejgBDJQgysMJZeGoZASjihEG7gwBDKIgQouAMEJwiAKyB0tGLh4BSbUoAQmCGEJTqhCC0SQgRSsARXCilxXdIGKGA5hBzaQQd08EIId7AEWIYxcVoBRC0/oAQtCgMEKupcDMGgiF0yU44900QpOLEIQglBEJVSBi/4IkiAr6ckvfucLYJiQgZ9MpSpXycpWuvKVsIwlRQICACH5BAgUAAAALAAAAABAAEAAh/b29vHx8fDw8O/v7+rq6unp6ejo6OXl5ePj4+Li4uDg4N/f397e3t3d3dvb29ra2tnZ2djY2NbW1tXV1dHR0dDQ0M/Pz8zMzMvLy8rKysnJycjIyMfHx8bGxsXFxcTExMPDw8LCwsHBwcDAwL+/v76+vr29vby8vLu7u7q6urm5ubi4uLe3t7a2trW1tbS0tLOzs7KysrGxsbCwsK+vr66urq2traysrKurq6mpqaioqKampqWlpaSkpKOjo6KioqGhoaCgoJ+fn56enp2dnZycnJubm5qampmZmZiYmJeXl5aWlpOTk5KSkpCQkI+Pj4yMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f319fXx8fHp6enl5eXh4eHV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFJSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKigoKCcnJyUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AKcJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3MgRorSPIEF2HDktJMmTKFOqXMmypcuXFT9Gk4aQJkyFIg9+vCkwZ0OfL3fy1Giz5tCCMmcSLHq0p7Roz5IZK6bsGTRoz7IyPRqNGTFctnLpEpZMGbNlZaE17flMmTBdu4LpinVq1K1bu4Q12wpT2rNjvXwNS1aMVqY9hzpNSlUrWbSm0Y7tyiXMGDFbhdzk2IJGTZ9Mu5zxdQktmKpYs3KNasMDCA4tSaZoESTL8eiV0pz96iRqVKYwQXboCKIlTRxAnXrtFRq0GbFYsGSdKgRlixtAeeBwOSNpmNqj0M4m/zvGi5SmSoEGvRFjRU4l75CzQnPG7FguUZT+4FHzpc+nXsx8x5N8WDETzCt+BBKIG1hEMYcqvBCDTDNKvQQNMsqYtUwvpBjyRx5uKBGEGZG00ksvwRizjFW3dfRUM8YcswwyvXySRxldPPFCCC4kIQYjpcSCSy/AHFMVblAZY4wyyPwSyh1NGMEEBxAckIAFNkwBhh6f4LJLLcIc89hJIHUVDDLF9IIKHV3QoMEICxAgwAAGRDACEV3MscgmnvQijIAcifSUMr2Ql4ogVwDxAQUnPBAAAAIg0MEGJPSAhR5/7AEKLMyMZFJJzZzpiylrNIHCBhaw0MEBBGAgRSRqEP+RAxBUlHFHJq00Q9JWBQ4zSRlEeADCBzyM0IAEZPTSVi6gFMLHIZzUYsyYKr0ITCVj/JBBCygccYIDFcCBjEzOKFNMMRMCmtJTpVGSRRQexMCBDhkwcIEbySwFFJLLOJlGEBmEcMEKDxQQwRXGtNhSNPMNA8seTtBwQgsrOGBAAjTkQu1QfjVzTC2IfKEEEzqYYIECC3jQiTNr+TXjL68kkoYVQsywwgkTYFDHuJAt00wzy+AySRxdDNEDFEOM8MEYwygcKF/RNPOMM6GagscYRlwhxhgikPBFME4T9dRMZXqFJjLBfMIIG01swYYXKYRQhS9hY/QRNGTL1Iwwq0D5IskqpkwiyBZnpJFHESagIIYwddvNnDTQKOPKHmuI8YcgliTSByOJxHGDBi8Qokzjdi8FTTGdyPGuGY1cQskomzwSBQkh/GAKy0NBc4wsnzSCRyORPPKJJpOsIQMGLbwRzMYwRaOMLaVY0ogij2jySCNs+KDCDV7M8gzpniZDSymQ0PGGGXakgUUNIajwxSp7NSVNM7dAsh8ZZpwxBAwluADGKswAH0mchwtM4IENZoCCEnhAgyDoYRffW4tAoGEMVjhCDmK4AhKWUIZQGAMaAkQJ5JQRjFmkohSokJZoJIiU+TSDGcxwBghZSMMa2vCGOMyh/HRokIAAACH5BAgUAAAALAAAAABAAEAAh/b29vPz8/Ly8u3t7enp6ePj4+Dg4N3d3dvb29jY2NfX19bW1tTU1NHR0dDQ0M3NzcvLy8jIyMXFxcTExMPDw8LCwsHBwb+/v729vbu7u7q6urm5ubi4uLe3t7a2trS0tLOzs7KysrGxsbCwsK+vr66urq2traysrKurq6qqqqmpqaioqKenp6ampqWlpaSkpKOjo6GhoaCgoJ6enp2dnZycnJubm5qampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpCQkI+Pj46Ojo2NjYyMjIuLi4mJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f319fXp6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb21tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1FRUVBQUE9PT05OTk1NTUxMTEpKSkhISEdHR0ZGRkRERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTc3NzY2NjQ0NDMzMzIyMjAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AIkJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo0eNw0KG/AhSpMlhJCmKFMaS5UmUKR+GFDaM5kyXImMyfDmSGE+dF00K7AlUYs6iF3EirXjz6NKdwoAJC0bVJsynCWsG68XrF02cTrH6PBn1VzCeNsUO7FkT2FmUNX+qJTgsGDBgK4PRHBtWbFuzNoN5hSkUq0jBuhL7MvvrF6+zQ4k+rftrFy1Zsmrh4sU5161dwuYSjKqrVqtZrUJRogQqVChSs/CK9gms1+VZsUARyrMnEaA7iUj9giu56DBgu16VOqWKE5wtR5iEGTMFjSRdNvc+FdYrVqtUqixh/9lgIsMRH0t8YPnTCm/hmD2F+SLl6VAfGREeeAhRJIkVKX9YwsouevXVUWHD+ILKJ434QQQMPijxhRdkdPEHJqzcAthVH73nUzC6yOIJI7wV4sgieJgBRh+Y2NJLgSlxaJBWv+hiiyugVFIIHns0Ysosu/gilYwbEVnQTcjRsokgbWBhxh2MxNILML4IWRxQU+kVDC+vaKIHF0jQwEMVhKySSy+/3MXSdrxMSWUsktwhRRIvcGACCS6AgUotufiCplQ6rcTLLLnkgksrkYwRRQ4zUMCABSJkAMQXkJBiiy26TAlfS7zEUoorqqBCSSBTFEFCCiAs4AACBBjQQhuAYP/y2mZGWkRYTSzl8soqppTCiSF63ICCBiPgYAEEBQAQwAE/kKGII5G0QkswHB0V1zC8wBKKKa+MkmgHHIgQgxMtkJDAAAIYoIIPWrjhhyal/FLklcP0gksqr6iSCSBOSHDqEEy8YIICByQwAx9tkEEHIqPUElqgv+SmySOV5IGFCTqw8EMMLFyAQAMkSIJLLrTMcsuLSG3ViimYZCIJH04QUYMQOrxQgQILrCDKW1fqJMwu3r0CCiV6iFEFF1PYcEEFEHSQiLyigSgLK6ugwskfamARhREgvLCBBmHgUmtRU+1yCy62kDJIGlVcQQUQPsDQQROwjA1USL7gcsstphz/ooUWT8zBxRgucBDEKnarZORLUcHC6ymVELJGImgAYgYbK2CQgyqJK36kVivhUokZSXDRxhZu/JFHIXZokUEHRtR9d1xg/dIKHUS0sMMUdUzCiCWO9PHDBB6gkUvnTCF5bU29dPJFECcEYQYkn2TyySNndHDBCpBA3SFxtB+miyqUAIJGHIhYssgmj/zRwwclXCHLw8ZpRVMwuYhCySJ5LLIIIYdYRB+0YAMcOKETwzFMloARi09MwhB1KMMWzvCGOkgBBzWAwiR6gTyP1MRPtahPHuAgQTpooQk0wMEWLMGLDnZoSw1EBB3IkIYtbEEKTaiCHVSRwNnUhReuuEQhMeQwhixQQQtqmIQtIDObtWzlFrFgBSpMwQpcyKaJnyuLW7SDxS568YtgDCNSXNjEgAAAOw==", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_4cc6681fcbaa4912abe0674ea535464a" + } + }, + "457dd638c37243c5b30baf79ae6f6103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } + }, + "45a52d40e2d440c8a2b9ee596712f1ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "4cc6681fcbaa4912abe0674ea535464a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "55dcd39dfbb24f0f8e497f6c4a285145": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAAP////7+/v39/fz8/Pj4+Pf39/b29vX19fT09PPz8/Hx8fDw8O7u7uvr6+rq6unp6ejo6Ofn5+bm5uTk5OPj4+Hh4d/f397e3tzc3Nra2tfX19LS0tHR0dDQ0M7Ozs3NzczMzMvLy8rKysfHx8DAwL+/v729vbu7u7q6uri4uLe3t7Ozs7KysrCwsK+vr66urqysrKqqqqmpqaioqKSkpKGhoaCgoJ+fn56enpubm5qampGRkY+Pj46Ojo2NjYqKiomJiYKCgn5+fnt7e3p6enl5eXh4eHd3d3Z2dnV1dXNzc25ubmxsbGpqamlpaWVlZWRkZGJiYmBgYF9fX15eXlxcXFVVVVFRUVBQUE9PT0lJSUJCQkFBQTw8PDs7Ozk5OTg4ODc3NzY2NjU1NTMzMzAwMC8vLy0tLSoqKiUlJSQkJCIiIiEhIR8fHx4eHh0dHRwcHBoaGhkZGRYWFhUVFRMTExERERAQEA4ODg0NDQwMDAsLCwkJCQcHBwYGBgUFBQQEBAMDAwICAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wAHCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJhV4a2DlpMUmAEywr9ngZk6Efg4A+BNBRU6EgGVYKhgkQIErPhHQCVBAaYIKeowjbBGCAhWCVABj4QD3oJECEpwN/BPjwZ6tBGAFwFGQRgITZgoFGBNBCkA+Ftm8J2iGagyAZoiTu5BWIR0FTKWS4GNlB9ACMwQJ5EJ1MmSbkOkUuVA6gwAUcyAP3qJEih0oAC2BAI2TMQvXBOAwCJHFtEM3plbQJ2gaRu2CUAER6Cx9OvLjx48iL71nz48KNEgAESBcAAEKZvFdCCBjAfcD27ttVmM7N82SB9+4mCqhQ0eG8+K1uKAyYIaCBjSOA0AyKE+K8j7dlAKEHG10U9AJ3AkSQRm6BIDHdCvrRNkcM3W0QoWtQaLDdAz7c5JodLSDgXm5zOADeAAZIIMQYoO0hwnTUwQjADbi9NcV2GdBQxY5DeEDAdhS8MVgWS9RhkBIXcHcGcT8oOdwYCTiZWx9bJBDdB3RsxUcQNXxhhh1zCGSGESggKIIcZpkBHgcapJDCd9x9gGaaJ9aZARNZvvWHGECYAKd3ETSBR3KEFmrooRcFBAAh+QQIFAAAACwAAAAAQABAAAAI/wAHCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBBemlgJyTHJAFOmNzYI+VKiX4MAvoQQMdLiIJkWCkYJkCAKDcf0glQgWeACXqCOmwTgAEWglUCYOCjtKGTABGSDvwR4MOfqgxhBMBRkEUAEmAXBhoRQAtBPhTOplVox2cOgmR8krgzFyEeBUelkOFiZIfPAzD6IuThs7Fjl4oN1ily4XEABS7gREa4R40UOVQCWACzuaFhFqUZxmEQIEnqhWhEl3ydMDYI2gqjBCCCu7fv38CDCx9OvLjx48jn7lnz48KNEgAESBcAAEKZ1FdCCBjAfcD27ttVbM3O82SB9+4mCqhQ0eG8+MhuKAyYIaCBjSOA0AyKE+K8j9JlAKEHG10U9AJ3AkSQBnCBIDHdCvr9NkcM3W0QoW9QaLDdAz7E5JsdLSDgHnBzOADeAAZIIMQYuO0hwnTUwQjADbOVNsV2GdBQxY5DeEDAdhS88VoWS9RhkBIXcHcGcT8oOdwYCTgJXB9bJBDdB3RExkcQNXxhhh1zCGSGESggKIIcm5kBHgcapJDCd9x9gGaaJ9aZARNZlvaHGECYAKd3ETSBR3KEFmooSAEBACH5BAgUAAAALAAAAABAAEAAAAj/AAcJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGAt6aWAno0eFSQKc+EjSYA+RJTH6MQjoQwAdKS0KkmGlYJgAAaLErEgnQAWbASbo2UmxTQAGWAhWCYCBD9GJTgJEGDrwR4APf55KhBEAR0EWAUhojRhoRAAtBPlQCDsWoh2cOQiSwUniTluHeBQElUKGi5EdOA/AuOuQB87DiFESZlinyIXEARS4gLPY4R41UuRQCWABTOWJgFl8lhiHQYAkoyOi4dwx9cPVIFxDjBKAiOzbuHPr3s27t+/fwIMLH068uPHjyJMP3LPmx4UbJQAImC4AAIQyua+EEDCg+wDu3rmrzbid58mC795NFFChogP68bLdUBgwQ0ADG0cAoRkUJwR6H7iVAYQebHRR0AvdCRBBGsAFggR1K+z32xwxeLeBhL5BoQF3D/iwkm92tIDAe8DN4UB4AxgggRBj8LaHCNRVFyMAN7SG2xTcZUBDFTwO4QEB3FHwhm5ZLFGHQUpc0N0ZxP2w5HBjJPAkcH1skYB0H9AhGx9B1PCFGXbMIZAZRqCQoAhy3GZGeBxokEIK4HX3QZpqomhnBkxoidsfYgBhQpzfRdAEHsoVauhYAQEAIfkECBQAAAAsAAAAAEAAQAAACP8ABwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYDXppYCejR4VJApz4SNJgD5ElMfoxCOhDAB0pLQqSYaVgmAABosSsSCdABZsBJujZSbFNAAZYCFYJgIEP0YlOAkQYOvBHgA9/nkqEEQBHQRYBSGiNGGhEAC0E+VAIOxaiHZw5CJLBSeJOW4d4FASVQoaLkR04D8C465AHzsOIURJmWKfIhcQBFLiAs9jhHjVS5FAJYAFM5YmAWXyWGIdBgCSjI6Lh3DH1w9UgXEOMEoCI7Nu4c+vezbu379/AgwsfTry48ePIBe5Z8+PCjRIABEgXAABCmdxXQggYwH3A9u7bVdzNzvNkgffuJgqoUNHhvHjZbigMmCGggY0jgNAMihPivA/cZQChBxtdFPQCdwJEkAZwgSAx3Qr6/TZHDN1tEKFvUGiw3QM+rOSbHS0g4B5wczgA3gAGSCDEGLztIcJ01MEIwA2t4TbFdhnQUMWOQ3hAwHYUvKFbFkvUYZASF3B3BnE/KDncGAk4CVwfWyQQ3Qd0yMZHEDV8YYYdcwhkhhEoICiCHLeZAR4HGqSQwnfcfYBmmifWmQETWeL2hxhAmACndxE0gUdyhBZq6FgBAQAh+QQIFAAAACwAAAAAQABAAAAI/wAHCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjwO9NLADsmOSACdKcuyBUuVEPwYBfQigw2VEQTKsFAwTIEAUmxDpBKiwM8AEPUAftgnAAAvBKgEw8Enq0EmACEgH/gjw4Q/VhjAC4CjIIgCJrwwDjQighSAfCmbRLrTTMwdBMj1J3JGbEI8Co1LIcDGyo+cBGHwT8ujJuHHLxAfrFLngOIACF3AgJ9yjRoocKgEsgNHssDAL0g3jMAiQBDVDNKFJulYIG8TshVECELnNu7fv38CDCx9OvLjx47z3rPlx4UYJAAKiCwAAoYzrKyEEDNg+QDt37SpI58t5sqA7dxMFVKjoYD68ZjcUBswQ0MDGEUBoBsUJYd4H6jJA6MFGFwW9sJ0AEaQBXCBISLdCfr/NEQN3G0DoGxQaaPeADzD5ZkcLCLQH3BwOfDeAARIIMUZyIkg3nYsA3CAbalNolwENVeQ4hAcEaEfBG7NlsUQdBilxwXZnEPcDksONkQCTwPWxRQLQfUCHZnwEUcMXZtgxh0BmGIHCgSLIQZoZ33GgQQopeLfdB2aeaeKcGTBxJWp/iAGECW52F0ETeCAn6KCEFlpSQAAh+QQIFAAAACwAAAAAQABAAAAI/wAHCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqRJh14a2DlpMUmAEywr9ngZk6Efg4A+BNBRU6EgGVYKhgkQIErPhHQCVBAaYIKeowjbBGCAhWCVABj4QD3oJECEpwN/BPjwZ6tBGAFwFGQRgITZgoFGBNBCkA+Ftm8J2iGagyAZoiTu5BWIR0FTKWS4GNlB9ACMwQJ5EJ1MmSbkOkUuVA6gwAUcyAP3qJEih0oAC2BAI2TMQvXBOAwCJHFtEM3plbQJ2gaRu2CUAER6Cx9OvLjx47n3rPlx4UYJAAKiCwAAoUzeKyEEDNg+QDt37SrM5s55sqA7dxMFVKjoYD78VjcUBswQ0MDGEUBoBsUJYd7H2zJA6MFGFwW9sJ0AEaSRWyBISLdCfrTNEQN3G0DoGhQaaPeADze5ZkcLCLSX2xwOfDeAARIIMQZoe4gg3XQvAnADbm9NoV0GNFSh4xAeEKAdBW8MlsUSdRikxAXbnUHcD0kON0YCTebWxxYJQPcBHVvxEUQNX5hhxxwCmWEECgeKIIdZZnzHgQYppODddh+ciaaJdGbABJZv/SEGECa82V0ETeCB3KCEFmrooRkFBAAh+QQIFAAAACwAAAAAQABAAAAI/wAHCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlwp0EsDOywjJglwIibEHjRtHvRjENCHADp0FhQkw0rBMAECRBFKkE6ACkcDTNDDdGCbAAywEKwSAAOfqgKdBIhAdeCPAB/+gB0EIwCOgiwCkFgbaEQALQT5UJC71k7SHATJJCVxByweBVKlkOFiZEfSAzDW8khKuXJOsHWKXLAcQIELOGsF7lEjRQ6VABbAhD7omMVqg3EYBEjyuiAa1DBrD7wNQjfBKAGI+B5O3OaeNT8u3CgBQIBzAQAglGF6JYSAAdgHXM9+XYXOPE8WaMvPbqKAChUdxnu36YbCgBkCGtg4AgjNoDghxvsQWgaIHjZdFPQCdgJEkEZtgSDx3Ar2vTZHDNlt0OBqUGhw3QM+8LSaHS0goF5tczjA3QAGSCDEGGvtIcJz0LEIwA25CTXFdRnQUMWNQ3hAwHUUvFFVFkvUYZASF2B3BnE/GDncGAkoWVsfWyTQ3Ad02MRHEDV8YYYdcwhkhhEoECiCHDqZwR0HGqSQwnbYfUBmmSPGmQETVQr1hxhAmMCmdhE0gUdxgAYq6KCEFkpSQAAh+QQIFAAAACwAAAAAQABAAAAI/wAHCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzA7emlgJybDJAFO2FzYI+dOgX4MAvoQQMdPQTKsFAwTIECUn3QCVFgaYIKen20CMMBCsEoADHx+OgkQ4erAHwE+/PkJIwCOgiwCkPgZaEQALQT5UJD7007THATJNCVxZyceBVWlkOFiZEfTAzB+8mhKubLPnXWKXLAcQIELOD8F7lEjRQ6VABbAhD7omMVqg3EYBEjyuiAa1DU/7lnz48KNEgAECBcAAEIZh7dBgLwSQsCA5wOcQ3euwmGUAEQ85nmyIDp0EwVUqMno4L26SzcUBswQ0MDGEUBoBsUJ4d0HzDJA9LDpUvDFcwERpFFbIEgMt0J8r80RA3QbILgaFBo494APQa1mRwsIlFfbHA5MN4ABEggxxk97iDAccScCcENuME3hXAY0VCHjEB4Q4BwFb9iUxRJ1GKTEBc+dURtBPwQ5pEBjJGBkbX1skUBwH9DhEh9B1PCFGXbMIZAZRqDwnwhyvGTGdBxokEIK0j33QZhieuhmBkxICdMfYgBhQprRRdAEHkf26eefgAYq6KChBQQAIfkECBQAAAAsAAAAAEAAQAAACP8ABwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyZMoU6pcybKly5cwY8qcSVOilwZ2aiJMEuCEzoM9etb0YxDQhwA6aAqSYaVgmAABotCkE6CC0wAT9NBsE4ABFoJVAmDgQ9NJgAhaB/4I8OEPTRgBcBRkEYAEzUAjAmghyIdCXZp2oOYgSAYqiTsz8SjAKoUMFyM7oB6AQZMH1MuYhc6sU+RC5gAKXMARuWfNjws3SgAQwFoAAAhlDO5RI0UOlQAWwIy8EkLAgN8DfAP3rUJhZBYi8zxZEBy4iQIqVHRoXhxhHAYBkoh0Q2HADAENbBzKAYRmUJwQzX0kRIM7p8gyQPSw6VLwxW8BEdKsDwCCZSAkra1QXkJRBEDESnPEANwGA+oEhQa+PeADUTrZ0QIC1P00yBwODDeAARIIMQZNe4jQmmsnAnCDezBN4VsGNFQh4xAeEOAbBW/IlMUSdRikxAW/naEhQT8EOaRAYyRgpIZ9bJHAah/Q4RIfQdTwhRl2zCGQGUagcJ8IcrxkxnAcaJBCCsL99kGYYnroZgZMSAnTH2IAYUKawUXQBB5H9unnn4AGKuighL4UEAAh+QQIFAAAACwAAAAAQABAAAAI/wAHCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhvemlgJyfBJAFO+BzYI2hNPwYBfQigg6YgGVYKhgkQIApNOgEqSA0wQQ/NNgEYYCFYJQAGPjSdBIjgdeCPAB/+0IQRAEdBFgFInNyz5seFGyUACBgsAACEMiMCaCHIh0Jek1dCCBhAecDkypNVUM1BkAxVEndG5nmywHJlEwVUqOhgWoUCrlLIcDGyg+oBGCPdUBgwQ0ADG0cAoRkUJ4RpHzyoKl9udGQZIHrYdCn4grKACGnqFLnAPIACF3BYBsRCQnjFcIF71EiRQyWABTAt58SovOG8wdosWkLRMPmBD6QHxcFAAEmsZEcLCLSmEBru9ZTSHA5gNoABEggxxkEMgqDSHiIQVpiHANzg4EBRBECESlNMlgENVbQ4hAcETEbBGzJlsUQdBilxAWVnDDXIDzwONUYCQeLUxxYJCPYBHS7xEUQNX5hhxxwCmWEECtaJIMdLZmDGgQYppHAZZR9syaWEaGbABJMw/SEGECaMaVkETeDh45145qnnnnz26eefFQUEADs=", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_80a5bc18647e40a4927ec164f4a0a29a" + } + }, + "5f9b5b502ee04203a3b6e540d8a1d303": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_55dcd39dfbb24f0f8e497f6c4a285145", + "IPY_MODEL_c3056cb840c04c1a9ca5ac637bc63e5d" + ], + "layout": "IPY_MODEL_eefac49d463e46d899902775c8c92aef" + } + }, + "6a73462ee50b4ce491a0287e5cb413b4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "6ca6263c46cb416d95a0e5c279f2a892": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "703b0dae94b74b0d99d678b44b21c7ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_007991c798294b8e93cdf3fb62ee1e14", + "IPY_MODEL_b5b3668d2f12476dbf8bc20ceddbf1a4" + ], + "layout": "IPY_MODEL_0a98bef4bb6a4e6080600e3e1e4bb81a" + } + }, + "71e9082c5cf04b8db455d24de6b250e8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "72bda943b8ae48d8aa4037a542141842": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "78718a2f62854f7fa99cf8bc4adbc360": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "80a5bc18647e40a4927ec164f4a0a29a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "9c4fc045324347d5b9c8e59513c832b2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "b3e6e29f4c3942f3bb235017210505cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "LabelModel", + "state": { + "layout": "IPY_MODEL_29a5c88b8d5d434d8c62b3cafa108062", + "style": "IPY_MODEL_0fe87ed8f6ac41ffb25c961d9580ef69" + } + }, + "b5b3668d2f12476dbf8bc20ceddbf1a4": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAAMvLy8nJycjIyMbGxsXFxcDAwLy8vLu7u7m5ubi4uLe3t7a2trOzs7KysrGxsbCwsKurq6qqqqmpqaioqKenp6SkpKOjo6KioqGhoaCgoJ+fn5ycnJubm5iYmJeXl5aWlpOTk5GRkY+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wBjxUpFsKDBgwgTokrIsOHBVbBecRJYqhSpUaJCadzIsaNHjaJCZgT1ydMnUB9TchRVqpWrSLFQoRrlqRMnTpty6tzJs+emmzgxVZo0idKlTD6TAvUUilWqVbFcnaLZKanVnDg1YbqEaWslSZAgRYI0yRLSqzw5dQKlCpWqWK9SmRJVsmanu3jz4vXEt+amS5YuAZ70SBCfPYYeXdqkt/Fek6BGrVIF9ZWqqZ8ca77Ll5PQR48oOTqECE+ZLlvSGJqUabNjT5FZrWIF9/KozDaB6t6tttOnTZQeFcqzJ1AgR3TOkOFCpo+jS7yj94Y9SjZty5hzS7+5SdPPu5ccJf+a0wZOHDmK5oDBQuUKHEWWtu/mHJvVdduZ5WfN5L0qJkmCzKEGHF+YAYgbVlDBBBKqVaIfUPRVZ19t2cmXk1b85ZTJJX+wscYcaIiBBxpQRIEEEF4IMslPD0Zo330VWqgJV0dd8sgkdoihBRlimHEHG1A4oQQPVvgRCYv6uTghdrdpt51WlQBGiSKP1HFFFEwIAcUbYkBxRBItEIEeJkhupySMTUaHlVqbWCJJJZFUwggke2ARBQ8p6PDFFES8MMQJNIgBCCVIJdkJdS9SmCZvWN3FySWTVAIJJZVQUsgYZRQBgw9jRPGDCDqoIIMYfUByiSaGIrokfk4C9d1NnWT/QgklZnliSSBxzHFGDzxswUQOLvAQAwtIzLFIJZmkWh+an0j3nU2daGLJip6Ukgkg5onxRBJVTLGDCjesEIOehSCrrITM8nbXTyZlJi0kd5UCSiN72PEGGmus4QUROgAxgw09fGEIJZicmyiTzep2aG4nheKJJpU4YoknpIAyySJ6yMHHIIHo8YURQARBRBNkHGKufGcqmnBvavH1ySehjBIKJ5Y0MgmqnVzCSB1pzDGIIX94wUILJbgwxBuJnGrwqtlxhtfLMI9ikSiZvFmwJ5k8YscadPyRByFpgCzDC0zU0QgmqKJ86LIqH1qTyyWBwtIpqJgSim+glFJ3KJQ0/7KIJWYdsoYVQ17RRyTeLc3soXVBDTMpp5xC0FSQq8JKK6zMtdYno1wiCB1jQBFGISuWGV3KCEN20ssozU13Kqi8vkormKdCk0alaLIIIXJ4sQYilDw4HdupNzyS3FKfYoopC8Xu1mSoiOLJJqOMYkonjRTyo7Hxtbg2uirDJsoopGQUMynLk1LK8qWQbwrspUBtCt3zBlKvIIoJj7ptfMVckShyW5/yLFIRUoRCFJA7hbxgUwq6hWITkXiEIWyWLO+pilmemNtcUNLAAVYPIygJBfpKQZdPqM+AWsHErJRmQeLhxxPWi90oQAEKyMWufRkpyaGsN5VDsYSEJClJd/9MJ539YcaEdDOFAT/hOhKGIjNDHEXkSHGSGMrkFAacHhFP972D4aeGSTRgAJMIQHcxJoGlOKDeKKOKVGDRYblZExcvqDIw1m2Gj4vcXHDzHamtj4CSa6PyygeKOG4RVl1kGk04Nz8lAjAUDZQhKPiCl8igb37Ko9sVTbEoOaorkWjq3whlZhJRYDKLUNwEdd6XyYUUZCqT9EQLwcckWTKRFBcBhVpMOUU4ckITqDIh81BBwpCEgiSy3NBREldEUCqqKmtB4AzvEopT3u0mmuBPBpcnik1MghGICAQgAjEIQgxiEIdohCRY+Ek6MqkqnIiazO7CElOQUJYawkSyTuL/CUwgAg5cSIIOajCDIEQBC2FoAx8SY4m0zceZ7+yP3J54E0gqsVnZzGZXOLEhRuRBDDo4AQgycAELXEADH1hBELpgB0REgkztdGEPEwebSebEknfLJn+0chRJFGIPa5gCEFpwAgw0AAEGOIADLOABHEQBD4yoBBGNOIqq0LQkN2HiPDfRFf5kAnCLqEMbwlCFLjxBCCjwQAUYgAAGSIAELRjCF0jnUAhBlH9D/A4l5ZbDaO10RpZQBBzOgAYpYKEINfBABjDwAAdQAAQsANgWCCGJuiLSnXjNa8tgc8AyVuVCmchaHsDAhRjUQAUXiMAEIlAAARTgAjCgARLAcIgV/8WUlplNy9pEMsndbKISh4ADGYYgAg4kgAAECAAABqCAC5jABlLAw7Gmetep4FMnwMQKU4wpSwh5BhKFEAQZcCCCCjjAAAtYAAMgEAIjJMEMiDjZQzFrXe5cCJiJg9kx4QmtWEXCEo9gwxFgwIMVhIAFL2BBCEYABTIUIhJIadXwcFtfnGAXv4xZnYRtNAlJKEIPcVCDF6KghS2gFQVSaAMjkuWo+cr0Nq66sHZfhhf76gxSh/iZH8xABCVQgQtC6EHZEmEJxkiYqiuzsG5N0pfPcjUSHXZEJCghCT2wgQq+W4N7zXC4Is/xxfmJ8U6m02Ts6vNl8dTEI/rAhi6ogf+wRzDCGQihGOrSd1G6GfNmKbmbUbhFhp/QhCPsAIYyjOEJPUACHFZj2Ql7MUa+XZNeYPU2yE1OgaG4BB6+wIMlKAEIOoiCcwrmYgrjWW0tZtxa/DzAik2CDk84AQtwMAQdCAEOf7vto08tPER+oitkqtkiFNEIQXCBCBzYwAl+MIMeoCERDir1rsPca4V54hKNYEQh+tAHOpDBC1LYgQw+0IFl24AIbDiWrhVJ7WojkhKGcQMZ0rCGL0ghCDpgwQxiAAQi1CAKd8iftNktYXdP4g9p0AK3ysAFKXRLS0yQwhKAIDDWrHtx7lYYJypRiMHtoAZKyMIZxnAFKEghDGb2IMMW9lDni7ct43bVBCQIsQcxWKEHOEhCF8CQhjroYQ+CKNViWGbXO+MG5m6zCVch8Yc1kEENduBDIRbBCKMQbNKIhOgqUFGxJrumMZDh4BQfNRYHhURmT0QmJd3mspglChYv/PpmTBKz91FGLhbBpR6VqBEd6sVlbINFK+SCEZEY/vCIFwn5SPG8y2FONqtYRUHsWb7Enx19tKMNKV4heSXi8vOgD73ocSlAVMyGdq6g3ePbUre8j159zEs9bVIhEFhE5BW4z73ud8973dv+98APfu97b/tY2H4irpD9i5bP/Oa/KPLQP33mVe/86tuHdhGJRUAAACH5BAgUAAAALAAAAABAAEAAh8DAwLy8vLa2trW1tbOzs7GxsbCwsKurq6qqqqioqKSkpKOjo6KioqCgoJ+fn56enp2dnZubm5qampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIqKiomJiYiIiIeHh4WFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AFOlKkWwoMGDCBMqXMiwoKlUqCgJJDVKVChQGDNq3MixY6hQoix2HMlR1ClUkVKdMiXKU6dNMGPKnElzEydOMjl18uSyE86aQGFy8mSq1ENUpUR94qQpk9OnUKNG1RRTk9WhLjVh2iq161OqngoKNEUqlKebQdPq7ORT6E5PTZ1STSv0ZidQpvKOTepJptW/gOduanqV7eBLlTJ1+vQpEyZLli5lCvy35l1TK/eK6kS5M2DHWzXh1EQpEiJHlDpVKiRoESRKlzxTton31CnNnGUTtjp46yVMl3RumtSozyBGkAqhQZMnUSRLk3Xz5lT7dqqimz93nb7JsaVKkzB1/8pUSM+bOYoKBRpDJs6gRpS8Rq9MHbN17LnlT7bpE1OlSpJAAgkmkOQhBxlhBALIHlVgMUYeikyiH2C02YebVRNustN4lEiyCCONSIKIHX6E0YUefdyBRRNT1IGIJBPSV92FcXklGk99WQIJIs49gsgdfqDRxBx50CFFEU60cUgkMU4343VJ5ScVhqLt9MkmljhCiCGSMBIIGGhAgQQbeLxhxRBLpLEkJvJRWJ9tNE5JpZVLWfKIIYAw8gcaRewgQgpXrGEGEkMEkYUfjUjWppMWQpldjXLN5dROoCx1iSKG6HGIHVwQQYIEFwQhRRQywFBCEXAYMslvNjIKp6NSfv9l02CaLHZRJ5gg0scfgNAxRhY/lPCCFU4goUIMKuzwxiCQVKKonFS9eV+UGMpq001DgVIRKJkYIgcebrjBhhtp/FADETnUAAMPPrAQhR2MUALddq5O+6ibPvk0VCgUhdIJI3bUIYYYYdihhhZH8GDDCymgAMMMO4xByCTzQlvhq/jN9pZdn4hCCimigHIJIHfMoQYYaqxRxQ83wHDDCiZAfMMXg0hS8VT1atbXTFj1ZOsoQIvCSXJ4sKFGGWWIAYUTUijRwgk8IOHEGINQ3Gq0T2K3M05rvdWTJ6BYFBIonDwiiK9XQGGECzo8MUQLFlwQAxFtEALb1Rfb2xe2bL3/xRjZi2EEUshYKmJHGVY0YUMOVUjhwwccsKCEHIhUwia9WDeqNX88seXJJx+BctbnYYtSUShXSmIIHQK3l4YUL7BgwxV7MMIq5nnrrNPnn7gE9uCfUDo40MS3ZEkkfgRCCB9sPAGEEmIw22Tujo4Oyke9g256yIx9UmnYQJNiFCmgbGJIH4L4MccYVlihhiFMLpo5xnzZalH2pgN9UfekgzSKUUnhhCMUFAc7sMELYpBDIiQkP+pp7S7bw98oKKIUn+VLW+PzlyUS8Yc8uIEMZFjDH+AzPWlppnehmOAoUAc6FaLOJWihyif+V4ptcYISjlDEIQCRBzwgAhI3s5gJ/6E0CsaksF+9A98Ke/eSplxiEx0LWug4gYlJMCIRh0gEap6FuyEWpYhRBNn+lKiUtsSFE6DDHk+oGAlFpA8QhUgEcuR1OZzNb1pgTOG2fKdHpXCNVsIrHyUaQYg9sAENaTjDGtwQBzwA4hBbFGLWaojC7b2whUATHVvQYitQdIISh5CDFoYgAxfIAAdEOEIUuqCGOgRiEauyowMp+buxnWUx+UPdJmHSSU0gwg1YgIEHKtCAC2wgAxXowAqA0IU4EOIRiYGKjDRXP++FbmdRXCK2BrMJT2yGEohgwxR2wIIWXOABCjCAAAqwgAvI4Al1iFAd5zPLlgzFmqKDSTZRV/8Vp1CHE5IohMnM8AUtCIEFHUiAARDwgBGc4AdhKEQk5jlN+tnTShjBJkh0SSvgYKKbmfCRH+gABzNAYQYn4IADHEABFdTgBj0AA/womjNY8ad7ufEESDzZHTZ5tJvDScSP6FCGIbzABCCAwAEUcIIe6GAKaVCEJGh6xwvZ5HNnscrvluIYVm0Fjbjqkh+6EIQIDCAAACAAAzbAAhoAAQx/QI0svRil/ezuJRry3lK08qyPMgYmmogEHE76gQpgwAIeaIEOsLAFeDlrrpPcjFz40zfSBY8p88kEFD+hCbgsog5c4IIQUpADHfigBjsogwLDMxlp1hQ/sloL7zBy2ar/UMUnliMNIwDhhzgg7QpBwMENvEAH20XHtVWFlVPYNJfdeS+jeAVsax/RnUnICxJ+0MIUsJAFH+AgCXIgRCQkA6mK2ms8oJmsc2kbXZgAJ0uScdYmMMFBMZSBDF7QAQ+2UIdESIKL9KSrZEHDlf1g9Cx+AQ54ajU6TDhiEGwIbRWosAMdbEEPiqAEVevJGQJvhbl57d1PAAscSlCCEx4LmSYA1Ag7RMEKVBCCC3pQBkBAgovmvdByP8yVG3UuhnGxhCT25YlMXKJDjJDDFF4ABCDEQAZIyAMjohmp5GbsKTzmioY6Z8amAEcSU90EgBwRCUkIAg1LEAEK3FqDILwh/8PI5TCkPGzXvo3Gy5VghCEI0Yc3pIEMYDhDF3AAgwloQAU/mIEQ1hChOAs4VjsGsV3a0hvweGsNVEBCEowQAxJwQAIdmAAIbBCEHTghDoxgYJXlPOf07udaVcEEJSDxhy4sYQY9GEIRgtADGIRgBDdAwhWYEIQw+KFZjo4spHH3F8dUAhJ60AIUlIAELawBC0ewgrS9cIY0dMEJboAljl9LrVZDCyqPUV0e4ACHM4AhhHGYQxsEhYce1u05G350tfTjla0E6BGPWMQg3lCGM6ihDXwQRBYdoSoAu0nZ++Y3tDp7EU14SRCFOE4kwvMYTDS7ylYut8TpJRRRALAlg+iERCYqtTPA1ujh1HzUyOU0GeoYZSUgQ2EmEUyruMDcormJuMQx9F5O8CsvXzxiyDjT893kGFYfn3l00k1m8RyRIsVrjGtBrqEnnaKGLZfObJwoCUV8qBK3Hc02fT4X3sREJ8p2udgp1J1LTAJTiGiEJfbNG61EyuU5ucyrUGGKUYgOR4hPvOJx5JNMTOIRjnhEJOjIprVQdvE48p5JCJ8KUagkKSQJvUZ6N9/SSIISzvJ410gX+o+MAhWct45AZk/72tve9rDPPexPontU3P73tv8ERFCxEqQb//jITz5Dks98+/heIAEBACH5BAgUAAAALAAAAABAAEAAh7u7u7q6ure3t7a2trW1tbS0tLKysrCwsK+vr66urqysrKqqqqmpqaioqKenp6ampqSkpKOjo6KioqCgoJ+fn52dnZycnJubm5qampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj42NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AGPFgvWqoMGDCBMqXMiwYUFYAj8JfOXKVatWrDJq3Mixo8ePID+2gihx4CtWq1SlWsmypcuXLlHJnJlKJcybLFfBIigQlitWKmcKHUo0FVFUp0yVIlXq1NGnRFUZ7OkTqKqrWLNq1doyaFKnXbeKzapzJ9WfNnGy5ErTqKlRokiZQprUlCmwarGWhTjQ56qVUGWGVYVK6V2jpT59GjX3rShRoUY1hbp279m/RgOjWqlqlWdUpUQ1TVmqU6ZQm1GNCvXJ0ydRc59W3sl3p6u/mgXXXJUxFalPpFIBJYUJU6dQSi9BchTJ0qdSlDlb7ns7c+7dvFWR6mSKFUZSmyxh/7r06VIhPnn+OOJEKvpu2petB5bO2zenU55VhaIkCZIiTIoMoocccxSCySjzvWcWdbhdlwpvKKVSCiibpXKKJpZEosgejRSyxxtniHHHJKIk2Bl8DMp3FGCoqJJRSqcEl9QnmVRSCR9xDAIIHWhgEQUcj4DilGwK1uaXikXl5B1KhflGiiadbHKJHmTsgUccXkiRxBiLeDLkikXG52BnrVjESmqlhFKJJI4gksYXd8zxxhhSGOGFItxFd+KCtjWYpG68uVJQK/Vtl4ggeIixww1ffAHGFFHQsMQfloxyypdCSYdin0hm1lWgBf2EliiS6BFGFC+o8EQQS6CQAwgzuP/RyHOYtvXgpkfKd1NnrAhKUZlAjTLJHmyI0YQVZjQhRAcyaOCCGohoghyYt/KZa2qbYRWWdxVRdJsqoljCCCCAiJEFF0LoQIMNHpjQBB+VgAJdktUaWd1L2mZVk3ethIoKKeblUcggdrTRRRIufPACCS3kcIYjwFE7HaeDbZUSr/1SpEopnDQCCB98pNEFFUXEoHANMswgBsTt0TuxX/nq5RlQns3c6ysEsfIkJIX44Ycdd7TRBhIlpFDE0WQEOe9QOeH6rcUQotQZhGUaxEpplCASiB1nxJGGGUSE8MEJLuTwBiShLJ3pSi8/XXNKVBPKq0ZlmqnaJxk2EsggcLT/8UQMK8SQQhB1VMKYxE7DDWHN3GL0NsaO53e3JpxIkkgZR/zQwwxTDKLJZC47TfOSM9cd+cU2Z1S1RavIBAonfpDxBRRLhDFrrba2jRK/hHpmutRX1bQbvxWh9RYmkKRhRRVC8MAFIpzchbi1P/FWZuS9ViR38EY9uCRhv4XHyBtd5DADDSe0gEQeJIK+dr1nofR7StyyHjxd3gNViieUFHIHHFzwQQswEAEMUKACOzADITAhr1o1jXry057UVmG6lLCoRRA6BSgkAYg3NKEHLcjABzjAAQswQAEdkEIdILEJUTiQbaKjoASvYj3WtSRb1kvFJygRCDZUwQg+OAEF/xpggAAAAAEQiAEWBHEJUMQmdzG8yEUm2DgLpoVMrlDFKDKhCD7QIQ1iGEIKLNCAAzhAAyp4ARPgMIlPPFE38GOQi6QYoQfVDSjCk06/dNYJSQSCDmNoggxQ4IEJNKACL/BBEJwQh0q4kWkwpB7cNkIYVFAQWGkRzCoE1QpUgAITh+DDGpJwgxq8wAMXEIEOijAEMeghE06EZBz7REONVPKSGKmkTJyySYr45hONYMMRNHAAAgjAAA7wQA2AoAQ3PIITLpRl2/5SSzxaknTWuVSL+tXJCVECD1FgwQIKkAAESCAEOBjDGgaBiVCQ4oWzzNXUGmQ9oCDlLtp00U9G8f+JSggiDVLYwhF44IMcEOEGOjgDHCLBnjfCcZoV6oxKLuUiJtUFn6d40F88IaXmTKIRfQjDFaKQAxfIgAp4gJj7oEi9SnImKBiMUF206ZSrXMgTNYJlJgbBhStcQQoyGIENzmCITERTmk7T5UtVwisLXgpTnUFFa0ARCshgQpRLeIIWluCDHTiBDpHoxEorFM8srk1mL4IpTeqjmO1kIhN6c4MbqrCFMmhBB0L4QiAqEQp4QhQpbamm1MjKNkIxJRT7SUQf9pAIRuyhC1sIgxN2YAQ3MMITaiPrX59Kk7lFCI77OpMpPGGJQwxCEIRYBCL2AAYeLOEIQfABFQ6hiZb/sdReraMLZ3H4Ik8BZl+q0YQjCPGHPgzCD2/IQhFYAINVBgEKfjAqUiW5y6dqE4cWvOEuUyEKTigCEGwgg3KXEAMRyMACIkhkDqKwB+m+b7PW1SZ20pLNS31CEXAQ7xWesIMOPGAADcgAC4pwhBx0IRAtnC5uMxPfIdVEX9mUSScOoYc1qAEOIGpCCT6wgRg4YQtf+MEauoSg9yaOwQ2OqL4ypZ1LOOJnfDDtHNQghSZU4QxyUIMW9mCJtClYTNW1rm4gPBMXtY4UoCitIATBCEPIoQxfsMMfBOSITRzOxJKUT3xtlUmZVDQ/GvTjHxphiEIY4hCKeAQjNNHAH6do/yhCtpWKsCPFVIyiE5q4BCUeAYlJjEcTnpBLkva0YKLsVjPXracqThEKTlhCE1P9RGSkB0lCAzk3T3kLKVw4NQs1+tGjeGdoxjrkaSIJ0zMxRaM3AZyMWqgUoW4RYUpRCkpX2tSozrQoMMSJQF+XTISykK1vfeJcQzJGn6CcJ1z4YOu1gjD4xBaWC23stiAlNJEJdUavsiQLObhTYXpzteFIk8LUWnoS9VSFBq07tbibM96bolLzoy/6buvEp3YQ2+o3xRfVTFsskbOle4KWsRh8LKqjo78fd3AyQQQirzBJ795G8YpbPHX9XvjCL166ngjk4yAPuchHTvKSm/zkrhH4OG1WzvKWu/zlMI85igQSEAAh+QQIFAAAACwAAAAAQABAAIfMzMzKysrIyMjHx8fExMTBwcHAwMC/v7+7u7u6urq5ubm4uLi3t7e1tbW0tLSzs7OysrKxsbGvr6+urq6tra2srKypqamnp6empqalpaWkpKSjo6OioqKhoaGgoKCfn5+enp6dnZ2cnJybm5uZmZmYmJiXl5eWlpaVlZWUlJSTk5OSkpKRkZGQkJCPj4+NjY2MjIyLi4uKioqJiYmIiIiHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f399fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29ubm5sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBeXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBvCRx4y5bBgwgTKlzIsOFCgqsGHqxFsaLFixgzatyokVYtga4I1qJFa5bJkyhTqlRJsuXKlywJCrQ10qSsmzhz5py1kyVJmDp78pQ1y1ZBgjRbllTKtKlTjyN/Pp31VKrMmbVgajVZtSTOrS9pXS3oNahZnz9tEpUF61WsWGbPnhR71VbZuEJRph0qK9YrVq3esn1FGBbcoHrH2uWL92bKpSUF93XFSlXgyaxYrWrlFvFcxXcbE9VrM5YruLNgrTpFilUsnq1YpTJ1ahUsz1xBM8aLcjRPv65JyjolKtSpwLBKfdqkyVOqV7ip6m58mGvKvq1UxaI4XJSnUK1NYf96lEhRpVKuotOVuZi6Y6ol4c+KxeoULKqxSHXaZOkSKU6ULBJIH4uE0opc0tUVWlCoWUcSRampcgph9IUSyiaQHKLJJYz4cccafHDCCoLrIUWLaG9x1VJFtMAiG2WtlBLKKKIcwgcllByCxxla1HHJKocJVaJEJ4o22ooswuIKZ5uRUsopphzyRiORFNLGF1aoMQkqQX6Vm4JGHgkVRSe+dVtmoIDiySZ3vKEII1ZyQYUZktiH25AzLfjeYyt6ZZhJr6BCySOF0MEEE3zsgccWWwRRhSGgnKbTZwru5pteTs0Hi0exoDJJIG5c0cMPb5AxBg5FrNBDHZWg0pmXCbL/F9+kaHk05nyRpTLJH3iYYUUZfZSBBQxAkHDDlKPYJqRuamEan1IUTRTZK6NkMgkiibhxhhtZSJEEESu4MIUgnKgCHax4knWSb0ypCFVCWcGiyiaNHAKJI4DAwSMRLuwQQw1BwFHJc8tW6hOL8L2bEC2BZkJIHHOkoQQPPOjQwgcx7HDDDWpYQjC6zCb8IItI1qIQw5nkgUUQM8xQggku+ICCBSIEYQQRaXh87p7pLuZUtFFBa/JEspSChxMjRPCAAQIUwMAJFiCgQAYp2BCHJcqCXFdUJHtkEJlMWWTLLKs8YsULCxiQwAABBACABBAswMAGI+hQxyas3KY1e1yD/+01TTXNNbItsYTiRxU9sKACDR1QEMEBEDhAwQUnrNDEIKFIujdSI1mE5NfxPUYRLKAcIgcbb8SBxhM3eDCBBRt8wMILOWzxiCl6by5R554/CHjoX0GV3ySK5HHHGVMI8UIIFIBQAg9FNOEEHZukkjvPinX+ddBAA0/UmLGcQgkib4hhBQ4uvCDDCBk8jwQUbyBCCpC0xsr5u1FR5TlP/MNnMtmUEMQalgADBxiAAQloAAde0IQuuGERoEiF5nSHlTGRSX8mC5xeosWwSzRiEGEwwgkwQMIMnGAIYCCEJCL4iuthT0Ejyx8GacKSodWiFZlwRCDKUAUn/IAGOfDBE/+kMAZEgEIVEyyYrPxXk5vgjzFcMQgtXLGJSiziEYPIAxu4cIUqMEELY/jDJ1Ahqd1Qaol9GooFLeU1WrTCE5hYhCM8SActRCEMclhDGtzwiFC4ikTMUooaWdSXtwhmFiZjmHI0sYlOeMJGXHDDIBQRsTs44hOqcCG7QCOmskAlMrEwjGC8VgtZqCIVpaCRJxyBiEDAwQ+DcAMaxPCGR4jCNfXrWZGsM5SE9QUWwDxkBmsBTCXFyBOc4MQk3uAGOowBCljgwyVQ4cIzmghWvWzJL0XpGFp87ZetMMUnOLGJHNbhCWIwAxSgMIZIoCeXnMSmyH5jSJyQMhaoLMUmLiH/iUcIwg1b6AEPqhCFKHRhEe9U4jUl46yfnIU7puCEJRihBy80wQg5QMELSJACHzDhCGJYxCnSo1AiFTJI7nIJYkgCC08sAg9zMAMYgsABBxAAARUgQRSugIQ3TAKJ8ATTSasjMj19j3QU3UMf+kCHKrzABBqIwRNQBwZBeKIV1fySrG5iSIaKjEFwOZEoIPEHQTwiE4sAhB3a4AUwtEEQgTDEIybUpU0KtateTUtODEmVWbgCFJpQRCAUIYlPgOISheDDHyKxCQvlbS0UJAtX8UrUWQ2Fr8JZBSpEAQpMOGIRldgEI3AUClVopjNQ1Oo1J9vVPfXmpLJoSTFdsYpS+5BiFKQQxSgmZBi3oKakedorXl2rlpOe5DbwYUt9zPUakzAUuJIVbj2Je1nJsCUWpLwsIptY1xduFaxdeu1Q34LV2F6QKMMsEiCFGibIsjaUhDkNE6OVlMZY06TtBWtfhhrbvaiUN6olkqXyiy7ISIVMO7nTdAjsGQuGrYlfUXClGNxgG9bkk2asn/0ETGGz/O13LrFuXO6bpwG3t7UYvGBfp4ugDZe4w1xtSwuJ6qW9jpjE6gLLS2I8Yw2vi7qYCpmOrxNjw1zKJcW91Ep0OeQdF5Kb8myyR8ZyCw02WSVRdhdYVkTlLnv5y2AOs0w+wh6HmPnMaDbKWAICACH5BAgUAAAALAAAAABAAEAAh8jIyMbGxsXFxcPDw8HBwcDAwL+/v76+vr29vby8vLq6urm5ubi4uLe3t7a2trW1tbS0tLOzs7KysrGxsbCwsK+vr66urq2traysrKurq6qqqqmpqaioqKenp6ampqWlpaSkpKOjo6KioqGhoZ+fn56enp2dnZycnJubm5qampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI6Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoCAgH9/f35+fn19fXx8fHt7e3p6enl5eXd3d3Z2dnV1dXNzc3JycnFxcXBwcG5ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYV9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlRUVFNTU1JSUlFRUVBQUE5OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQT4+Pjw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AG8JHEiwoMGDCBMqRNjKoK2HECNKnEixosWLAmcVlFjrIsdaIEOKFOnxI0iEtkaqXMmypUuXKFO+HPmQpsqaICOyhBgS5cyfIWkBfWnLZy1aSJMqTTqTaVCkK52qNLq0KtSmQkEinSX1qNKVPq1aDSkTatmrR2fJksU1q9evI8OKXbqzLFetsmC9itV2llq2bd32PJhyLtyRQmvSksVX6CxYrVzFShpLr6tXbNEOdvh2LkmtiVM+xqzVlapUr7iOZoUKlStZmk8S7iyW7NmOtmjFasVKVkdaqkyZUpValqpSnzp5WgVbsGzOhgXLtJ0b1irmv1OdImXqlKtVoTA9/2pU6dRk57XkGqZOnRYsVqzuxiIlKlQnTahGdYpEqA+iUbDElt5snrmlU0417ZZaLLKAd0oonCzyiSeVFLLHGnl08oqA6tFFE08IpiTLK5jBAssoo6BSCiR/ZMKJJH+wgcUbmLjCIYEefggibqIxNssrsJCCCmuQyDFJJo/cUUYVZ0zCyo3QHabjdLiB5Bdbr7gyCn2d8EHHI5VAkscYVYwRiSp3xTXbW3XtyNNiV76CSiWTKLLHE1AEUgghaIAxhBSDiHKempxp1dJHEul22SukXOLlGVXwMMQcbsRBhBIs7AAHJcw5Z9RKIFZ0y0PunXLaJ4OAQcQVP8RABBhNJP+Rwg4j0JDGIqSkRuhGoHIkqkC1wLLdKJPc4QUYZWjBQw07rPCCCzGMgMITfnDSim8ifUqSrxMRVIssrAQ3yRxiXMFFETGQMEIIFRywQQgr+PBGJb3tSlBKJfEY4kDfunJKKZX8UUcXWPwAAgUPeFCBAAx8cIIMalhSb7aElYQTdUXd0q8pmxjyxhQ3zGBDCid4QMIEASSAwg0/RDzxZhtZTKVtwDZ4SiaI2MHEDDW4sIEFD1zQQAAALAACDXLUOIu9A3k06sXbCmTLj62IYogaL0SgQAIITPAABAkwYAAEGuCAxyewLE2xQxTxCLVXuI1aSyyvtJKKJGzwkMEBDSj/4MABEFCAgQQfoKDEIaekCfO9bZvEpk6QpeKJIm+0kQUQRQwBROBGr5BDEFxY0gp6MZl0oHM6ucJKKih2MgkgZ4zRRQ8LFECACkcg4YQanGw4VcUThTgzzRrnZfcprDOShhhgWJFBAQOUIEQRVNQBSoC/s236gR9KTYtascTiCiqP6JEFFl/U8MEGFXSgAhSClBILWLNxZNab3QOLlPE3KwLIF2Howg5goAIRjCAKiEgFtpgmNeHBTSeaeUjTtBILVpwCFJ64hCGSVQUdlOABKOjCI+JDv0Lp636F8VDGRrWYWKgiFJvAxH4IUQYhPGEJMAABDNqwCRuRbk1VeqBi/77nFAmKiBWm8IQlGMEIQtDBC0RoQQyOQIQbJKEOodjQD00okvt5xS+BcRstWhEKTUhiEGmQghJ2gAITdKAEPSDCELYQCFMEaIsFgRtigvi9wGQFImPsxCH8YAcyHIEDDRhAAjKggigswQhqUAQq7pi9PHaFPWOJGy1SUQlFNMIRighEDXMwAh5AwQxjcIIeLrGKQTFQY1Jy21OKWJRasAIUkojEJmBoCUTIgXltyMMc0JCIULwGPQMyCG2mBBrpFGVqkLmgJzgRClA44g93AAQiGHGITNhRbZX0ViZlyaajxA2WixFWJzDhiU5kYhOVeCcmSMGKybAEJbUJEW2Ykv+x6bgHPqWgDyk+QZ8UpQaZydyIZ3IyS7rg7yiycEUqWmM3VJyCFa9R3Ctzs9Au7rOLRFxMK07RHYySCBaZaUmHqhKVHPUxKbPYTSsw873MCGhxE4yOSnKUFr+IBIwNRWhC77VPnjYUQT0VzFWMutGisjSoDmymUm/a1Og4ZSzBi0pb9lhVq+o0btxrJmLwSFSvGiZNbYNqOdfGK7OKBYwa/YxUxdpVt1YFjM4JjVSzcsmh5tSuVvELeiD4lVj6tYFOBSzqQOShm1IFsB91CVNpoq2htIklVL1JZS3bq7eZcyibtexkizqTFfKKs5jNq2FdYtqFuPa1sIVta2NL29oDJiQgACH5BAgUAAAALAAAAABAAEAAh9vb29TU1NLS0tDQ0M/Pz83NzczMzMnJycjIyMfHx8bGxsXFxcLCwsHBwcDAwL+/v76+vry8vLq6ure3t7a2trW1tbS0tLOzs7KysrGxsbCwsK+vr66urq2traysrKurq6qqqqmpqaioqKenp6ampqWlpaSkpKOjo6KioqGhoaCgoJ+fn56enp2dnZycnJubm5mZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4mJiYiIiIeHh4aGhoWFhYSEhIKCgoGBgYCAgH9/f3x8fHt7e3p6enl5eXZ2dnV1dXR0dHNzc3BwcG9vb25ubm1tbWxsbGtra2lpaWdnZ2VlZWRkZGNjY2JiYmFhYWBgYF9fX15eXlxcXFtbW1lZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUtLS0pKSklJSUdHR0ZGRkREREJCQkFBQUBAQD8/Pz4+Pjw8PDs7Ozo6Ojk5OTg4ODc3NzU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AG0JHEiwoMGDCBMqRBhrocOHEB/WikixosJaGBNi3Mixo8ePIEOKnKhxJMiLJjsO3FgypcuXI1vCTEmL1kyOMm+GrKmTJcKeImvaBJoTKEehR3m6LNpxKEykGGnNmqXUJNOjN6FKjRVL1tCaU6l6vApU6lSbtGS5ejUrqixZsV7B8qryp9FaVWd1bYsX1qpVsITGgtUK1Sm2dQ/OJIgVo15ZfGm5SoUK8NRWqUJt0rSKr0+DNxl7TMtKlSvIr0x5soRJU6pUojhJWuTolKzEBUML/Egr1ihKkChlAqVJ0B47cNgkcgRpESA8f0LFwi0a5kqctWSVIqRmTBcoUpws/6GCxQmNK2navHkDho0mWNSrL206sdYrRmeqHDlCJEaJH1R0IQUFMkARhRVQJCFGJa/Ed91LD2ZEiyqOxEEHGVMQUQMGQWARRhAMPNDCDTP4QAQXj7Ti4G6LsZjRLKMUokgkhMyxxRAewGAEEi4wAIEIQLRQww9cOMKKUyQpZt2DAs1CCiSYQAKIFz1wEIEGIojAAAEKWFBDCjK88EQfo9z2GWgn2TKWaAJN2EgjeayxBAsdVNCAAQUEAAABDrywgQkc7IBGJK14dpV8nyVp3yaT6PEFEBsskIAACRwwAAIRWBCCBihwUIMXg5ASWEZ2rekiTrutFAspmzBSBxUxaP+AAQYRKPCABSJocEINNZjgghJ3aOIKXy25mFtIK72SCimRBAJHG1kIQQMIFmTAgQcdaAACiTfwMOiwpCrJJKKotrlKKaCE8kkmjghiBhVD2OBCCiZsAEIKOvyAAwthTFJouGiySe6ZtKRybiikkNJJImd0ocUWUQzxAg7zusDEEDd0MQm4SYJ2bMfI7jYLK6cYZsqykRjyhhxxqHHEBy6QwMEFK7jgwhiWjNpxbohGWG6bsLCyFivnejIJI3wQcgcYH4zQwQUSqCDCCmqAQtfOjPWsZpornZWWX6ecYkoniyCSRxM/hNDBBCu0IMQfqTil0ccZhcwYWK4YtooqqHz/sgkgdFTxhAoujNCDEFNI0uCZx/pc90cG9dYKK6aE0gkopXTCiB9dNLHDESXc0EIRS5Tx3s8fn8oS17vJoopmjfChnhxwXLGFDzqwcEIIMdBAxBRzgDId4/JtjZ3dAsliiiOA+NFHHE74wEIJMLBggw4tdBBDDUeIcYgpZgJMt+rGIyn+LKlU0kgkl1AyiBxaHIHEE1hgcUQOVHxhhh6XdIa642PZiFDkRhBatCIUmfiEKVRRikxAwhBroMMd4MAFJbihD4ioBClegaRSmWSA/5tFYUThCVCYghWoyIQi+LCIRzTCD5HIBClUwZYOKokmUGFcLWYhC8KQooSZ00Qn9TxBilOIQhWtmItY/qe6keRQfMabhStUQZmSqYIVcnlFLJZoKroZhUl4mQUsVLEKtoSFi5C7YchewpOBSOUtSDJfFwe2JppAxiYimwpJlqLGu+AFLp75WUpKJUcI7cYseIzKUIwXkxtWpUWHVIrxAJhGNOHlkYZsHIsoOccHPRGS4ipfIYnnok+CsomKxOSKBKhK3dDnkiBEHh39CEueDNCUTGQkLXljy1uKhCy7TAouc6nLuxSTlbGU5Sx1c8xatjKXwQzXaG45SlKiMpqpHCYxaTlKtPjSKh7EJlGAKc5MWrKcPUEJOtNpkXa6cyFYe6c8HxIQACH5BAgUAAAALAAAAABAAEAAh+Li4uDg4N3d3djY2NXV1dTU1NDQ0M3NzcvLy8bGxsTExMLCwsHBwb6+vry8vLq6urm5ubi4uLa2trW1tbS0tLOzs7KysrCwsK+vr66urqysrKurq6qqqqmpqaioqKenp6ampqWlpaSkpKKioqGhoaCgoJ+fn56enp2dnZycnJubm5qampmZmZiYmJeXl5WVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4mJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3V1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1FRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pjw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AH0JHEiwoMGDCBMqRMhrocOHECNKnEixosWLGDNq3MixY8FeIEOKFOkQpMCRKENWTMlSIkuUK1+OhCiTpMWaKku+9GXzJs5eB4EOlHkyp8+aD3cWNUoRJ0+hQUXy0oWrFq1at3LlulXLVi5eUCc6XQhyl65ZqTotohPHDiJKlxQRevSpFtiYRMnyssXqkp8qMzA4aEAhRAsUMIicAWV3ZlKkZHWxssQnTQ4RFiQscCAhA4kSMaQwcqVrF6/TYRWmTFoUVypLhPyMsTLlB4kPESaQILKEix9TXs3i0pUaIUydInG52kRJkqNIjdQUkXFCRZI3cuDsIRVrlq1asnAV/4/a03jKXbZUgaKUaNAbJjRmsIhRhZCeOXg+qSrFqhUrWw09ZhJZ5+GiiiiH7NFGEy/MsMIHIeigxx5sLOIJKpqIQgoptAT4GFlPoTTVKqAUogUPFiSgAAMNlDCEHXhkYQkpqFyCiSSZyOJhSQmNN5QvU6EiiiZydHEDBhVgQAIQXVTSyB+klKJKJoUcsoksu2w0YEK85LJKJ5P8gUceYGxRRRlxzFHJI4CcgooqltSRxyQ6aukQLwamYoopqnhyiBxmxKFHH7ABwt9rcfihySxZerQlQbzcwsopbrLyCR9P7KBFIIZMAocYkIDyCSJheDFIK7n4KJZjBPWCS3+vwP/yyih2aKFCEHk4gogYRuyBiCJrWPHEGJ7EsouqEa3W6i6wxBILK6pQkgYYUWBBhyCBVIFDFVa0scUXVEgxSSkAIitgeSflUlUtrkhihh/Z0QEjFjoM0cISRxQhRBF2WPIKcRi1ZJAutsByCiVyFNHFFlBEcYUYYBAxxAk98PDDEU+AIcgpqbpkkLKt4vLlI4JswUMNMWhwQQU/ZEEEESPgwMMORDSRBB6jdEzTowITxCx7fohBQwUGHDAAAgyA4AQTPLgwhA0pGCEFFXJ8ovPOrYI8EC+wNAJHGF304AEBAQAgQAEcUEHFCSYQcYMGG5zAQxyiAJysUVoLxIsrh/z/IYghfZxBBAgPQNCBD3bQcUMPWyCBggcVzHDHKjsit2XePN0yiq6TXLIIIocEkkYbclhSCRp09EGGEi+4+Egt5n7EFOY82SLLKZxUwsgkUXJCCSappEKJJpU4YgcVSGRBii5N5aRUQWbdEgsqnEQiSiupuNIKLbOMIgonnDTiBhZqpNLo3ZfTDqRwtTQLS7PebbUKKqNkokgcZdzRyvk7q/R8Qbwwiy6oYotZwGIWuMiFLm4hC1aYIkx0uEMjYlG5qGRtQP87yWl2YRoCcg8XptnFLV6BO0kUwkK2MBdTQrSU4wylF6gByWnUlYtjwVAXskDFJiZRiVC0wm49WuHHslw4lNOAxSQp6RItXMEKWNQCiEEUouykyBMjCoUkIQlgaUzzKPOwaojoeqGyvtg/MoqRimfMYBnDGCI2XjAvLqGd+qaoRgKprzw8+0kXLUfEM77xijbp2RrN2MIpfqSFhFQNHA3JSDqiUZGLbOMj0zhJL+pRkJasZCYvScTUCCx2juTkcVjlQlD+UZR4zGNPTElJUQ6yKM1D5R4z6ZFaFtKWuMylLnfJy1768pfADCZEAgIAIfkECBQAAAAsAAAAAEAAQACH39/f3Nzc29vb2dnZ1NTU0tLS0dHR0NDQz8/Pzs7Ozc3Ny8vLysrKycnJyMjIx8fHxsbGxcXFxMTEwsLCwcHBv7+/vr6+vb29vLy8u7u7urq6ubm5t7e3tra2tbW1tLS0s7OzsrKysbGxrq6ura2tq6urqqqqqKiop6enpqampaWlpKSko6OjoqKioaGhoKCgn5+fnp6enJycm5ubmpqamZmZmJiYl5eXlZWVlJSUk5OTkJCQjo6OjY2NjIyMi4uLioqKiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBfn5+fX19fHx8eXl5dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkYmJiYWFhYGBgX19fXV1dXFxcW1tbWlpaVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AewkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gJ/LitUtXLly4btmqxdIWrly7eIVkODKXrFKVGvnR44aNmjVt7BTKtMpWzJkJeeVKRSiLDBIVJBwoQMBAAwsgZmBZNGsXUoS7ZjUVQiIDBQgMHiw4kIBBhA41soDK9fWgrliQ5oRREsRHiQ8eLkSYgAFDBgwzANWSWZegLlqeGEVa1CeOkyM0TIxI4aPIjBU6CNFqXHCXrVWfHgV6w4RFixUjTtyQ8iRJjyeSapEmqPRVqUVvuNg4cSKFhggcfCwhEsXLp1u7HcciZWiKDw0KFBywqiGFixhUALn/0hV94GNWn/Jk4aGCQwYHEDSg8CFDjKRbjMvrshUrlCM5cGSRAwwmlBACCzYMAUgpXpUnUC62zAILK51UIogVQKxAAggroNADIa3kV14uEMbiyimYrHGDCymk0EELLRgRSCoNlseLLrrgUosqn1gSRxI5sJCCDD9s0YQhqZDnYC8k7bLUI4d8sYMJIqQAgxV4hCEIJ9AtKRBJrNxhBxlaBGFCCCO8EclOjozmJZO3WHIGGX/QoQQGGzhgBiaI8LFILCJ2FKhBu9yyCh5ZcKHHHD0ggIABRThSCCGayDIoRiONpJBprEzSBQ5CYIFFCQAEIMALYshxhyWwXHpRppmC/yULKHtc8cMUV6CRAgIDECACEmHkcQksNW4Ea6yEzjLKIoXsoYggd2whwwdwZXHFHZq8oiRHx2pqEC+1pGLJJJyYcokkfPCRxRFOYFGGH6K4gourFXWb0C60sCJKJZhMckkliuCBhhVanAEIJ7Dgx223rpIE4SyobPJIJ6FAUocXVmwxhyOo0FKsRscqNFJJKtlCyyyqINJGFWCIcUgpXVkEK28zNzQyLra0wghrVSDBBiSv0OtQoAw/NPIsjIzRwxdT4DHIKkKLZO/QJcWSCBVHyCHHIY64EvVC3g409dAj4UJJGl48cgkno8zyatgMf10QL7ckAgUYk0xiiSi0yJEtsrdx+21eJ12cYUgilnACqEdFQ7SLKnC0EYcejoAiy8cLCy72LIDYIYggi3wyi+YRIet4LZocYsgjmaSyWEiaH6vLLKygkoortehCOkQNE91tSSTqEtPuGZkeOPGMI6t82G/SxHzz0Bcf/bfMmz49kyHXfP1B2m/PPfI2ep8U+NE9L/756Kev/vrst+++QAEBACH5BAgUAAAALAAAAABAAEAAh/T09PDw8Ovr6+jo6Obm5t/f397e3tra2tjY2NXV1dTU1NLS0tHR0dDQ0M/Pz87Ozs3NzcvLy8rKysnJycjIyMfHx8bGxsXFxcTExMLCwsHBwcDAwL+/v76+vr29vby8vLq6urm5ubi4uLe3t7a2trW1tbS0tLOzs7KysrGxsbCwsK+vr66urq2traysrKurq6qqqqmpqaioqKenp6ampqWlpaSkpKOjo6GhoaCgoJ+fn52dnZycnJubm5qampmZmZiYmJeXl5WVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFpaWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD4+Pj09PTw8PDo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AKMJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNqPAgN2rNnzpw1a8Zs5LOOGylCc3Zsl6pMiwTtuVOHzp1BlVgBWwYtJURozYCJysMExgcLEBYwaBAhg4gcaEIh6+mz4TNksR7dQQKjBAcPHS5IqEAhgwshcWY1q2pV2a5TmPB00YKkRosRG0qwKCHjyBhRU9kuhMZsmC5Zoi4lYjOlyI4eTKpYUWKmjapjVAUjXKkM2CpNi+R8yQJFyZAqbMZ84RPpVrLMmg8+UzbsladHZ6xsuZLERxAzadpoeiWMWWyFz5YVkyWJzQ8WK0iMQFHjyZg/xJc9O57QWbJivVAF/5oy48SK6TmwLCL1C9lJ7j1hQ1t2LFgvWqBESZITJ0wXKVtc4goyzMCmWUfyIXOMMMMUE0wur1SiSB1VOMGFIa0MUyB8CBL0zDHJKJgMfbyAAkkhflCBhBWLxFKMMwZWhaB8zIy4zI3H5JLKIH8gUoYWV4ABSCe+NBNjSjMW1EwyNSKTTEuzuJLII4nYgYRvWURyzHYHolTQM0siU8wxxPQSDDCxYOKHH1W80AELVfDizHFHzmcMMcAEM4wwfNKiiRtScIFCBh7EAMta3BnkzDC7/DIMMcL4Agwun9ARRA49wNCBCSiMskyiBUGDzCqu9HLLLZsssskngKiRgwsu1P9AQg0rjGKcjEcK1AwugwiiSSemICIZGUJc8QQMM+zggg48gHKrT7nqqkoXaSjyByZxZMEEGWJ4YQQOREDhA4CoILpRkgg5wwoeShDiRyd6gIGFG2vIwcQQX8CxhR+O6GKuRjN6+WUvlbwRrxpXeDGGHn70AaAejBCiSSjDcAlwwEc2E0siYuDBxRJDZAACElKYUUUXfZRCyi2/8IQkxgZBYwwlYEDBhREmeFCABCGk0IMSXyQiSy/GbPgyukq6MgYQTUwhhhAqLDABByLcsMUfoQSjXbQqYRwjM6Q0EUIUc+yxRgoGHPCADF00skotxjjznozRCFwQM5oIwYEOejj/wkcWNoxAAhB5fGJLMck0AyPXDCFdt+MDOQOLFUA4kQYgfnyRAwYZ2DBkqcaQNPfRHYZqDCFL5GADDTWggMECGnQgxh6o3FIMM8yMfnHABzkzixs5gBBBAwgIAAABCQhhhB+lBFMS4xPBzFEzw6BySBtSFKFAAANMsEQUiGQCTDMWV1S6QF4ntBIyZf5SyAYOgGDGGJ20Enf5FgnsNfR1CzOHCT24hCVqAQxl2I0t52NIMgTxgiZMohO38IUydIdA/g1EGZhoQhkuIQpb7GJLoIIIM17hhj4swhOt0IUx8IfAiDxjGJzIBCdKkQpcYCaED5mPLkwxClbQ4hcGxGEOM5lhjDMRIxkwEqJDOgKSkHzEgkqMohSnSMUqWvGKWMyiFrfIxS568YtgDKMYx/hFKFYxIAAh+QQIFAAAACwAAAAAQABAAIf19fXq6uro6Ojg4ODe3t7d3d3a2trW1tbU1NTQ0NDPz8/Ozs7Nzc3MzMzLy8vKysrIyMjHx8fGxsbFxcXExMTDw8PBwcHAwMC/v7+9vb28vLy6urq4uLi3t7e2tra1tbWzs7OysrKxsbGwsLCvr6+urq6tra2srKyrq6uqqqqpqamoqKinp6empqalpaWkpKSjo6OioqKhoaGgoKCfn5+dnZ2cnJybm5uampqZmZmYmJiXl5eWlpaVlZWUlJSTk5OSkpKRkZGQkJCPj4+Ojo6NjY2MjIyKioqJiYmIiIiHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl3d3d2dnZ0dHRzc3NycnJxcXFwcHBvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dmZmZkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1bW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj48PDw7Ozs6Ojo4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAuLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wCVCRxIsKDBgwgTKlzIsKHDhxAjOkyG7JixixiNHUsmsSPDYrY4GaKThosVKVSyiEGT5o6mXRw9yhx4TFUcMEyUMBlyZEkQGjZq0OiRRRGwmTOR4UpUpo2WKFZ0sHgRYsMJGSxU1GAyyhhSj8ZwYUJEqVIkQ2GI1Cgx4seWLkayyGlF7GtHZMFafao0iA6UFi5kAK0yZ42YPpx2HbMrMVmxWKAEtRmjo8SLGyVA1DizRo4oXsZiMn6Y7FirSXOO6OjQgEKFBhZcTJFDKVfo0RGTGSPFqVGZIygiTJiwoEMRO6ZsEUOGO7cxV6EUofFyJouSIUOkbOmD6tfG5hAd1/9SBUrUJEaD9Lgp82UPo8/FRINniIwYLVeiOJ36lEjOGTmECGJII6Dwsth8DTmWyyyyrMIKK518AkgjnozyCB5wYKLLgQguhIwwveRiCy62wOIKKpRw8skifICBxiGxcNhhQscUQ4wwwuySyy285AIKJp8QYsUUUzTii3wzGlSRML/oEsssuORCSyl+ZLLJG1ogkYcuzCWJ0DG+1DKLKqSMIgomiwBCxh2X8OEGGZIE06WX8iUDDC0QLnLGFVDcQAIMN0CxBxxnFOJKfF4KlMyiHCHTiyiONHKIH1JokEABDHBQAx5vyMHJL8ggOSOjyth5yiObiKLKJXLgcMMKTpj/UYgiktByW6IDMXrMLZ3kwYgpt8SCiSGB7AEIIhXSIieuBJVmDDG3bGIIIn500soro4SyySix7AIMMd91KKoyxvCyiy+8xOJIH2rM4UggkliCSi/DHBPquKONmwwvlYRiyy68eAJJIoBgkogh1hKDL24cjWvMJ1zIIYsvxMDiSSqh1BJKIpvYMmeSjC5KEDGD5OAEKrEUg4suwPASzC644BLMwvmGLPJAwsChww6jsFIML7oIA4yNwwjjFZ02y6cLFCfM4AgmwOAySy+9EFOMRjTXHHKzraygwQpjHDLKJYJQcsovvgQjjIwIJn2zMshgksEDNCQhCCJ1FLGFHbG8/+LLt6JmPZFBbwt0jCEXKCCEEZIwosgfbaxhCCSrsBwuw3VuPRAxfHiAQBJiUPLIHEo0YQWAoOzySzEft23zQMUcIoMEQZyRySWSuoHEDloccgov4IYqbtIDGeOJDyb0gMUYWVzRBA4s8GDGIZ3IfMxGgntE/EDI0AJFDC6gAMQNPYjQgAYjZLGGK7gAY2/2gze7fanETJKECBtgwAEJEAxQQQfXycQqDMS2r7zNbaJJhjBMcYcknOADGRAAAAJwgB1A4RKcuAXrcEWqZh3jF7IoRShA0QMDEMABUgBDJ0phm9YND1+LQgYySiGEDrCgEIJIhSxABT8DOuQXbEiBC3MQ8QhVwAIYwksU/IKBBxbU4G6jaEUvXMishBRjE0d4whoKUYlX8IKKVTzIMWDBBjbkYXKoOFIYEwSMIAkCEpqAxczW2JD68IIWtbBcD8NIEYtoJIl0DKQgB0nIQhrykIhMpCIXychGOvKRkIwkIfc4yIAAADs=", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_9c4fc045324347d5b9c8e59513c832b2" + } + }, + "b90a786a416d4775ae3a591728680f66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_ccd504cbfb9a4e7f8020a3254b06b7b0", + "IPY_MODEL_0b9217699509434ba2ee5d5a812ce03d" + ], + "layout": "IPY_MODEL_71e9082c5cf04b8db455d24de6b250e8" + } + }, + "b958388344234472b55a3ba638e5eef0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_b3e6e29f4c3942f3bb235017210505cc", + "IPY_MODEL_07cd38701c8a4a43ae600e53eaed3d1a" + ], + "layout": "IPY_MODEL_72bda943b8ae48d8aa4037a542141842" + } + }, + "bce88ef585c943349decc0b69611062e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "c2fa1c8ae73f43a997d4e140e047efd8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "c3056cb840c04c1a9ca5ac637bc63e5d": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAAKysrKmpqaWlpaSkpKOjo6KioqGhoZ+fn56enp2dnZycnJubm5qampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wBNmfJEsKDBgwgTKlzIsCCoUqQiCdSkKROmS5YyatzIsaPHjyA9XtIkapQhU506YZokKVIkSDBjypxJs6bNmzFdRppkKZQnUKZGcVopCafRo0hpRpJU6VOnT6ZIedp0idIklpKyat3KtavXr2CzXqVUCROoT0BJfRpKKazbt3C7TiobClSoqGsxtW2ps6/fv4ADC/Yrlq5dvGz5Dl7MuC+kR44cPXoESWdhTKEyI9aruLHnwI8aLUpEepGjykslzcWsWW3iz7D/QmKUyJAgQ4QOKWpU+XLmu645xx7u8tEhQH3avLnDx5CiR6lX/97clvhimJMnz/6TJ4wXJ13WAP865Cg63dZ5q1sPDMmRaEWKTCO6E8fKlSdPvuAp1Mg8a+DpdbZeX44ogsgguBmSSCBuuFGFFk1AYQUdhPTnG3qvDfjXIoQMQp8dexBShxle9KCEEEBUMQd//k0XnHoa6gSJIXnUUcYWYKixBxtYNEHEEEjcAMUdhpR3IYAZxlhcIG+I8UUWVHixBhhbLMGEE0jUIMUeiEB3JHUCDiiJI3y48UQWTVQRBRZXdGHEEkkkccMXfSji0pcvhrmeJIvc4QYQS+ggRBJDJDGFD0T88AMNYwBip1bSYSickkshMscaRAhBgwkz3KDCEDbgQEMLMIjxRyJ3qnYekpMqKYkhcMD/MYUTPFwwAQcVoDBCCjGA0IIXfyACCaSrgklpS4TM0UYWUzSBQgUVTLCABhjccMILVvBxiJeq/mesq5AUggccYFxRxQ8vXLAAABJowIMLNFiBR5fEepvnsZAkAogfc4jBxRNDsAABAhe08AMMQXThx3MtSgpjjLPxV4gfbmihxAwRhNCCDkH4cMUbhDDCbaSsPrznS40oMkkkjxDCRhhVzHBED0UAkcQYfCBy2p0kf6thS5AtUsklmEhihxZcCEGEDjs4QYYd/MGUKiX2BhhjViw7wsgkmAz1iB18rGHGGFeM4UfUhFHtotU/F+UeI5JcsokmjwjSSCGE5DFHHPE9/4K1ZWo7rGdsWT3WSCNMXZKJJCJHwuEeg0A2iVVb9XzvzysvNddVkjySCCSXQNLIH42cVkkllFDe7dpJfjbTTpOXRVElllDCiCKadLKJJY2kTrslqFNuOduNyWTZXKdbwgknnmSSySWdfxKKKLtfQvRFGKF+VbGXCwbpWGSd/jvqlWjC/PKYnB7KKKSolAlFFWFyUfCGlTy45pOH/7v11tfeEtfM68RQMJEJUZBCKnPTxCY2YRH5AY8smDlM99gDmUYwYhGLgA8jSlecR1AiEynxRCcU6An2jWIq8IufRS5BvkvUxX6y0ZqBDIGbQPhhD3jIwx4CUYhFqGY1nPiEU/8YmAlOgAIUQ3HeAht4kQdSwoUSJN5LClSIP/RBD3aQgxvUYAYnmeENeAiEISDxRAJugiCaqIolMiFCJS5vbit84OSgCEOXiA4RgbhDG85QhSWcCQtWcEISoOAFN+yhEI4giyXMSJWryC0lm+gEQTgxtyZqb44v9NkjFDGIPLCBCkDAQQ544IMe1KAFL+DBE9Bwh0EoQhKpk9sm9DKXSIIihAKEIyaAd8knZrJ7jTBEHxzEgxf44Ac8GAIPUOCBC5hACGPIAyAW0TtK5I4TFcnEJo7oExFSMo4ZuWT9fMYIQOThC0vwQQ2EYIQbAKEGIsiABTxQBDPwARCJSCQmQuj/CU48ZXqiGCIDd5k9OUonikkqZx28YIQcEKEHRIiBCkLwgQEYAAI1qAIc8LCIR5RFkgaxS12wGT+M9C+c24tgHSNxtzzEAQ1JWAIRYDACDpQABAEQwAN28IU39GERZOxaCNFyRFBMZYWoswRGlIoR36nUZ45IhIfacAUn9EAHNIiBBQRQgAWA4AdZwEPIImFNfopUFAFtpEvmkj2isZB2T+1eaPRlhzNkIUs5sEACCMAAB4jgBVR4gyEiYYlIpiSEdkHrJzQxCamxFXsOhOsvifcYRxxiD23gQhNmgIEDMEACGWBBDnqAhTUU4hGWMB8lK5I7kaokEuV54vUuIr+l/8ZVijBhhCDmUIYirEACE8iACkT5gySUIQ+nlcQisadESS7WEv8bifOeJ79d0o6OPrPjIv5whywMYQUbIEEJXtACGQRhC2/4w3MmhxVrLtCf2ORlJbSpS0ueDrsTfEkiykQFItTgBSoggQUyMIIYNGEOgwAqJSyBHUpswp+RxCZ1VUvE+QXPlwhtlR0VoQceHaEIR7jBDUgAAhKIIAddiEMfILHGMfVOgIel5IOXt9rn1S51Y8Evbh+BiD+4YQ5m2IIUhpADGpwgAyAIwRLKoAdDlO9/XWOeQd5Ykeylzirt1XGS2sMhPsBhDWPYQhWo4ITvTkABFOiBFPRwiEmY1P98nhDiJyZpkdqx5Cp43oraMgyjAhmCD/QJwxaoAIUlKGEHH5iAARxwgyTQwRCToMgCDQvJTFiCJX35IVa0Erg6QoJDgIiDGLaAhTAwSwlFaAEEFNAAEaxgQiqT3wrfp4ldtuUxvdE01jhdtQzlC9CaVUIWvuAFKBThByvogAdM8IIkkAG5QN2JahbJws6IhXN/E0unvwWJQ+AhDVlQwiC9EAYoPMEJQshBDW6AhCeQAQ5+0A1vIjE0pGKbK4RZneBaAglE5GEMVhCCEppwBCc4gQpWaAISmkCFLnzhDHUgRCIQ90QFVhl1f/OevoFzy0xUIs+MGIQa0HDXIPTAB0PKGLgUqrCFLXxxD4ZgBBkVp8AF1vrSb8Hzgr1VivRsOqp7SIMXtGCFKmCBC14AAxiy4AUz1GFhO1mwUmVdZxiFZSzFKoUopoK97E3CEYLIgxzaoAY2vGEOd9iDH8aTyKl3nYDvA2dI+Ec0baL1LpkghVGJ6LwmMs42gRAEIQxxCAVPfbqIT2Hfq1tdxDv+fZEchSju4gmBlAIiB8x85kfB+c5zXvOgD73oRy/6y5vi8hLh/OR/w/q6FPX1Im097GcP+9bbHqAQMUVAAAAh+QQIFAAAACwAAAAAQABAAIe2trazs7OxsbGwsLCrq6uqqqqpqamnp6empqakpKSjo6OhoaGgoKCenp6dnZ2cnJybm5uampqZmZmYmJiXl5eWlpaVlZWUlJSTk5OSkpKRkZGQkJCPj4+Ojo6NjY2MjIyLi4uKioqJiYmIiIiHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRycnJxcXFwcHBvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBTpSpFsKDBgwgTKlzIsKCpVKgoCSQ1SlQoUBgzatzIsaPHjx9FnUIVKdUpU6I8ddrEsqXLlzBjypwpk5MnU6Ueoiol6hMnTZmCCh1KtKjRo0iLatrkqaBAU6RCeeLEiabVqy81AQ26tCVVTp1AmRr7lKcnl1rTql3Ltq3bTJcqTZpbCVOmrizDmjpZVlQnt4ADC84kF1IjSI4gTbJ0V+smTmJPner7V7BlwEK1XoKUCJEePoMOKcaU9nHkyalw+lWbtLVRTJdi262ESFAbNVvW2FkU6VJpyHtRq67surhQ2HInSaJkKVKgPWXKcOHShhAk346BS6as1bhxS5MiNf965OiRJEV16mS5UgXLmEC9f5/mvtV760mNGA3yI6gQI0BthDGEE1ZMIQYgk5CW3Xyp8UScfa09st8cZ7xRRyF4mFFFEEJ8YUUXhlDS2FLaCedgdxAihckieLzBhhlhsHEHG2U48YMQXogRhiKVLLVgcPSliJQlhdSBhRZTcIFFdGMoAcQQX4TxBiOWbCIfkA2uVp+QQ2lCCSB1EFGEEVRMccWZP+gQRBVT0OFIlVdul+WDXHYpSR9yJMFDED/kIAQNRJwAgw9HEAGHIz3GaaKWdXapCSR5xLGEEEb4QMIKH6RQQQg5EEHEGo6IqGiQjXKlySN6rMGEEVg4AQIJGlz/EAEIRSghhBiLTDKiaVgOh2KjaUHyBxxXNBEGFjeAQEECFqTghBM9kIGIqD/K6euWQpYmCSJ82PHFGF0MYYMJD4iwgxVVJBFHI4yNOuevXDq2SSWNFIKIH3eksYQPNajgQxNchHFGIJL4ZiWJDF5bKl7NKfJII4rkQQYX6znBhRlvDPIIYyxVuyid2ZK4ySWUOBKJJJMAMoYWRzRxhBRp8BGJrl15TGq8JGpiCSUnQ8JIH2TEYYYXaazRxiCVXELawQj3eiK2EJLICWHhTVLyH234YQcdgQBCxyKyrcWrtU8D+9hPOy9GySOEDDJIH4EYosghklhiV5djfwxvilJv/yIU2owcYsgh4zkiSdJ21acVJ584zWidUlfVySeg/BUJIokEtQkklCSelqmMOw4y3yyBFZYoPc0LiSSgiDKKJnadXdVvjZP9eLxefeL6KKOAAnsmpBD0SemeFD87ibXrDXVSbD2WV+ukRJ9SJ6HsZYpUnlD+iUqzP5b8za6pVXonKnVyOkUVqVT9KaNcBEooF22/EvKi732UvFSRTzko22cfCu+9WwkoeHeRi6AuflMp3ffeBTXxnc18xfuEBPc3wdbxDnX8C0VU4Ae/A/LvE534ygIVlhm8fAWCE5Qf+bJnwegRBH28215GQmERCRrPe/XbEiZgY4lKUEI5kTgZc/9itxQWiiJ4Y8EJRdD3GE+8zyL8K14IcWg74mACPIhhRCIOUQhB/MEPgBAEIhClCf3R0HVIVOIoXDiK4lkQiiCcIktGeKJMWEISjCjEH/Rwhzm4gQ1pKMMYzjCHPyjiOrqrCAfXGDxFjuKFNLwgBhPYsU3Q0S92hAQi9uCGMUxhCEOAwhWyMAUlRAEMczAEJDAhCoK00X8XdN8aSwHAisAxhFVRoOgwMYlF/MENUeCBC05AAx8EwQYuUMENogAHjbFyL22knOssUsBZog+KUZSjLqt4iUcUYg5V+IEKWoADHPiAByjwgARCYIQ1EKIRmxAFNOG3xlhGspHtg98HuZf/Syp+zBKKAEQYniCEcgqBBzyQAQkwQAEOFGENhXgEJ0ZhvehZ9IItVKQ+JyhFOYauipVIBB/AoAQdIGEHNLABCizQAQEYAAI+6EIfGuGJVo7FoqWIni0jic3+cbR82/ynIwKRLykkwQcpuAAEKICBAyBAAjhAAyAk4QnevdCFrrTlGmu4ErBMcIVT8ar1KIMJSSyiD3GgghJkoIITZGABAyhAAkagBDEQ4hKf+N9VLUoK1KGxrz4ZnxOjmL0QTm6sc7JjJBLRhzRcwQcqKMEDCAAAA0xgBTjgwl0/8cgXArCG0qRI5YBikxn2r6O1e0hir/gIQcghC0gwwQQKEAAE/2zABTwgghoEgddH6lSjccwr6ijpRGqG4rSGveRfMoEJSkTMDD9YAQQQ0AAT2AAHP2iCGxKBCc5a1K8Y5N/7LjIVM3pQhSLMYSYogYg+YGEILvBABkBgAhfEIAhbqMMiLNEJm9LSlsYVxftAUbziYlR+X/EnfcpaCDlMYQk9mEEIMDBfEMjACXZIROc+kROoVESRFvGr+3anyO31M6gLlsQg3qAFJSjhCTJYQQo+MN8dnEEPEe1Eh2spyc+Cl7xTZMtH9QYXSBwiDnQwwxikAIQbvKAEGtjACa4gh8EBLyeocyFfbZnNnwRmyJSBSy8F8YYzfIEKV4CCEoLAAgcoYP8CSihDIDJHipvyFYbk/Qlzd3i35oF5TpfAzyDy8AYPLQEKteqBCRyAgAr4QAuAWAQncnIKWnpQn/ODiyWUNiIUZUe59DpEHcSAhSc8oQpbaAISZJABBiTABDwAgyAmwWGCCFiK2QPhJvjM6U47SsFZ4oQkDMEHL0QBCU6Qghe8AAUhyGAEHkgBDajwBkNcorihmKL+bLgSotjPXarhhHPasIUkPIEJTviCF64ghTXrAAhUCIMdDkGJMpqviZSjYZ6Xp5SmyanSo+jEJAqBmyRI4QpKaIIUrOAFLFCB4Wuggx9ydTY3dlDEINxKYLyiF5AyQg5rwMIUgMADIPygCE6pwEIXxlCGOgCCESLaxOQkOMONZrrTzRsfg1BhilEM7xKL0EMbzqDkMaCBDXCQAxvm0AdErDIs48XI/jaiQvNZvcBYj2DrRvIQUZiEJyAEutf+yIY43MEPhVAEIyahCeEe0H0cjLvUU0jzj9ATFTw3iUD2jndUnAQnHd5L3/dO+ML3/fCDL7ziFy+QT0DE70nMKUXAy7vgdVgyf0+i5jfP+c5rXjKo2HtAAAAh+QQIFAAAACwAAAAAQABAAIewsLCurq6srKyrq6uoqKinp6elpaWkpKSioqKgoKCenp6cnJybm5uampqZmZmYmJiXl5eWlpaVlZWUlJSTk5OSkpKQkJCPj4+Ojo6MjIyLi4uKioqJiYmIiIiHh4eGhoaFhYWDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NxcXFwcHBvb29ubm5tbW1sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZUVFRTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wBFiQoFqqDBgwgTKlzI8JNDhwpDCYQkEJRDT546adzIsaPHjyA3ctqkKZNJTZs8epJIcSCoTiM1yZxJs6bNmzhlZrI0CZIjn5AmWcpEk1MoggJDfepE0qTTp1CjSp3q9BKkRIj07AlUyNGkS083GUyqlOmms2jTql3L9qzOp5ouMTIk502XNXgWScKU1uhRsktJ5hw8ONOlSpQmTaJkKdKgPF++VKlS5s+jSyjP+pU4UCmnt1RDT7Uk6ZGiRYoYQUJUZ84VL06mYLnDqNLMTZsBfy4puvdTTJMWIfpzhw+gRH3WjPnRRMgQK3Zq387d+dNn39hNYnIUSE+bL2fgBP+i02UKEiJGajzZ08jS9KOcj1rnnb33pUR0zJDZosXMnDNhROHEE0jI8IQfl733V3XX1debJYTI8cQWTWCRhRhggPGEE0w8YQMXgECCiYLxeUafg1RRAkgcPjRxQxFONAGFFUYoEUQQMnQhyCMjyoQbfLqdiKJUkvQBRxFCsDCCDDeoUAQNQOTQwgpWAOJIjyhRJ1+DQ0YlU5F2VPEEDhU0cEEDJ4TwAgwhnHAgI5j5qKWJXUr1pSB5iIEFFCpIAMEBD1jwgQwisMBEHou4N9Oc89UJ1UyTHBIIG2BsQUQNHSAgQAQi9LBCDFPQpqhMjHLpKFFnVdLIIoTEccYWUfz/8MEBHsyQRA0+hGHZqJqUKmSdmV0ySSWSLNIHGl8gkQIINATRRBFX1HFIJHGSCiSDv3aZGSaKWgLJHnCgIeYSTUgBhRqEMEIJlr1eu2W2KPpYEiacaKQJIWq8oYUUSSwBRhuAMCLJUEW5S+epqDaFSSeefOLJJINkNccbbsRBSCPDstvugu8iTJRO3GrSicOUeCWcIIKwFwklYNXkq8czcVsJvRplspgkjihyyCGPQMLyx4sa3CjCMV9yCSZEcTssaZEY0kgjK7dcMMcHn/rWiLjJdFgmm2Byn1eMIQ30xiUObTV99XoS08IObxKJJJXMDJe1VJvtKH29NrzUZ58U/+QJt5aARZRTdJdtqscp6b1UJ6BIBAonmWCCJeFkB+lx5CYlfhFGnL20m1u8FW45ipJLrp3YiXPkSeOgqE0SbqAHXffhvpVeeuRIo8RR2gXtrRknMU1tOLwOmo7b7g0XJFJKMAUvOrZD0nTWx/U2D/zIBV1fvUYjCVY59L1Jj5b249cL/FmMWwR82hhx7/3LVPlY/vUMtz9S9etj3/r6nGCUEUzvExrtxMe/AmqkffX7H0ySZ53xMcx6AZzdicT3u/PpJEv+05tFANg/h8mpfhAsyfc6JjmjWaISk5BEJCABibct5oSWwFr/GqbB+fSqfprJoPvewqiu8SQSj2gEI/8SYQhCBOIPgSCEIqBWicBxbXsHvEjXuAZCjDgMgW45CaMyIYlGGEIQf9iDHeYAhzWYoQxuuMMfDrGISMhNfiep32dGxLArXhGB3bugll5CCUTwIVx7okIYwuCFKkhhC2m4gyAU8QjGGO1oO6GjwzjIwDty73zeGyEoNuGIP7zBCj/IgQ+KoAQkRGkHSvACHQLBSJaZLnR1RGANFQhBtMguPp/AxCHooAUfxOAHQyCCEoTgghF4wAVNcIMgEPE2pB1vgYprXzR3V8DYaekTlRiEGZ7wAxsMwQg4AEINPHABC4TACXAgBCKCwjX/PeSd7nxIRjBZQOddsxJ/EMMRajD/BB0AYQUkyAAGBmAACPTgC3kIRAv5YsW+GWRzELFIRjahxXoK5pqXGMQd1HAEJfjABBuoAAcuAAACUEAIZbDDIBoBiUpkoo4HuUj9HsqUk2jGesG7ZiYY4Yc4VEEJOJBBC0zAgAAUoAEkIEIX+HAIJmqiob2b5Ej0pzYR0u+SedwjJyRxiD6k4QpBcMELHGAAAjAgAiSQARXikAihZGKG7sRi3hwCEx8lcJ4W1KQnLsEdOGzhCCqIQAEUAAENsCAHPLDCGxIBiaEw74EeuV77fqfD5kWwbJqYBCLwUAYjmOABDrjACnQgyiSYYQ+IeMTA+FKvK24vI7C9ZB0nCcBM//ZwEobYAxeIkAIMgGAEa6rBEb4wB0E0QrWUmJnIHnJAGsL2ufKcZyaJ0kNJEGIOWEBCDVxQgg1MAAMksMEU8GAIR6gWMUPhRHSdG08dBs9L1RXEHLqQhCMU4QUv4IAGRmACIpxBkY3ERBP5Yse+wdN/lhXNCJWiCUgYwg55WAMYrFAEHMRgBCIlgRUAdoiZwY1eioPn8k5nOy9pshOWYIQg6vAGM3wBC1Vogg9IwAAEVKAIWvDDIQYWwxtWdn0KM9rtpvI8BkNiEHuIgxi6cAUpKOEIN9AAAwrqAyjgoRCRyF1Jxue9pjzyaGKL3wj3mgg8vMoKYMCCFIwABBQwIP8BCxhBDLaAB0VIApJeOxoBFWa68I2wE5IARBmoEAUvlKEMV2DCEPL7ARXQwAlnYCrGmnhCsPxuecQz8Z8jYQcxSOGQamADF7aQhSYEgQc/iEIW3JCHQwQlhs6sXgalO0FN29VdnYgEHL6ghChYQdVYAMMYtACFKWiBDGqYQyAc4UYZXnV3TfENiQQiilz2wQ5lgAITOgoFLHAhDGNIA14GwQi3PhOn+cMkYTIzvpUMRBSggHcnHOEdMwyyDKF+QxnjsAdXX+KZtAQJJitYTwN6IinUpnZZKIqqtH1iQQmPuMQnTvGKJ/wTSXmJJioBRPO2cF2bSF7j4ENygjDkICUGTznJEx4QACH5BAgUAAAALAAAAABAAEAAh6+vr6ysrKqqqqampqWlpaCgoJ2dnZycnJaWlpWVlZOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIqKioiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/ADcJHLhJk8GDCBMqXMiw4UKCjwYezESxosWLGDNqvIip4yVMlz5axJRJoCSCmTyGXMmypcuXMFlWmkmJkiRJkyqxxERQoKaUIS0JHUq0qNGjRF1WkgQJUiNEihZBklRp6CVNBQn+7KiSq9evYMOCfFnJUSNFh+zg+eNIkiWPPHsWzBSzrt2glWrqXZpI0SBCbLjEKQRJZ8i4PTWBRMq4MdFJN5s+mspI0KE8fshEIcOW0krEWhc7Hl30kiVJjh4tOnQokaNCegTVuaPFCBc9jDwflltQNOnfQiElWr0HTyBEfN7kiWNmCg8qehbp/shbsWngpC9VamRIEaI+bfD4/4mzZg4dME90TIk+HbRE39gZh6SkiJAgQnfQtLGTho0bN1YowQMXfDBiGHVyWRefYyFJUsggdgCSRhhprPGFG2ec4QQPN3jhRyMHuucTfAuWZtojfwACRxxPJAGFFj2IgcUVRKhAAxd9gPhZdSSWaJVpjewxiBxqJJECDEOIwEQSQujggQ1bfBgij9f5mFRIlTBiRyBzqBEFDTcc0QMORMSgAwkxVJHjlAn26ONKlSxSR3JoXMEEFEsI8UEPMQQxQwlV6OEIm4m5WeJKlCxihx1odMEFFlggUUMJNdhwBA8tZOHHI4SGVqWVQgUliSJ2vEHGFFZkwUQMHKDAwgo00P/wgxiCFLZjm59auZIlkRyCxxpnQAEFEzSQAEIPMIDAAQ1JxGFIJJ2+l+uboibiR35Z0NiABRbMEMICGcDQxR6MTGLJrYVOS60llKjGSCF7wKEEBC/ssIQRIpAwBR2JUHXubriCeqUllUwySU2PGDKGDFyQcQYVOyTxBiHQ/gtwugL/KFRVovoRxhp2uPGFFGf0IZ3FF3uasVGHdTSJIf25gQYYYOxxCKcuidibuj7OdC5JKVnSCB93yPHGGnIUwohbOVO58sY+e1UWH4vKMccgiTxCyZUIYvz0TBx7dFojjCQyCCKPROLvj12r/LRVXmm3tSUH63Uu2zor+PbPX4n/lJJou1qct6GkgX0lVyxVdFfb0pYI9uP/9k2SQX9/NtZOTmP3uOGhegUUJlhtNVbcmAcs8HV+d5WJQYiDVbrXv93VUeUibdUyRYij6zZSOYtl+d9Asw5XRaQzPuK0LYE10lcaUZ487rkb3xvBlEAWSVPYq31w2GFVhJD3P4WaevF5XzIJJIwgQgggfOyxhx579AHIIIcs0pZOXGVEuUU/HcbR5SkbSCYmsQhB3MFCU0BCEYDggx8AwQhQ8EIa8HCISLxFLEDLH/EyohLd+cQSi9CDGq6wgxSMgAUwqMEMYuCCGeAgCFEIAx8GBUC4tW51P+EgAAO4iQEOYg5UkIEI/y5AAQ5sIAMYmAAFNiACEbTgB2UghFugVhW+5e97xCueBzVxiUf0QQw/KAELXtCCFohAAxVowARCkAITcKAFVpjhUT7iORzmkCR9a5pWslQHKgQhCEVAQhBswAINTCACFGABEXwwAhc04Q+R6F3+grc/DALQPZqIEx2+0IUzlGELR2CBBBJAgAEUAARmekESvIAISkBPeSmhyP5oF5YtXsIRg+gDHe7ABibc4AMLKEAABMCAGAyhCErowhwacYn/ze4ilURdLXmICUkkghB60AMZsJAEEyAAAAdQgAiIwIQrkOENgIBEM3H4Ss9NBHAty6OIMpElRATCDl5oAhE0wP8AAzRgAy+AgQ+scAY8JGISk6NcHmu3lc5NknQiUkwkEAGIOpxBCiywwAMkEAIRhAAELrgBGPIgnWZWsoZvIZ40l5c7nWWCEowwhB/UgAQSiAAFN9jBCkCggAnEIAt0eFZKgTcWK0LvM868XN7iRAg6YMEGNfCBDm6wghSEgAONTEIX+DUJOmZQqXgEnt/u2EEeFoQSh/iiE4CgBCHcoIwsOEELZqBCGEQhD49YJ0uBtjyMlNWDPkFrH8YgBTGwYQxYcAITlKADDrEqAzhIwyL0mtSNqIRr0htgIooDBzvkoQ1duEITVqgCHxihBxu4wRsSQdmNLC8ovOOhYh7RVDf/kEENbyiDGLYQhR14wAEfAMITfEAEOChiqH7NIxWraCLjDdAQeljDFKCQhCUgIQk/aEEHIIABFvxAC02IghwQYYkNAqUlQ8kL5+YYQE1YwhF+SINzWvCBuebABi1IQQqIuwUxkAEMfXAEHQOn3vRujkHtncQh3hAFIARhrizQQQ5uwAMfQMEJZYjDHTyLCAuaBmw1mQl6gbNFSQyCDIE87QtGMIIVtIAHRXBCGubQhxQVYhHQUq/h4lnU7GyREoJogxW+QCMakJEGO3CCF9QwBz78QRCJYAQkKFHFnfAVd7BFWUw6khhLJAIQcqgDHMwAhi5oIQu3dQMd/CAIRDDiWxGS2JpXmafSLDdXjwTBRCQWMYg/6CEP7tsDoPtAP/sZTM6u4/FlMQsTkrQpEmZJBCISQekopyYSutGgJbW4ODqWhDegDrWoR01qUX+6IAmRZUJE7ZBWKwTUAQEAIfkECBQAAAAsAAAAAEAAQACH29vb19fX1dXV0tLSy8vLx8fHxsbGw8PDvr6+vLy8ubm5tbW1tLS0srKysbGxr6+vrq6ura2trKysq6urqqqqqampqKiopaWlpKSko6OjoKCgnJycmpqamZmZmJiYl5eXlpaWlZWVlJSUk5OTkpKSkJCQj4+PjY2NjIyMi4uLioqKiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19fHx8e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AZwkcSLCgwYMIEypEmMqgrIcQI0qcSLGiRYEVBb4qKDGWxY8gO8YaSXHkSISyTKpcybKlS5evXMF6GAsWLJYoU77cyVNlxFivWLnyKAvWq5s6Y6HsydSlzZtEY7kypUomrFZYX5mUtbTm069gw4pVafQoWVekULFqxaqUqVStoCo9qFOs3bs2TRp1FXdkWVeiTpk6BcpSplGrtJ6k6xWv4696g6rSKuuV5VahTo0qhYlRJE6pFM912PjxY72uVp2SKbWVK1afTnUKlWgQIUurTS41zTtyqlKuXalK5QoVJ1KYNAmi40eSqaGLSfM+HdlUKFWqTmVmNUoTKEyT+qD/sTPJlOjd0/GufDXK02BToE6p6tQJVCdKdcbAoXTqPOP06qn0SiieeBLKJplkluAnniSiBhh2ZJKKXOgBOJZKrnACiiSaIOJIJ5xIEgonmNTxBRNzcLIKhf9ZeKFJrVTCCSGJyLGGH4DsYYkjh4zBRA5sYKIKi9K5GNZKrEyCiR9/iLGFFEtoEQgeZ1ghBA1hUDKhbi0aCZlKrVAiCR1t3KEGGUxMUQUXTVCRgwxVONIfl0V6+WVNrWTyyB9xJLJIH05I4UMTO0xBxAtVKDJndByVZudTeIbySB9xMLKJI294oQMQQ0yxQw5dRIKKf3U+ClYrplSCo2drOGHDCjLU/0DED07EgcmodDZq6ldHweJKKjPyMYgfWHzBgg8gpJBCDFYM0slkuRKU0q5PWRYTK6RIkkggWnRgQwUuZBDBBzKM4QhwROpKbVnWsqLdJ3GQYEQKPPSQwgtTDBIKK2YxKq2j6/7ViiVZfJGFjVNMgccmick1mroBQyWxKZD8ccgec7BBxyOlsKZSheuyBMspl9DxBx+A6LEIJ9CuBPKjO6UyiiGRNNLIIpeQ0pfLXZq6lV42uRsJJJRckgkoobX0sp0/N4ZnKaKIQsopq3jMc6kwe0RWVDFh1Uq/OPXMNEk0kT1LUg4rLbaLPkG0FVdJkR13tANN6yVLIv30tt50Y/8EcFMu/SRSTUTx7W/dflXbNVassLLKKmu5YlXbIDldeNl9n+3XtaukckoppIwiCiie0PfJKKfwi1RIdkM1eOYpXaudJpMsQkgge9hYRhloMNcIKKzMZNHblLsdtkO+rmLKJ5ggogccc7yxRhhSIDFEEEtg4QYkE85tvNzDH18QUK2oYkomh8DRxRVieGFFETS0IMMOOPTwhB2hQAdpVOBX5BJCrXFXJgrRBzu8QQ5mWMIOUNCCHSiBBybYARg0wYqaWGZ1NAnJSwBoGe5IYhB62EMe2rCFHcRgBCG4gRKCAIIRNMESFdwf6zD3P7oEbRSVkEQjCkGHLeBABBRYQAP/NnACFEzABFfQhCviVjmtkWSDBwHKVVChiUs0Ig5TsEEKPFCBBSTAAhd4wAJUIAZQvMJ4TWwb/zLnq9ek4hOX2JYatDADDWCAAQ2YgAMccIEl7KEUwpth4lbyvYcR5BVsWYUqSgEKShQiED56AQggoIACDOAAIeACDC+XEbflRW5rNORAgHItVBCIEoaokg5KkIEEBAAABPAAGTgxlAzyDW516V/hYLc5tqDiE4VIgxN4AIMPHCAAAjCACLywSe8Vr3iv64qvYoKKAa4hC0j4gQow4AAESAAFSfgDKUQDTRpy0pyi9FtZYLGKUlgiEG6wwhKGoAMXqEAFJlABDKxQ/wlWfM9//SskLxuzilFc4hKI2EMbxhCFG/CgCEJ4gQlsMAhUnHOG6OTlX1TxCUpEghB8aEMUZGDPJ3jhCCFoQR5KcVEN8gQlyVsFKTrxiETUzBBxoMILZMCBH0DBCCU4QR5MwcmzlQRod/pYFF+hPFHEkQ9xsIMd6oCGKNiABSkYQhNW2YI/EPUjZLFLDQ0iFXdtghF1UMMY1IAHEK5hC0g4whOgAAMSDCERqeCkyGxywaSKjyCwaJwpOiEJRdABDnLQAyH2AAc2rGEMXVDCDIqABkusaCUOq5Zf03Y4gezlFJugRCP4wIY20OEOcnhDGrIghSPQYAdb6IMnEtNXzq+CBXAANEoqMgEJRdghDmtQgxrQUAYtIEEJMNhBFexwCVN87YJ7QxvgPALAmrjiFJ/IBCMOMYjcvYGhRigCFc5ACE6g4mufBOh0qXsQvrbil5fQoSIEkYc3mCENZIADICxBioYRciLrVapBytIK1YyiE5mQxCIOwYhFIOIRmOiv1VpCw9v2hCtR3Es7P8GJTWhiE5wIRSlQUTXFCPRyAfbJQlbM4ha7uG4vjrGMFxIQACH5BAgUAAAALAAAAABAAEAAh9LS0tHR0c/Pz87OzszMzMvLy8nJycTExMLCwsDAwL29vby8vLm5ube3t7a2trW1tbKysrGxsbCwsK+vr66urq2traysrKurq6qqqqmpqaioqKWlpaSkpKOjo6GhoaCgoJ+fn56enp2dnZubm5qampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVdXV1ZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AHkJHEiwoMGDCBMqRHhrocOHEB/uikixosJdGBNi3Mixo8ePIENy5OXxosiTIhFi1KVrY8GMKlHKRDlwly5cuUq6jDmzp0hduW7pqlmSp8+ZLFtyBGprqECXOw8e9ZkrFy6lK3PRyvk0Y1SDU3taxeUVI65ZQgUCnUiSrdSwMm/iIojxFixbQnXZujoR5lu4P3XdmltT1yxWsGTNmvWqVs6vLwEHrlWLrc1cq06RguUKFapYZCHTlfyz1taJVmtp+uSolKdNmlgJFU2UNMhcsGjtzWXLFqtFlgJpotSoUqqmtLva/ogrlaxYsmS5onWqEKQ+jxxhX4XcL9jlH2+F/4IF69WqVbA+LaLE6BGjPJBa3RppFPxGWp5OpRLFyZMqTZpscokjh/yRCWj0/WUfRrm8MhwommQSiiibmBLKJoYQ0gcmszzmXWQLtnRLKpLkQUgheyQyxxycaDIJIHroIUksHrr13YIY1RKKIG6soYYZcfAgBR+F8MGGGWck0kpoH46G4y6zcILGF2XYQYcbLTBBRRpehAGFF3uY0p2NIOIY5RdhdIGII4bQgMQKSxCBBRRR7AEKLVhp9OQutYzyxRZN7CEJIFUMccINOCThwxR23JlnffaNyIYWTXxxxxYplAACCR6csMMXhIQyy6MKLogbIlv0AEQMEUhAAQofXP9QQQteLEJKLaTeiKNgphzShRMVDADAAR9AgAAEM6hRiSuzNVnbk4K9IookODiQgAYsAMGBCVU0osqYZDq5J1C3xOKHECRQsYUWQkhRRym4dqQnXEmhpIsqhVwRiBxxkDFHJbDU6KxyRyXF0km86CLLJm8oYocefUACL1bJtYWUwfXKq7EtpigynCOObOIKkwnqChLGGINkMUe5uLIaJ5l0kkq8RZW650a3yPJKK67I0mzNJq8ElFW33NIbZZTtRrHKJAGFS9G5LF1ymVndUossnLXCiiqomEKKKKSk8kp3dD31rEzzsoSLLbGo8skkiQTixx52wIFGGWawcccho8z/9xfBaMdELi2vnOJJI3zEgUceecQRhhRH9PDDEVsUIotTMGmsOdNS3WTLLLG4AsoicozhBRttsMGFETnUYAMML+gwRiok1/xVSCp5PgsthIdiyB5xyMHHHWt0EYTrPsjwwQpRfFKZ1E1ahrtUqdVyyyyqZHLIHn/wYcccZXjhhA5BKHEDBx0EMQme0FOdklRP44ITLa1oUokif6zhBRNGvHACBy1wQQgi8AEjUKIy0zsKQgRzi6oIRhaj6EQk6jC+IzxBCDIYQQku4IAGuOAKnpjPghYoPwdaTRWjwwMYsECFJSRBCDTYwAQiEAInuEEVArPNAqtSlafVojOXWIQh/+IABzFsYQgXOIAAFIACLUzicj2BXl+SYxODrQ0WpyjFJQyBhzuwIQszsAAABGAAC0iBEnhKIE2mdjZy9SYWp4hEH9aQBirQgAEBKAABJHADQARMjR+xmHLmZZOnGU0WpaCEhuTABR2koAMOWMADRrAFUdgCkFAZJBtr48Zb0CIWprBEI/AwBzJUYQcxUIEIMkABGShiVIFc2Yc4952h8ZBwogjFJBzRCETYAQpKIMIOSoCBEMThFVKUpVve95axVMWTqfBEJQahhzqgwQpP0AEUpOADCnDgC6yQnjKjgrDc4cJ6h0zFJRChCEQEAg5lcOELipCEImwAA1VAhVMAF/8WjeTCNJ90BSkk8QcugOELajiDGKDAvyQgIQebSgMr9jlOBZKQFrOoxSxWoQk7fCEJTwiDHezwhzj86Fc7SEEQ+BAL6emwc7ighSxqAYtVfIISeWDDGtwwiEAQIhEEdYMWjFAFNmACgYGRItDoYpXe0MIVppCmIeo2BzjsYQ+D4EMZwDAFL9DhEKfoztIM5hMSys9osBgFJq5TBzm0AQ5ymEMf0OCGK6gBD4sIBWgOBh6EBOWsGl0FKaQ5CUYYIhCCGETj5uAHR2DiFHulWEV74lecpIZ+pODEJTCRCU1c4hKNmMQkNgGKVNwlas6CS0KG5jSr6UwVmiGFfs7DClcrzGIvkg0aZanHkh669hWviIVwbzsYnPD1SRpZ2mRvtlSLOPe5UoGudJ0bEAAh+QQIFAAAACwAAAAAQABAAIfs7Ozr6+vp6enm5ubk5OTh4eHe3t7d3d3a2trX19fS0tLQ0NDNzc3MzMzLy8vKysrJycnExMTDw8PCwsLBwcHAwMC+vr69vb28vLy7u7u5ubm4uLi3t7e2trazs7OysrKwsLCvr6+urq6tra2srKyrq6uqqqqpqamoqKimpqalpaWkpKSjo6OioqKhoaGgoKCfn5+enp6cnJybm5uampqZmZmYmJiXl5eVlZWUlJSTk5OSkpKRkZGQkJCPj4+Ojo6NjY2MjIyLi4uKioqJiYmHh4eGhoaFhYWEhISDg4OCgoKBgYGAgIB/f39+fn59fX18fHx7e3t6enp5eXl4eHh3d3d2dnZ1dXV0dHRzc3NycnJxcXFwcHBvb29tbW1sbGxra2tqamppaWloaGhnZ2dmZmZlZWVkZGRjY2NiYmJhYWFgYGBfX19eXl5dXV1cXFxbW1taWlpZWVlYWFhXV1dWVlZVVVVTU1NSUlJRUVFQUFBPT09OTk5NTU1MTExLS0tKSkpJSUlISEhHR0dGRkZFRUVERERDQ0NCQkJBQUFAQEA/Pz8+Pj49PT08PDw7Ozs6Ojo5OTk4ODg3Nzc2NjY1NTU0NDQzMzMyMjIxMTEwMDAvLy8uLi4tLS0sLCwrKysqKiopKSkoKCgnJycmJiYlJSUkJCQjIyMiIiIhISEgICAfHx8eHh4dHR0cHBwbGxsaGhoZGRkYGBgXFxcWFhYVFRUUFBQTExMSEhIREREQEBAPDw8ODg4NDQ0MDAwLCwsKCgoJCQkICAgHBwcGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wCVCRxIsKDBgwgTKkSIbKHDhxAjSpxIsaLFixgzatzI8WCyZAI/fpwosqTJkyhBhhQ5MCUyZCMhppxJE6TJliaRHTN2DGbEmkBrKkOJzJjRniofBl1K86VInTBZymRKNWfUZDpVYk26sCrNoSeh+kzGc+CxY1wVep258unZlyGLoR1ajJixtAjXpmz7EWlMZXZfHgP2a1hDh3pRrgQ7N+RQYcSKFQOGa9auu4gT3xw6EFkxrTaDDQM2LFerVbCG4TWoeTNBZMRGGiWr65etXqk+XRoF7LDa1lJfG9ZJTNixXq9usYr1KVEhSr18JwQe3Kwwo8R++RKWyhMrUqEUxf9xE4mX9LzU8Rq7XndXL12YOJlKxWlPGTObfK0umP6vwOLDCMMLLLSYUggop6jiCBxk3MFKbJn11xIxw/TSSyykqGLJJKzAksoeZmRRCC7GKNVfUskMMwwutnCiCCZ9GMLKKp3cYUUThuByjIkShiQMMLPAMkkee2hhhyeaHBKHFVEAQkuJEVL3WjC6pHJJJpYkQgcghQyCRhpJLHFHK59FCdxrwNSCiiOjqILJHHOAYcYUYEBBhBylqGZma5wpc8wvroRySCikbCIIG080sYQXQBjRxinC7EdQjzYd4wsomWBCSiR/cDHEDzngAIQQUuSBSqR7JuZYMscEE4ohgUz/csccaRzRBAkluHCDFYO0AmFX6YEFFjGxXNIIJmxcMYUQOmQQAQguVPEIL439FixnWBHjiy64FFLGGmpEccMKMDwhSC3VWnsmfy+9dEsnjyTSBxteXJFHKmXyyBZrJU2XVDG2nEJKIX3UoYcmv0jKb784CbaTZBQKAxlPPk06UoqxiALKIYj0MQmZCvPnX0jE/egLL7vcIst3nHySyi2G2XRTiraoUoomlUzySS47YoTVMcLs0oonkBDShx1qbMEEEDv8cAQaeXKFIjG72MzJJZ68Esx5En2kU4WzhNKIIIcI8scbU/AQQwgifGCDG7v4dpIxFbKYiy/DpPuT1zsR/6MLKYzcEcceeLRhRQ8wqMBCCh+YoMQrULq001lIWVTSS8bwAsokihBiyB5oQMHCCij4MMQHJOhgimondYRTScesGIolmEzyiCJtiNFDDTEo4YQHH8jgCevVdRQcq8HQwsoomDSChxhU7ECCByS4oEMEGtQQCvEjc3T8McTkcksoe5BhhhtjINHCCB5UkEEDHRjBymcML5bRzIIBY8skf/Chxx1iQMIMQBABBzhgAjA4g46C4jOi6OQXsugEJQyhCDZgIQUUOAABCACBG0xia0uxHE2AxotWYKISjuADFHDwgAIEAAAKiAEnYtavfZGkfispyi5WMYlB0CEMLniAAf8GIIAEeIARvkDLyBRDkeK1pCi/aAUnGtGHKABBBBpYAAIYcIEsyIJ+/sGh64ZSFF/MohOCaEMZlkADF8xgBBqQwAskEQwnhkwjZBGQLlxhik4s4g5VIAITolADDHQADru44xjNMgxe0GIVocAUI9bAhSKAIQ1Z2IAFomALRXpPJH8qkCc+8YlNdCISbAADEKowhi+EAANHmIUn78e3YgQjgorIwxj84IhNLOINYHiCFs4gBQ5kgAu5kJpNXOeWukDwEXLowhPWoAhRdAIRc1iDGNAQBA2cAA8Je50Nb9hMKr0iE4CogyEmMYpQzG4QcxhDDWDQhE7oKYQVkUq2foGoC1ZkghCCoMMgLNGJS9ShDlg4wg+aUIda3IWBFwmOZ3YBi1FAIhIAdcQjCvEGNGDBd1gwlTCushdawkUgRQnGLmahilCg8BGS6IONxpAGOzxCaxV7HTOd0pfJBEwUm7gaJjChCD7EiBKr0EUxcrpIkbmFGJSBhcBOUYpToMKqs/DFUme5yJ9B9Re98IUvfiGMYUSmck39jUeEklaPgIWrbY2rXOfakYAAACH5BAgUAAAALAAAAABAAEAAh9zc3Nra2tjY2NbW1tPT09LS0s/Pz87Ozs3NzczMzMvLy8rKysjIyMfHx8bGxsPDw8HBwcDAwL+/v7y8vLu7u7q6uri4uLe3t7W1tbOzs7KysrGxsbCwsK+vr66urq2traysrKqqqqmpqaioqKenp6ampqWlpaSkpKOjo6KioqGhoaCgoJ+fn56enp2dnZycnJubm5qampmZmZiYmJeXl5aWlpWVlZSUlJOTk5KSkpGRkZCQkI+Pj46Ojo2NjYyMjIuLi4qKiomJiYeHh4aGhoWFhYSEhIODg4KCgoGBgYCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHZ2dnV1dXR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFZWVlVVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCsrKyoqKikpKSgoKCYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AI8JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3MhRo7GOIAcaGxmy40iSJTee/PjxWMuUFFfKhFlxZTFiKGkyfCnyJLFiOh3mLDhyGM+gCWcSFXYUKcKTxY4aC9bU6UFjN6UGAyrwpFWDWIkdDPZzJLFhUb8WvAkW2LBhxIT9+rVVLUFiYon6Eua2ly1cuozadRn3ZVRht37l8hXr1KhXwKoGNcY3bTFhw3bJ2hULVylLkUj1kqzT2NyfxILx8pWKVS1Yri7p8RNq9GBjvXj9HMZL161Nr2jVMnUozqBUwQa7zD0XV6pWrELVwmULk583lG7lHexrVy1brlCt/0KlChcuWZHacKFkWzmwXaNURUI0KZGmWK5YAcoiJZEurnYZA4wumlwSyB96rCGIJ5k0AoYQS/xBy3ZqmTZLJ5twkokfZegxCCJnbPEDEmuUIoxyxfBSyiKKfAJKIW6MAYUXVYhBRBBXbBLZYMTYggggeGzSiR9cRAGEEU008UMLUFTiC2k0DWPLHWPAMYceWxRhggogfOBCDDIsEckvUD40UjE3vcXXL774AowwOA1UzC6BLBHGGFMIAYMHK0wQAQURdABFKCdeFFYwv/SySy7UyeLKKZ9wMooswHBF2SlqvGHFDRV8IAIJCRBgwAIdvJELgBNhNYwvs4TiSB9vpP9hRhdVNKHEEEYoEQYnvgA1kjC4vIIJGDHoIAMPLnjgwAdOsIKqRFgJ00stqlgCyBx8+AGIHWpc4QQNKXAwAhOrbBdtL6B8UcYZZXwhhAhEVDKMRcacFQwwtYRyyBtl3IHHHGBQIYUSRsiwwQYscFKoSMXY8kgfg8ixxhRP1IFLmQqFhZcwuXjCiB92+IGHjDfcEAQPOWSQQQiRAOMSSil2woggc7xBRhyWJFfTTcUM88ssniwCySKGHAJHG1cIkcUUPXRAQQmDkJmTMb6YssghfcxxByGxUAiRTT0DE0sqnChiRxlcOFHEDSjwAC4FGLxwiNQEURaLJI0oQp8pZKb/GtWZYcfyiiZwSFHEGWtocUQMM3BQQQMi1BAJVQYVE8wut9Biiy51QYsVmjfFJYwuqRxyRhZUnBFGF0/wUAIFF2CgQxSrCFb353iVhbFIdUeFZu7E9BILJITQ8YYfc7jBRAUIAMCABUMIcqpMK9F7u1cuFSO8KZLsgYcfe5CxQwcCBBDAATUowsvf1GMP7fVr8bVLK5UIsscdUfAgwQAFCKDAB3GwBU5Y0r6Y8A4s9vqZKCpxCDxMoQYxUIEGIqAACPTgEzuCX0lUNYxgBAMXq/iEIe6AhloBYW0egIAG5JALqaSkJYfyhS1mYYpRiIITiXgDGLQQBRxQ4AFGcMXu/zJik7j4ohao+AQlLEGJRuDBDWmAQxq0gIEGtAAVQ3xf727Cl1y8IhOGMEQkIJGIQwiiDmiwwxjKcIIKsMAUWfzaUFQFDF7cIhWW8EMWfMCEOOghEHyIwxrqgIUqeGACNljFszwyx2EAI1G2IMUe9ogCG6SBD5JYxCD0MMkkkEAGXaAFS0zSyDexyRaskAQbstCFPCQCE5kYBSH60AYnICEKiXjSUBjZk9CpphasuMQe6HCGNOxhEK9CQxrAMIY04OEVTHEfR2TyO47FAhWVaMQf5ACIPfQhEGlQ4x74gIhR9Kp6IDnT50L3C++swhSdsAQkKpGIQOChD47ghCdc0VEL9u3SI2jCnTCE4YtbrOIUpjiFKEYBikpoYhOmaEUteBHNyQAudPK7RSxa4YpWvAIWsrDFLsiSFqtQj4seHChcAhpH5bi0Ky19qUxnSlOQBAQAIfkECBQAAAAsAAAAAEAAQACH9vb28/Pz8vLy7+/v7u7u7e3t6+vr6enp5+fn5ubm5eXl4eHh4ODg39/f3t7e3d3d29vb2tra2dnZ2NjY1tbW1NTU09PT0tLS0dHRz8/Pzs7Ozc3NzMzMy8vLycnJx8fHxsbGxcXFxMTEw8PDwsLCwcHBv7+/vr6+vLy8u7u7urq6uLi4t7e3tbW1tLS0s7OzsrKysbGxsLCwr6+vrq6ura2trKysq6urqqqqqampqKiop6enpaWlpKSko6OjoqKioaGhn5+fnp6enZ2dmpqamZmZmJiYl5eXlpaWlZWVlJSUkpKSkZGRkJCQj4+Pjo6OjY2NjIyMi4uLioqKiYmJiIiIh4eHhoaGhYWFhISEg4ODgoKCgYGBgICAf39/fn5+fX19e3t7enp6eXl5eHh4d3d3dnZ2dXV1dHR0c3NzcnJycXFxcHBwb29vbm5ubW1tbGxsa2trampqaWlpaGhoZ2dnZmZmZWVlZGRkY2NjYmJiYWFhYGBgX19fXl5eXV1dXFxcW1tbWlpaWVlZWFhYV1dXVlZWVVVVVFRUU1NTUlJSUVFRUFBQT09PTk5OTU1NTExMS0tLSkpKSUlJSEhIR0dHRkZGRUVFREREQ0NDQkJCQUFBQEBAPz8/Pj4+PT09PDw8Ozs7Ojo6OTk5ODg4Nzc3NjY2NTU1NDQ0MzMzMjIyMTExMDAwLy8vLi4uLS0tLCwsKysrKioqKSkpKCgoJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHx8fHh4eHR0dHBwcGxsbGhoaGRkZGBgYFxcXFhYWFRUVFBQUExMTEhISEREREBAQDw8PDg4ODQ0NDAwMCwsLCgoKCQkJCAgIBwcHBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AuQkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyYXbTl5MmVLgtpcqH7Ic+LJlTIYsX2q7ps3mzYQwuW3LRlTbT5wth2bzedRgzaTWsDVF+HKpUaHapF2benCbtqVJsz2rxpTr16surUGLGpQrt2zXbA6VVgwatGw93XK7Rs2mtmrKZh1TRg0b2qbbqkXLu+2asl6YXNVaJi0bV6/TolXDmw3arVJ5HHXa5Wzr1L/KnjWzNk2aL0qJzMDR5EqZ6aPbsB0LliyZNGbLVDnCo0dOKFvIbv/cRk2WqFyrkgH7xakRI0R/VO1qZrmpNmeh8IT/YnQL2KxQqlJZUpTql7SyKrMdy2TGj59QsTplugXLkyVYxvQ11TXFRDLHHnxQEh4gpJxiyX/HkBWSV9lgc4011ETjzDLNRGNNL6AEwscihUDCiR2CZLKJIpvAEkw08GE0FF8aNrNMMbu0gokhinAiBhlg4BEII6BwkgcaYtjRhyWgsCLNYRl5VQ0zt3yCCB1mfAFFEDicIIIJKUzggQxmzKEGJ5oMkoUTVbhBxyCiLMaRV9hIYwwsmDASySOK2KHFEDGA0AEFBxgwwQxiVDHHHEfYQMMRV4ABSCvUdBdlVdP4YooifyyCHRtbUFEEEjh8sAABCIRARA499DACCjUA/0GEFXf0UmmMFTGniyqaTBKJIGhYwYMRPVSBRQsZKPCACU3YEMIEDjiwAQsvMKGHMNMsNac20/QCCyupmEIKIH5MEYYVc7zxAgYSsHDHK3XkYAEHIqzQBRZoeHIXrhQNFU0yuqDSSSF0jCGsEEQowUUIGIgAxzHYLJPIEU60UUYef3Dyi3IbeZXhLpX8QcgkhbQRxA83kMDCBBS8gIpU2hxjyiSjQMJnLstAmWtBuUGT3yWYSJKHF0HI4MEEFjjggRLDGKXNM7FU8gkjlmzCSzM698vUNtYs88ssqIziRxoycJBAAQUkMEIgMHLz9C2gqELKJan4IudK8OVGTTK5wP8SyiNd+JBBAgEAMEAFhjzplTS/nEIKKaKo4ouEIjFXzCiF2OGFDh04UIAAAzQgRjLYvITNNMsIA8wwy1CTdUT8ClUNMKUwIggWUvAQwwUMKKvCKn1Vdc3w2OAVe5TUDJMKIn7kAQYUSigBgwYRVOBHMzkd39FQ0zDDyy2ykILJG1uIUcYQGTRAxTDafzQUNcz4QosrqmByBx9i1GGIGiVAoMMt7dveNZ4hDFvIwhSWKIUk7LCHNLQhEXdggQRiUIsAXkob2IjGL1ixiDYUYhGb8oMd4tAGQZzhBBb4ATAsuBJtuBAbz2jFI9DwhDcw4hWmoMQgFLGHQUThAyCQQjG9WCgjr3SNFpowRChSAR1YkMISenCDDkrgAkFAg4gyyoadXoEJSAwCEqE4RSfw0AcuLIEHO5ACLuISEyk14xeoqB0jKgGJQ6DBC1VQQhKOAAZNLAaLsJNLbrpHjFucghKNSMQc2sAELpBhDdlxhrZIEhSv7ISAvKjFKziBiUkAIg53+IMlXDEM1wFyIoLcSTSYAQxawEIVoiBFKVRxtc2cUiN0upA1qlGNa2CjeD25pV6GScxiGvOYEBHmSQICACH5BAgUAAAALAAAAABAAEAAh/b29vPz8/Hx8fDw8O7u7u3t7ezs7Ovr6+rq6unp6ejo6Ofn5+bm5uXl5eTk5N7e3tzc3Nvb29ra2tjY2NfX19bW1tXV1dPT09LS0tHR0c/Pz87OzszMzMvLy8nJycjIyMfHx8bGxsXFxcTExMPDw8LCwsHBwb+/v76+vr29vby8vLu7u7q6urm5ubi4uLe3t7a2trW1tbS0tLOzs7GxsbCwsK2traysrKurq6qqqqampqWlpaOjo6KioqGhoZ+fn52dnZycnJubm5qampiYmJaWlpWVlZSUlJKSkpGRkZCQkI+Pj46OjoyMjIuLi4qKiomJiYiIiIeHh4aGhoWFhYSEhIKCgoCAgH9/f35+fn19fXx8fHt7e3p6enl5eXh4eHd3d3Z2dnR0dHNzc3JycnFxcXBwcG9vb25ubm1tbWxsbGtra2pqamlpaWhoaGdnZ2ZmZmVlZWRkZGNjY2JiYmFhYWBgYF9fX15eXl1dXVxcXFtbW1paWllZWVhYWFdXV1VVVVRUVFNTU1JSUlFRUVBQUE9PT05OTk1NTUxMTEtLS0pKSklJSUhISEdHR0ZGRkVFRURERENDQ0JCQkFBQUBAQD8/Pz4+Pj09PTw8PDs7Ozo6Ojk5OTg4ODc3NzY2NjU1NTQ0NDMzMzIyMjExMTAwMC8vLy4uLi0tLSwsLCoqKikpKSgoKCcnJyYmJiUlJSQkJCMjIyIiIiEhISAgIB8fHx4eHh0dHRwcHBsbGxoaGhkZGRgYGBcXFxYWFhUVFRQUFBMTExISEhERERAQEA8PDw4ODg0NDQwMDAsLCwoKCgkJCQgICAcHBwYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AKkJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmyZclpLiPCHDitZsyEM6lNk2YzZk6aOX/6NCj0Jk2iRpMqZdlT51KCNaVJlRYNWlGjVJlpXcZV2lOdzprxsgXLVq5g0b5GW5ZMVShMm1LZguazpl1pzozt8kSoUaFNsJ6NjFo1LLNlypIF+4XMmTNoVY35ssWKEqVEmuaKnBatmTJjwoINA+aLlypDaeKkunVMmbJfxX7dupSJ0qlhXj9yZgYMlaI4W6pMcaJkyQ4RJkYkKdQrsTBkwXR9+kQK1rKrF3dGY0bsFqdBeAId/3q0aE+cIxkuRAgBBFOtV5xorWL1qJKoWcw8aof27BitTH3IUUgiiPyxBx1SkBDCByaUAIYidOQRiSCH8GHIJKQso59UnCXzSiaJiBfIGVoYYUQRHogwww04QDEHGFkwAcYZc9CBByfCYFcRh9I8Y8wqlWCiySWc5EGIGlFc8cIJKJhAghF6jDHFDE1I4QYZXlzSi44S2RUVNMXoYgojfqSBBhRWIOGDESJw4IEGEwThxxpGuNCDEVME8UQku6SVkZeEHfMLKW9c4USAa1AhxBAdNMBABQuAQAQMKbBggww70CCFJbY0oxFMUe0kTTO+KMJFFFawMcYWTgzBgwUMHP+wQAELXPDABsih0AIIVTQSS34bhVrTM8NkgkgffiSCB4IpXGDAAAAIIAABCRTQQAUeYOCBCl2kQoyfn0JFrC6cJGIII4WwkYQOFCwgAAABDEAAAhGkEMMQNOwQBSfL5AYSVZ39csojgvTRRRM1aFCBAgUU4EADFLiQBBRS/NCFH7iJBHBVxbiCiSJ/mKFFFlEcd4EEJ9tAhSB7nPHFH5d4CtJO0EAjVTTI0GIKJH/cEUcbbZhxBAwbQLCADWooMggfflCiijMzR8VTj8cA40orq7RySiWQAOJGETJUYAAIZRgiiBx2+CELXfrdRdUzyOyyiiefYDIJIH5AwokgYPT/sMEBJvixyCHihXKMvxzdFc0zyfhSiiGBNMJIH3+EaAgof7yBBAgTSLHLYr4I0y+XFtHsjDK+nBZFDTqUAUcee7ghSCVylAEECSpA8hh/NpNeEc3PPLMML4+EwUMJK2DBxiOO+NFIJGyEIUQOVuzi+6eL1/wMM8WooscWZAjCyCedqDKJJHJkIYUPfRxzPUZSU9UMMr+kgi4cbPRRSCWI2FFHGmcAgxhc4Yz3UQRQU4GGMoRxi01QQhBxEAQfKjeHPIyhD3hIhCmSwZPBTG0qPVrGMXphC1R0QhKUWAQh+HCHR3hiFLYwRjQM+LupRaMq0HBGMoChi1rUwhWsEEUlOj4hClbcgjHN6OBLdiK1wiSDGL7YRS5woYtfDAMZzYCMEpminRvekCeAomG4vkLGMprxjGiEXxoFEhAAOw==", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_c2fa1c8ae73f43a997d4e140e047efd8" + } + }, + "c4168bd2a10a40cbab5bb60fda28f804": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAAP////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pb29vX19fT09PLy8vDw8O7u7u3t7ezs7Ovr6+jo6Ofn5+bm5uXl5ePj4+Li4uHh4d/f393d3dzc3NnZ2dbW1tPT09LS0tHR0dDQ0M/Pz87OzsvLy8nJycfHx8bGxsTExMHBwb6+vrq6uri4uLW1tbGxsbCwsK6urq2traurq6mpqaSkpKOjo5+fn52dnZWVlZCQkI6OjoqKiomJiYiIiIaGhoWFhYODg4CAgH9/f319fXl5eW5ubmtra2pqamhoaGRkZGNjY2FhYV9fX1tbW1paWlZWVlNTU1JSUlFRUU9PT0lJSUhISEVFRUREREFBQT8/Pz4+Pjo6Ojc3NzY2NjQ0NDIyMjExMS8vLy0tLSwsLCoqKikpKScnJyYmJiUlJSQkJCMjIyIiIiAgIB4eHh0dHRoaGhkZGRgYGBYWFhUVFRQUFBISEhEREQ8PDw4ODg0NDQsLCwkJCQgICAcHBwYGBgQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wAFCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyAnKskQgImaOCEveqERQIBLARVkpKQYZYGAli8FDIAyEyIYFQVcBjggAcaQCwI+9OnpcEfOD1cE4ukgQEEXpg21hBBgoQqcgTlcfsDqME8cOwSlIHB5hOxEOglcYnAr0QsHlxbE0IWI5YRLCmH2PmQTIkCACmUEO/QyoWUFMooX3plT86YJIkjSREaIY0OEoAIAEBggAEObzQSXYLiJ82bOLQLfRNbT4kAAAy8NG27gskOJEhjcCJYDwnDOCg50G3dZ4UedvXdIthZQo8weMzZIIFBeQHGR5QIeNK9ZSnBLDAMBGuhQbMGwBg8+hCNMEkDCHMUAAtwIxPDPigBZKGYYFQ5ZAaBiFwSQAiANGQiEYkYY9gQfC80hQgBVKHbGA4bNcIYfCAHyHQNoRMYFBLqNIMQUaxAkBw+GoYAaHS7YphsDF/TQwwvJBTACSqgJ8kUQHxCgnG5JyRFkQWMwwYIKUELpxJJUVmnllVhmqeWWXHbp5ZdghinmmGSWaeaZaKap5ppstunmQAEBACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pb29vX19fT09PLy8vDw8O7u7u3t7ezs7Ovr6+jo6Ofn5+bm5uXl5ePj4+Li4uHh4eDg4N/f397e3t3d3dzc3NnZ2dbW1tPT09LS0tHR0dDQ0M/Pz87OzsvLy8nJycfHx8bGxsTExMHBwb6+vrq6uri4uLW1tbGxsbCwsK6urq2traurq6mpqaWlpaSkpKOjo6Kiop2dnZycnJWVlZCQkI6OjoqKiomJiYiIiIeHh4aGhoODg4CAgH9/f319fXl5eXR0dG5ubmxsbGtra2pqamhoaGRkZGNjY2FhYV9fX1tbW1dXV1ZWVlNTU1JSUlFRUU9PT0lJSUhISEVFRUREREFBQT8/Pz4+Pjo6Ojc3NzY2NjQ0NDIyMjExMS8vLy0tLSwsLCsrKyoqKikpKScnJyUlJSQkJCMjIyIiIiEhISAgIB4eHh0dHRoaGhkZGRgYGBYWFhUVFRQUFBMTExISEhEREQ8PDw4ODg0NDQsLCwkJCQgICAcHBwYGBgQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/ABUJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3MgRIpQNAaTAwdNxI5kbAQSoFFCBRkmMVxYISLlSwAArLymaYVFAZYADEmQcuSAgRKGcEn/UDNFFIKAPAhSMQRoRzAgBFrbcGdhDZQiqEgPh8UMQCwKVTcBe5JNAZQa1Fsl4UGkBDVyKXlKopHDm7sQ5IwIEqMDGr0QyE1JWWGM4YsyZKJI4edO44SAiPQUAIDBAQAY6lQn+0UMQkIyaNFWGEWinMo8OEZAoevMEas0aNRqo/HDiRIY6fqNkmJkyiIaaFZ6QlCMB+ZA+cAW9OBDAAAUKAwQLFlADp8AwZwU04tBRGG4eEYIxQBFIhbj2AUemiFEUZkaTNH7/gAxwIs7APRyAkIMJD2gXQAGhKbKEYDgQkhAdShgQQAM+JGiBYP4t9EQAEpAWGgAB7JAIQ4e0EMAXCQqmhUNcnJjgBQGsgEhDLRKRIBOCVeGgQnqQEMAWCbZRYAA2tGEIQogsyIAbCSoiBgTalWBEFnIQlAcQgqnQpEB8wECddgxcIIQQMTggWAkkbSlQGUWEQICB2hWVh5oGqSGFCyzkmScVdPbp55+ABirooIQWauihiCaq6KKMNuroo5BGKumklFZq6aVgBQQAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f39/Pz8+/v7+vr6+fn5+Pj49vb29fX19PT08vLy8PDw7u7u7e3t7Ozs6+vr6Ojo5+fn5ubm5eXl4+Pj4uLi4eHh4ODg39/f3t7e3d3d3Nzc29vb2dnZ1tbW09PT0tLS0dHR0NDQz8/Pzs7Oy8vLycnJx8fHxsbGxcXFxMTEwcHBvr6+urq6uLi4tbW1sbGxsLCwrq6ura2tq6urqamppaWlpKSko6OjoqKin5+fnZ2dnJyclpaWlZWVkJCQjo6OioqKiYmJiIiIh4eHhoaGhYWFg4ODgICAf39/fX19eXl5dHR0bm5ubGxsa2trampqaGhoZGRkY2NjYWFhX19fW1tbWlpaV1dXVlZWU1NTUlJSUVFRT09PSUlJSEhIRUVFREREQUFBPz8/Pj4+Ojo6Nzc3NjY2NDQ0MjIyMTExLy8vLS0tLCwsKysrKioqKSkpJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHh4eHR0dGhoaGRkZGBgYFhYWFRUVFBQUEhISERERDw8PDg4ODQ0NCwsLCQkJCAgIBwcHBgYGBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AIQkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsVq2wIcOXOH4wgD6rJEUCASQEVbIRcCanLAgElTwoYwIXlRTYuCpgMcEACDSYXBIhYZLPiEJkixgg0BEKAgjRFKZohIcBCGD8Dg5gUEbXioT+ECHpBYFJK15CCEpjMcBakmg8mLbhpe5HMCpMU2tC1qIdEgAAV5OytqGZCyQpxBlN0CTOFkyl2FENMlESnAAAEBgjIsEdyQ0M0ZMY0eUZgH88H7VBpKvPGjQYmQaBAkYEP3UKBENLRILMClY95JPRGMqgtEA8Rmhhc1ELmDsECz5AV0KAH9K5WMsAsWaSDCh+575z7fICFKMEzNaS8aYsoxoEABihQGPD3L4UbXDiEOGIbtUBAI/yFQRUCaeFAfX8NwEQWaPgnUCEbBYACHgQlMgcPJzyAYAEOQgLFXzooktAeTxgQQANCdGjBXxQuREUAEuTmIAAB/PAIQ428EEAZHf4FhkNi7NjhBQG04EhDQSbRYRR/bSGiQoGUEEAYHdKhYQA40MEIQo58yEAdHUKCBgT1mbDEF3kQBAgRf7EQpkCCyPBefQxcYIQRMxwYgAkfvSnQGkqIQACC9QkFiJ8GwXEFDC402qgWiEYq6aSUVmrppZhmqummnHbq6aeghirqqKSWauqpqKaq6qqSBQQAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f39/Pz8+/v7+vr6+fn5+Pj49vb29fX19PT08vLy8PDw7u7u7e3t7Ozs6+vr6Ojo5+fn5ubm5eXl4+Pj4uLi4eHh4ODg39/f3t7e3d3d3Nzc29vb2dnZ1tbW09PT0tLS0dHR0NDQz8/Pzs7Oy8vLycnJx8fHxsbGxcXFxMTEwcHBvr6+urq6uLi4tbW1sbGxsLCwrq6ura2tq6urqamppaWlpKSko6OjoqKin5+fnZ2dnJyclpaWlZWVkJCQjo6OioqKiYmJiIiIh4eHhoaGhYWFg4ODgICAf39/fX19eXl5dHR0bm5ubGxsa2trampqaGhoZGRkY2NjYWFhX19fW1tbWlpaV1dXVlZWU1NTUlJSUVFRT09PSUlJSEhIRUVFREREQUFBPz8/Pj4+Ojo6Nzc3NjY2NDQ0MjIyMTExLy8vLS0tLCwsKysrKioqKSkpJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHh4eHR0dGhoaGRkZGBgYFhYWFRUVFBQUExMTEhISERERDw8PDg4ODQ0NCwsLCQkJCAgIBwcHBgYGBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AIwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYq2wIcOXOH4wgD6rJEUCASQEVbIRcGanLAgElTwoYwIXlRTYuCpgMcEACDSYXBIhgZLPiEJkixgg8BEKAgjRFKZohIcBCGD8Dg5gUEbUioj+FCHpBYFJK15CDEpjMcBakmg8mLbhpe5HMCpMU2tC1qIdEgAAV5OytqGZCyQpxBlN0CTOFkyl2FENUlESnAAAEBgjIsEdyw0M0ZMY0eUZgn6KGAj20Q6WpzBs3GpgEgQJFBj4sgXiI0KQhHQ0yK1D5mEdCcCSEQlrJALNkkQ4qfKg2yKiFzB2CBZ4hK6BBj+wYE8X/OBDAAAUKA/7+pXCjJsE7Jx9gIUrwTA0pb1YCGvEXQxWBWjig3l8DMJEFGgIJwkEIR+C2lyEbBYACHgQpMgcPJzwwYAGeEQTFXzosktAeTxgQQANCdDiQBX9RuBAVAUgwnYoABPADJAw58kIAZago0F9gOCQGjz5GckEALTzS0JBJFBnFX1uIqFAgJQQQRpF0aBgADnQ0gtAjHzJQR5GRoAGBeiYs8UUeBAFCxF8skCnQIDKQpx4DFxhhxAwCBmDCR3IKtIYSIhAwoHpCARKoQXBcAYMLkEKqxaKUVmrppZhmqummnHbq6aeghirqqKSWauqpqKaq6qqsturqq0UFAQQAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f39/Pz8+/v7+vr6+fn5+Pj49vb29fX19PT08vLy8PDw7u7u7e3t7Ozs6+vr6Ojo5+fn5ubm5eXl4+Pj4uLi4eHh4ODg39/f3t7e3d3d3Nzc29vb2dnZ1tbW09PT0tLS0dHR0NDQz8/Pzs7Oy8vLycnJx8fHxsbGxcXFxMTEwcHBvr6+urq6uLi4tbW1sbGxsLCwrq6ura2tq6urqamppaWlpKSko6OjoqKin5+fnZ2dnJyclpaWlZWVkJCQjo6OioqKiYmJiIiIh4eHhoaGhYWFg4ODgICAf39/fX19eXl5dHR0bm5ubGxsa2trampqaGhoZGRkY2NjYWFhX19fW1tbWlpaV1dXVlZWU1NTUlJSUVFRT09PSUlJSEhIRUVFREREQUFBPz8/Pj4+Ojo6Nzc3NjY2NDQ0MjIyMTExLy8vLS0tLCwsKysrKioqKSkpJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHh4eHR0dGhoaGRkZGBgYFhYWFRUVFBQUExMTEhISERERDw8PDg4ODQ0NCwsLCQkJCAgIBwcHBgYGBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AIwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyBFjlQ0Brtz503GjmhwBBKgUUMFGSYxdFghIuVLAAC4vKbJxUUBlgAMSaDC5IEAEo5wSh9QUMUbgIRACFKRBGtEMCQEWwvgZGESlCKoSEf0pRNALApVSwF4clEBlBrUW1XxQacENXIpkVqik0ObuRD0kAgSoIMevRDUTUlaIYzhizJkpnEyxw9FQIIyKkvQUAIDAAAEZ9mgE4iFCE4uHaNSkqfKMwD4VrWSYmbJIBxU+Lju0QwVqzRs3GqgEgQJFBj4SE8U4EMAABQoDBAumcAPnQjoaalagQjKPBO1ICEX/BDRCMIYqArU4kC54AJMsaBAyalFzR2GBZ84KaNDjPkRDIAWAAh4EKTIHDyc8wF4BCN2x0gNYHEXQGTVI8QZFUAimwyIJ7fGEAQE0IARCgnAQwhHIlWSBYAQuREUAEujWWCQABPADJAw58kIAZcwokGBgOCQGjz5GckEALTzS0JBJFBmFYFtwqFAgJQQQRpF0KBgADnQ0gtAjGTJQR5GRoAGBdCYs8UUeBAFChGAskCnQIDIwJx0DFxhhxAzrBWACSXIKtIYSIhDAnnRFARKoQXBcAYMLkEKqxaKUVmrppZhmqummnHbq6aeghirqqKSWauqpqKaq6qqsturqq1QFAQQAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f39/Pz8+/v7+vr6+fn5+Pj49vb29fX19PT08vLy8PDw7u7u7e3t7Ozs6+vr6Ojo5+fn5ubm5eXl4+Pj4uLi4eHh4ODg39/f3t7e3d3d3Nzc29vb2dnZ1tbW09PT0tLS0dHR0NDQz8/Pzs7Oy8vLycnJx8fHxsbGxcXFxMTEwcHBvr6+urq6uLi4tbW1sbGxsLCwrq6ura2tq6urqamppaWlpKSko6OjoqKin5+fnZ2dnJyclpaWlZWVkJCQjo6OioqKiYmJiIiIh4eHhoaGhYWFg4ODgICAf39/fX19eXl5dHR0bm5ubGxsa2trampqaGhoZGRkY2NjYWFhX19fW1tbWlpaV1dXVlZWU1NTUlJSUVFRT09PSUlJSEhIRUVFREREQUFBPz8/Pj4+Ojo6Nzc3NjY2NDQ0MjIyMTExLy8vLS0tLCwsKysrKioqKSkpJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHh4eHR0dGhoaGRkZGBgYFhYWFRUVFBQUExMTEhISERERDw8PDg4ODQ0NCwsLCQkJCAgIBwcHBgYGBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AIwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ1bZEODKnT8hL6rJEUCASwEVbKSk2GWBgJYvBQzgMhMiGxcFXAY4IIEGkwsCRDDq6XBIThFjBB4CIUBBGqYNzZAQYCGMn4FBXIrA6hDRn0IEvSBwKYXsxEEJXGZwK1HNB5cW3NCFSGaFSwpt9j7UQyJAgApyLBoKFFLNhJYV4lgE4iFCk481b6ZwMsXORCsZbrYs0kGFD8YXFSUJKgAAgQECMuyBmCjGgQAGKFAYYNgwhRs8KR6ikROnyzMC+zAENMIwhioCtTjobXgAkyxoINqhQjXnjRsNXIL/QIEiAx+FhkgGQIGHoKI5PE48oF7gIR0NOStQQZlHQn4khCgEhWE6LJLQHk8YEEADQjjESAs57ZCYQGesJUADPUyokAWGtbcQFQFIgBpDd7z0ABZLEXRGDVK84RAAAfwACUOOvBBAGQ4JwkEIR5yHkWFgOCTGjYJFckEALTzS0JBJFBmFYVsYqFAgJQQQRpF0zBcADnQ0gtAjAzJQR5GRoAFBbyYs8UUeBAFChGEskCnQIDLc1hsDFxhhxAzTBWACSnIKtIYSIhBAXW9JARKoQXBcAYMLkEKqxaKUVmrppZhmqummnHbq6aeghirqqKSWauqpqKaq6qqsturqq0wFAQQAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f39/Pz8+/v7+vr6+fn5+Pj49vb29fX19PT08vLy8PDw7u7u7e3t7Ozs6+vr6Ojo5+fn5ubm5eXl4+Pj4uLi4eHh4ODg39/f3t7e3d3d3Nzc29vb2dnZ1tbW09PT0tLS0dHR0NDQz8/Pzs7Oy8vLycnJx8fHxsbGxcXFxMTEwcHBvr6+urq6uLi4tbW1sbGxsLCwrq6ura2tq6urqamppaWlpKSko6OjoqKin5+fnZ2dnJyclpaWlZWVkJCQjo6OioqKiYmJiIiIh4eHhoaGhYWFg4ODgICAf39/fX19eXl5dHR0bm5ubGxsa2trampqaGhoZGRkY2NjYWFhX19fW1tbWlpaV1dXVlZWU1NTUlJSUVFRT09PSUlJSEhIRUVFREREQUFBPz8/Pj4+Ojo6Nzc3NjY2NDQ0MjIyMTExLy8vLS0tLCwsKysrKioqKSkpJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHh4eHR0dGhoaGRkZGBgYFhYWFRUVFBQUExMTEhISERERDw8PDg4ODQ0NCwsLCQkJCAgIBwcHBgYGBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AIwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSZJilQ0Brtz5U3KimhwBBMgUUMFGS4hdFgiIOVPAAC43GbJxUUBmgAMSaDC5IEAEo6AKh/QUMUbgIRACFKSBmtAMCQEWwvgZGESmCK4KEf0pRNALAplS0D4clEBmBrkO1XyQacHNRUOBQJJZIZNCm4tAPERo4lEPiQABKsixaCXDzphFOqjwEfiimgkxK8SpmCjGgQAGKFAYABkyhRtAKebcmcLJFDsTAY2AjKGKQC0OWkMewCQLGoiKkhQVAIDAAAEZ9kQ0hDIACjwEFc3hceKB8AIPD9H/6MlT5hmBfRxCgaxjUcI9TwwEaCCkoR0qWHveuNFAJggUKGTAR0MWQIbdQlQEIEFnCtGhQU8VUMFSHhJAiAQhDQEQwA+QMOTICwGUsRAjLfS0w2QCnfGWAA30gGJDkIHhkBghLnTHTA9g8RRBZ9QgxRsRXRBAC480RGMSCwnCQQhHDLhRFJBt4Z5CgZQQQBhy0eFdADjQ0QhCj6zHQB14oQFBayYs8UUeBAFCBGQs4CXQIDKc1hoDFxhhxAzBBWACS3IKtIYSIhAgXGtNARKoQXBcAYMLkEKqxaKUVmrppZhmqummnHbq6aeghirqqKSWauqpqKaq6qqsturqqyUFAQQAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f39/Pz8+/v7+vr6+fn5+Pj49vb29fX19PT08vLy8PDw7u7u7e3t7Ozs6+vr6Ojo5+fn5ubm5eXl4+Pj4uLi4eHh4ODg39/f3t7e3d3d3Nzc29vb2dnZ1tbW09PT0tLS0dHR0NDQz8/Pzs7Oy8vLycnJx8fHxsbGxcXFxMTEwcHBvr6+urq6uLi4tbW1sbGxsLCwrq6ura2tq6urqamppaWlpKSko6OjoqKin5+fnZ2dnJyclpaWlZWVkJCQjo6OioqKiYmJiIiIh4eHhoaGhYWFg4ODgICAf39/fX19eXl5dHR0bm5ubGxsa2trampqaGhoZGRkY2NjYWFhX19fW1tbWlpaV1dXVlZWU1NTUlJSUVFRT09PSUlJSEhIRUVFREREQUFBPz8/Pj4+Ojo6Nzc3NjY2NDQ0MjIyMTExLy8vLS0tLCwsKysrKioqKSkpJycnJiYmJSUlJCQkIyMjIiIiISEhICAgHh4eHR0dGhoaGRkZGBgYFhYWFRUVFBQUExMTEhISERERDw8PDg4ODQ0NCwsLCQkJCAgIBwcHBgYGBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8AIwkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyZMfq2wIcOXOH5QQ1eQIIKCmgAo2YDbsskAATZsCBnDRmZCNiwI1AxyQQIPJBQEiGBE9OASoiDECD4EQoCDNVINmSAiwEMbPwCA1RXw9iOhPIYJeENSUwtFQII6DEtTMwBGIhwhNNKr5UNOCG41WMvikWaSDCh93J5JZUZNCm4yJYhwIYIAChQEBQgegcGMoRD0kQleQkxHQiNAYqgjU4kB06AFMsqBpqGYCzQpxMhpaGQAFHoKK5vA48cB2AYY8faZwMsUORiihdSxKuOeJgQANhCj/VJQEqQAABAYIyLDnooXQxxdSCSAh8sFDNID+rHlGYB+KAATwAyQMOfJCAGUcZAcVWwF1ww0N1AQCCihkwMdEoYHhkBgIGkSHBkBVQMVLeUgQIhKETHRBAC080hCHSRTESAtA7cCaQGfIJUADPdw4URShbbGdQoGUEEAYBd1h0wNYSEXQGTVI8cZFdDQXAA50NILQI9gxUEdBgnAQwhEXioQGBKKZsMQXeRAECBGhsbBWJIPIsJloDFxghBEz1BaACS/NGckaSohAgG2iQQWIoAXBcQUMLkQaqRaMVmrppZhmqummnHbq6aeghirqqKSWauqpqKaq6qqsturqq7AWAhQQACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pb29vX19fT09PLy8vDw8O7u7u3t7ezs7Ovr6+jo6Ofn5+bm5uXl5ePj4+Li4uHh4eDg4N/f397e3t3d3dzc3Nvb29nZ2dbW1tPT09LS0tHR0dDQ0M/Pz87OzsvLy8nJycfHx8bGxsXFxcTExMHBwb6+vrq6uri4uLW1tbGxsbCwsK6urq2traurq6mpqaWlpaSkpKOjo6Kiop+fn52dnZycnJaWlpWVlZCQkI6OjoqKiomJiYiIiIeHh4aGhoWFhYODg4CAgH9/f319fXl5eXR0dG5ubmxsbGtra2pqamhoaGRkZGNjY2FhYV9fX1tbW1paWldXV1ZWVlNTU1JSUlFRUU9PT0lJSUhISEVFRUREREFBQT8/Pz4+Pjo6Ojc3NzY2NjQ0NDIyMjExMS8vLy0tLSwsLCsrKyoqKikpKScnJyYmJiUlJSMjIyIiIiEhISAgIB4eHh0dHRoaGhkZGRgYGBYWFhUVFRQUFBMTExISEhEREQ8PDw4ODg0NDQsLCwkJCQgICAcHBwYGBgQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/ACEJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMlSYZUNAa7Y8dNyoZocAQToFFDBRk2EXRYIyLlTwAAuPwmycVFAZ4ADEmgwuSBAxCKRhQA5HFJUxBiBhkAIUJAmJBAPEZo0NENCgIUwfQYG0SkCpJUMQ3MW6aDCh1aEh/wQIugFgU4pHhHFOBDAAAUKAwJIDkDhBlKGghLozODxzwjJGKoI1OJgsuQBTLKgSajmg04LbjoWghkAxR2CiebwOPHAdAGEZFbopNDGIxTJOhQl1PPEQIAGQg7mISG5gpyPFiTfXkglgIS/BNVM9chZIQ5IAAF+PGLY6EWAMgWDDk3hZEqdj5LBOBTzfmCiJE0JAAABAwiQgR4eXRBAC440xF8SYNFQFFE6nSEQHxtFIdkWyikESAkBhFEHFWIVdcMNDegEAgooZLCHRnT0FgAOdDCCkCPHMUCHBkVVQAVNeEjQIxKDbIQGBJOZsMQXeBD0BxGSsdBCUTtcJ9AZhgnQQA9WciSIDIxNxsAFRhgxQ2kBmGDHTg9gcRVBZ9QgxRsiraGECASYNllVfwTCQQhHvPgTHFfA4MKhh2qR1KKMNuroo5BGKumklFZq6aWYZqrpppx26umnoIYq6qiklmqqRwEBACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pb29vX19fT09PLy8vDw8O7u7u3t7ezs7Ovr6+jo6Ofn5+bm5uXl5ePj4+Li4uHh4eDg4N/f393d3dzc3Nvb29nZ2dbW1tPT09LS0tHR0dDQ0M/Pz87OzsvLy8nJycfHx8bGxsXFxcTExL6+vrq6uri4uLW1tbGxsbCwsK6urq2traurq6mpqaWlpaSkpKOjo6Kiop+fn52dnZycnJaWlpWVlZCQkI6OjoqKiomJiYiIiIeHh4aGhoWFhYODg4CAgH9/f319fXl5eXR0dG5ubmxsbGtra2pqamhoaGRkZGNjY2FhYV9fX1tbW1paWldXV1ZWVlNTU1JSUlFRUU9PT0lJSUhISEVFRUREREFBQT8/Pz4+Pjo6Ojc3NzY2NjQ0NDIyMjExMS8vLy0tLSwsLCsrKyoqKikpKScnJyYmJiUlJSMjIyIiIiEhISAgIB4eHh0dHRoaGhkZGRgYGBYWFhUVFRQUFBMTExISEhEREQ8PDw4ODg0NDQkJCQgICAcHBwYGBgQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/ABsJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypUuWUzQEqEKHz8uEaG4EEMBTQAUaKgf5UbhlgYCdPQUM0ILSR4cISw6qYVGAZ4ADEmQouSAgBKKSVDIc3TmEQwoeQxsFSRoijEBCHwQoODOy0IsDAQxQoDAggN8AFGpoITNCgIUvewb+4BliZB8RfjFMEYjFwV+/A5RcMSOIIBcEPKGIHCQzwIk6BA3F0WHiweUCBAEl4JlhpBO/OA4lxNPEQIAGQAai8cDTApuRFvyiXiglgIS0YlTwpLCGJIAAPRgxVNQiwJhGd0b4060Ap6RfLw7BeEczYWeFNyYvBFixqKH6I0YDoGASZU7JJ35loZtCfpAQQFUCAEDAAAJkgAdJcrgWgA1yJILQIrclhRRPZQikh0hmQPBXCUl0YQdBcwjhV1I11NAATx+ccEIGeYgECAx4/cXABUQQEYNlSFUghU12SJBUBUYEQlIaSIRAwGV/9ZRDeQKVAZoADexA5UluVOECC2D29IAVXxFUxgxQtHHTHxuAUESNN8Up55x01mnnnXjmqeeefPbp55+ABirooIQWauihiCaq6KIlBQQAOw==", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_6ca6263c46cb416d95a0e5c279f2a892" + } + }, + "ccd504cbfb9a4e7f8020a3254b06b7b0": { + "buffers": [ + { + "data": "R0lGODlhQABAAIcAAP////7+/v39/fz8/Pv7+/n5+fj4+Pf39/b29vX19fPz8/Ly8vHx8fDw8O/v7+vr6+np6ejo6Ofn5+bm5uXl5eTk5OPj4+Li4t/f397e3tvb29XV1dLS0tHR0dDQ0M/Pz8XFxcTExMPDw7+/v76+vru7u7i4uLa2trGxsa+vr66urqysrKqqqqmpqaenp6WlpaKioqCgoJ6enp2dnZeXl5WVlY2NjYyMjIuLi4mJiYaGhoODg4CAgH9/f35+fnl5eXd3d3Z2dnNzc25ubmdnZ2VlZWRkZF9fX15eXllZWVVVVVRUVFNTU1FRUU1NTUxMTEtLS0FBQT09PTw8PDo6Ojk5OTY2NjU1NTMzMzIyMi8vLy4uLi0tLSoqKikpKScnJxwcHBoaGhcXFxEREQ0NDQsLCwkJCQgICAYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH/C05FVFNDQVBFMi4wAwH//wAh+QQIFAAAACwAAAAAQABAAAAI/wDdCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fPn0AJCmkQIAAAAkHQ2ETjQoDTpwIeLKFZJgbUqyLGzMQB1cMKKTeeTo1ZxQJULQLXvHA6IuYWClfRCsyCQEAFLjCfQD3xQQxBBk6h5H3qY42agoAFCH6pVwADMgcTL0ZZw2iLLm4aO0AoWSWMpwdMmHC6OXJglWV2dBhw1cEV0xvCtGwyg0OCp0cKtoFiQECJmD5IrykIxekGMDGJOB3AYrhAJr0FsIhJ5QFULAK7LHCqwQvMMyAEQHN4OoGGEQ5OMXyJqcLpjxBXnV5YDxO6gBFqoqBQ8LRAhCIxMbFdBFYMNEUKAtiARExn8NDbAEroJMNTSeSUBhDbCZCDczaZsYRTDejAoU1DOCVBFjo1wZ8ATug0hgfibcGGTiQIIAF2O2UgQA9B9ejjSAEBACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pf39/b29vX19fPz8/Ly8vHx8fDw8O/v7+vr6+np6ejo6Ofn5+bm5uXl5eTk5OPj4+Li4t/f397e3tzc3Nvb29XV1dLS0tHR0dDQ0M/Pz8XFxcTExMPDw8DAwL+/v76+vru7u7i4uLa2trGxsa+vr66urqysrKqqqqmpqaenp6WlpaKioqCgoJ6enp2dnZeXl5WVlY2NjYyMjIuLi4mJiYaGhoODg4CAgH9/f35+fnl5eXd3d3Z2dnNzc25ubmdnZ2VlZWRkZF9fX15eXltbW1lZWVVVVVRUVFNTU1FRUU1NTUxMTEtLS0lJSUFBQT09PTw8PDo6Ojk5OTY2NjU1NTQ0NDMzMzIyMi8vLy4uLi0tLSoqKikpKScnJxwcHBoaGhcXFxMTExEREQ0NDQsLCwkJCQgICAYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AOsIHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGPKnEmzps2bOHPq3Mmzp8+fQBEWcRAgAAACRN7YfBNDgNOnAiA8ocmGBtSrJNTM3AEVhIsrOp5OjanlAlQwAuXIcGoiZpgKV9EK/JJAgAUxMKdAVRECDcEGTqnkfRpETpyCgAUIFonDKIwxCPUKaLDmYOLFIWc8RZAiRZWCkh8gvDySjY8PA54W0KCBi8DQowObjGLDg4KnSgQycSrasoAOZ1IGcbpBjsAevA3SoXJAAAqVR5wmGQi7IBWnHcykzAJBQAmtr50OmHhhXCCU5gJepHQjQkCENAS7RHjqReAYBk45kEnZwqkQg048RcENSXjgVAZlpHSeACYcVpAaI1zlFAYJogQFfhJsgZAVKyzwlAESIIGSGz80N4ATC2HBggA5LKFSDU81kRMcQ+AnAA/l2dTGE0450EOONhnh1ARf6BSFhwJIoZMaILgXxhw6nSDABPXtpIEAQASl5ZZcihQQACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pf39/b29vX19fPz8/Ly8vHx8fDw8O/v7+vr6+np6ejo6Ofn5+bm5uXl5eTk5OPj4+Li4t/f397e3tzc3Nvb29XV1dLS0tHR0dDQ0M/Pz8XFxcTExMPDw8DAwL+/v76+vru7u7i4uLa2trGxsa+vr66urqysrKqqqqmpqaenp6WlpaKioqCgoJ6enp2dnZeXl5WVlY2NjYyMjIuLi4mJiYaGhoODg4CAgH9/f35+fnl5eXd3d3Z2dnNzc25ubmdnZ2VlZWRkZF9fX15eXltbW1lZWVVVVVRUVFNTU1FRUU1NTUxMTEtLS0lJSUFBQT09PTw8PDo6Ojk5OTY2NjU1NTQ0NDMzMzIyMi8vLy4uLi0tLSoqKikpKScnJxwcHBoaGhcXFxMTExEREQ0NDQsLCwkJCQgICAYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AOsIHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGPKnEmzps2bOHPq3Mmzp8+fDIs4CBAAAAEib2y+iSGgqVMBEJ7QZEPjqVUSambueArCxRUdTqXG1HLhKRiBcmQ0NREzTAWrZwV+SSDAghiYU56qCIGGYIOmVPA6DSInTsG/AgJrxFEUxhiIeQU0WHMQseKMM5wiSJGiSsPIDxBa3sjGx4cBTgto0MBFIWjRgD1GseFBgVMlCpk0DV1ZQIczIYM03SBHYY/dBulQOSAAhcgjTZMsfF2QStMOZkJmgSCgRFbXTQe8mCguEApzAS9CuhEhIEIahl0iOPUicAyDphzIhGzRVIhDJ05RcEMSHjSVQRkhmSeACYY1pMYIVjWFAYIgQXGfBFtAZMUKCzhlgARIgOTGD8wN4MREWLAgQA5LiFSDU03kBMcQ9wnAA3k2tfFEUw70gKNNRjQ1wRc6RdGhAFLopAYI7YUxh04nCDABfTtpIAAQQGWp5ZZcmhQQACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pf39/b29vX19fPz8/Ly8vHx8fDw8O/v7+vr6+np6ejo6Ofn5+bm5uXl5eTk5OPj4+Li4t/f397e3tzc3Nvb29XV1dLS0tHR0dDQ0M/Pz8XFxcTExMPDw8DAwL+/v76+vru7u7i4uLa2trGxsa+vr66urqysrKqqqqmpqaenp6WlpaKioqCgoJ6enp2dnZeXl5WVlY2NjYyMjIuLi4mJiYaGhoODg4CAgH9/f35+fnl5eXd3d3Z2dnNzc25ubmdnZ2VlZWRkZF9fX15eXltbW1lZWVVVVVRUVFNTU1FRUU1NTUxMTEtLS0lJSUFBQT09PTw8PDo6Ojk5OTY2NjU1NTQ0NDMzMzIyMi8vLy4uLi0tLSoqKikpKScnJxwcHBoaGhcXFxMTExEREQ0NDQsLCwkJCQgICAYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AOsIHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGPKnEmzps2bOHPq3Mmzp8+fD4s4CBAAAAEib2y+iSGgqVMBEJ7QZEPjqVUSambueArCxRUdTqXG1HLhKRiBcmQ0NREzTAWrZwV+SSDAghiYU56qCIGGYIOmVCriKApjjMW8TYPIiVPwr4DAFGc4RZAiRZWJiBusOegY8kQ2Pj4McFpAgwYuEBE/QNgZYxQbHhQ4VZK66WrOgDcGabpBDkQmtlkL6HBm45GmSSL2CF6QDpUDAlBszAJBQImstQXcJkilaQczGt2ImRAQIY1ExANe+BYIBbqAFxtbNBUysUsEp14EjmHQlAMZje0JYAJjEznhFAU3JOFBUxmUASB/EmxRkRojWNUUBg5i5MYP0A3gxEVWrLCAUwZIgIRGNTjVhEZYsCBADktoBMcQ/AnAw3o2tfFEUw70gKNNRjQ1wRc6RTGiAFLopAYI5IUxh04nCDBBfjtpIAAQQGWp5ZZcdklSQAAh+QQIFAAAACwAAAAAQABAAIf////+/v79/f38/Pz7+/v6+vr5+fn4+Pj39/f29vb19fXz8/Py8vLx8fHw8PDv7+/r6+vp6eno6Ojn5+fm5ubl5eXk5OTj4+Pi4uLf39/e3t7c3Nzb29vV1dXS0tLR0dHQ0NDPz8/FxcXExMTDw8PAwMC/v7++vr67u7u4uLi2traxsbGvr6+urq6srKyqqqqpqamnp6elpaWioqKgoKCenp6dnZ2Xl5eVlZWNjY2MjIyLi4uJiYmGhoaDg4OAgIB/f39+fn55eXl3d3d2dnZzc3Nubm5nZ2dlZWVkZGRfX19eXl5bW1tZWVlVVVVUVFRTU1NRUVFNTU1MTExLS0tJSUlBQUE9PT08PDw6Ojo5OTk2NjY1NTU0NDQzMzMyMjIvLy8uLi4tLS0qKiopKSknJyccHBwaGhoXFxcTExMRERENDQ0LCwsJCQkICAgGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wDrCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fPh0UcBAgAgACRNzbfxBDAtKkACE9osqHhtCoJNTN3OAXh4oqOplFjarngFIxAOTKYmogZpkJVswK/JBBgQQzMKU5VhEBDsAFTKhBxEIUxZiNepkHkxCnoVwDghzOaIkiRogrGww3WHGz82CEbHx8GNC2gQQOXiocfIOQ8MYoNDwqaKkHNVPXmvxaDMN0gpyKT2qsFdDhj8QjTJBZ7AC9Ih8oBASgsZoEgoARW2gJsE6TCtIOZim5ECJmIkObi4QEveguE8lzAC4stmArB2CVCUy8CxzBgyoFMRfYCmLAYRk40RcENSXjAVAZl/LefBFtopMYIVTGFQYMTufHDcwM4wZEVKyzQlAESIFFRDU018REWLAiQwxIVwTHEfgLwoJ5NbTzBlAM93GiTEUxN8IVOUYgogBQ6qQHCeGHModMJAkyA304aCADET1hmqeWWXHaZUkAAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f39/Pz8+/v7+vr6+fn5+Pj49/f39vb29fX18/Pz8vLy8fHx8PDw7+/v6+vr6enp6Ojo5+fn5ubm5eXl5OTk4+Pj4uLi39/f3t7e3Nzc29vb1dXV0tLS0dHR0NDQz8/PxcXFxMTEw8PDwMDAv7+/vr6+u7u7uLi4tra2sbGxr6+vrq6urKysqqqqqampp6enpaWloqKioKCgnp6enZ2dl5eXlZWVjY2NjIyMi4uLiYmJhoaGg4ODgICAf39/fn5+eXl5d3d3dnZ2c3Nzbm5uZ2dnZWVlZGRkX19fXl5eW1tbWVlZVVVVVFRUU1NTUVFRTU1NTExMS0tLSUlJQUFBPT09PDw8Ojo6OTk5NjY2NTU1NDQ0MzMzMjIyLy8vLi4uLS0tKioqKSkpJycnHBwcGhoaFxcXExMTERERDQ0NCwsLCQkJCAgIBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8A6wgcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyZMoU6pcybKly5cwY8qcSbOmzZs4c+rcybNnwiIOAgQAQIDIG5tvYghYylQAhCc02dBoSpWEmpk7moJwcUUHU6gxtVxoCkagHBlLTcQMU4FqWYFfEgiwIAbmlKYqQqAh2GApFbtMg8iJU7CvgL8TcQyFMebiXQEN1hw0jFjiDKYIUqSoQvHxA4SUKbLx8WEA0wIaNHCJ6Bm034tRbHhQwFRJRCZLP08W0OGMxiBLN8iJ2CO3QTpUDghAsfHI0iQSWxeksrSDGY1ZIAgocZX10gEvhguYhKJcwAuNbkQIiJBmYpcITL0IHMNgKQcyGlssFVLRCVMKNyThwVIZlKEReQKYQBhFaoxA1VIYGJgRFPVJsMVFVqywAFMGSIBERm78oNwATmiEBQsC5LDERjUw1UROcAxRnwA8iGdTG08s5UAPNtpkxFITfKFTFBsKIIVOaoCwXhhz6HSCABPIt5MGAgDh05VYZqnlllzCFBAAIfkECBQAAAAsAAAAAEAAQACH/////v7+/f39/Pz8+/v7+vr6+fn5+Pj49/f39vb29fX18/Pz8vLy8fHx8PDw7+/v6+vr6enp6Ojo5+fn5ubm5eXl5OTk4+Pj4uLi39/f3t7e3Nzc29vb1dXV0tLS0dHR0NDQz8/PxcXFxMTEw8PDwMDAv7+/vr6+u7u7uLi4tra2sbGxr6+vrq6urKysqqqqqampp6enpaWloqKioKCgnp6enZ2dl5eXlZWVjY2NjIyMi4uLiYmJhoaGg4ODgICAf39/fn5+eXl5d3d3dnZ2c3Nzbm5uZ2dnZWVlZGRkX19fXl5eW1tbWVlZVVVVVFRUU1NTUVFRTU1NTExMS0tLSUlJQUFBPT09PDw8Ojo6OTk5NjY2NTU1NDQ0MzMzMjIyLy8vLi4uLS0tKioqKSkpJycnHBwcGhoaFxcXExMTERERDQ0NCwsLCQkJCAgIBgYGBQUFBAQEAwMDAgICAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP8A6wgcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocSbKkyZMoU6pcybKly5cwY8qcSbOmzZs4c+rcybNnwSIOAgQAQIDIG5tvYghYylQAhCc02dBoSpWEmpk7moJwcUUHU6gxtVxoCkagHBlLTcQMU4FqWYFfEgiwIAbmlKYqQqAh2GAplY04hsIYA/Hu0iBy4hTsK+CvxhlMEaRIUaWh4QZrDjJ2nJGNjw8DmBbQoIGLQsMPEG72GMWGBwVMlZxemlqz35BBlm6Qo5AJbdUCOpwJeWRpkoU9fhekQ+WAABQhs0AQUOLqbAG1CVJZ2sEMSDciBESZSMPQ8IAXvAVCcS7gRcgWS4U07BKBqReBYxgs5UAG5HoBJijWkBNMUXBDEh4slUEZ/uknwRYPqTECVUthwKBHbvzg3ABORGTFCgswZYAESIBUA1NNUIQFCwLksARIcAyhnwA8pGdTG08s5UAPNtpkxFITfKFTFCEKIIVOaoAgXhhz6HSCABPct5MGAgDh05VYZqnlllx2iVJAACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pf39/b29vX19fPz8/Ly8vHx8fDw8O/v7+vr6+np6ejo6Ofn5+bm5uXl5eTk5OPj4+Li4t/f397e3tzc3Nvb29XV1dLS0tHR0dDQ0M/Pz8XFxcTExMPDw8DAwL+/v76+vru7u7i4uLa2trGxsa+vr66urqysrKqqqqmpqaenp6WlpaKioqCgoJ6enp2dnZeXl5WVlY2NjYyMjIuLi4mJiYaGhoODg4CAgH9/f35+fnl5eXd3d3Z2dnNzc25ubmdnZ2VlZWRkZF9fX15eXltbW1lZWVVVVVRUVFNTU1FRUU1NTUxMTEtLS0lJSUFBQT09PTw8PDo6Ojk5OTY2NjU1NTQ0NDMzMzIyMi8vLy4uLi0tLSoqKikpKScnJxwcHBoaGhcXFxMTExEREQ0NDQsLCwkJCQgICAYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AOsIHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGPKnEmzps2bOHPq3LmziIMAAQAQIPLG5psYApIqFQDhCU02NJZKJaFm5o6lIFxc0aHUaUwtF5aCEShHRlITMcNUkDpW4JcEAiyIgTllqYoQaAg2SEpFJI6gMMYkrJs0iJw4BfcK6BtyhlIEKVJUMUi4wZqDihmDZOPjwwClBTRo4DKQ8AOEmUtGseFBgVIlpZOexswXZZCkG+QMZCIbtYAOZ1AeSZqEYI/eBelQOSAABcosEASUqBpbwGyCVJJ2MHPSjQgBEdIUmCQ84IVugVCYC3iBskVSIQa7RFDqReAYBkk5kDmZXoAJxAY5oRQFNyThQVIZlMEffhJsgZAaI0iVFAYKluTGD8wN4IRCVqywgFIGSIDESTUo1URDWLAgQA5LnATHEPgJwMN5NrXxRFIO9ECjTUYkNcEXOkXxoQBS6KQGCOCFMYdOJwgwQX07aSAAEDxVaeWVWGap5ZZcwhQQACH5BAgUAAAALAAAAABAAEAAh/////7+/v39/fz8/Pv7+/r6+vn5+fj4+Pf39/b29vX19fPz8/Ly8vHx8fDw8O/v7+vr6+np6ejo6Ofn5+bm5uXl5eTk5OPj4+Li4t/f397e3tvb29XV1dLS0tHR0dDQ0M/Pz8XFxcTExMPDw7+/v76+vru7u7i4uLa2trGxsa+vr66urqysrKqqqqmpqaenp6WlpaKioqCgoJ6enp2dnZeXl5WVlY2NjYyMjIuLi4mJiYaGhoODg4CAgH9/f35+fnl5eXd3d3Z2dnNzc25ubmdnZ2VlZWRkZF5eXllZWVVVVVRUVFNTU1FRUU1NTUxMTEtLS0FBQT09PTw8PDo6Ojk5OTY2NjQ0NDMzMzIyMi8vLy4uLi0tLSoqKikpKScnJxwcHBoaGhcXFxEREQ0NDQsLCwkJCQgICAYGBgUFBQQEBAMDAwICAgEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AN0IHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGPKnEmzps2bOHPq3HlziIMAAQAQEILGJpoXApIqFQBhCc0yMpZKHTFmZo6lH1hIwaHUacwqF5ZqEbgGRlISMbdUkDpWYJYEAixwSWkjqIsuAp8sRQFCDMEGSaGkjKEUwYkTepP+WKOmIGABglGW4eFhgNICSRuQOfg4ssomNDooUPoAYeeXP0ibDvyyiGrOAjiEcUkFwmuCbaAcEGDC5ZkQAiIkLV0QSlIOYFyuSAok6YAWawYy2S2ghcvpAkhcEZ4Ui8AuDJJuePDSkkl4CVbcKFFKocaRDkkzfGF5psfuAUoEjhEhNSmG+SzNoFQSBEWRwgJKGSCBESylEUR4AugQXUFTqCDADUi0ZMYSSTmww4Q3EZHUBFno1ASCAjih0xgfBLcFGzqVIMAE3u2kgQA+8KTjjjz26OOPQAYpJEoBAQAh+QQIFAAAACwAAAAAQABAAIf////+/v79/f38/Pz7+/v6+vr5+fn4+Pj39/f29vb19fXz8/Py8vLx8fHw8PDv7+/r6+vp6eno6Ojn5+fl5eXk5OTj4+Pi4uLf39/e3t7c3Nzb29vV1dXS0tLQ0NDPz8/FxcXDw8PAwMC/v7++vr67u7u4uLi2travr6+urq6srKyqqqqnp6elpaWioqKgoKCenp6dnZ2Xl5eVlZWNjY2MjIyLi4uJiYmGhoaAgIB/f39+fn55eXl3d3d2dnZzc3Nubm5nZ2dlZWVkZGRfX19eXl5bW1tVVVVUVFRTU1NRUVFNTU1MTExLS0tJSUk9PT08PDw6Ojo5OTk1NTU0NDQzMzMyMjIvLy8uLi4tLS0qKiopKSknJyccHBwaGhoXFxcTExMRERELCwsJCQkICAgGBgYFBQUEBAQDAwMCAgIBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/wDXCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6nz5w0GAAAAI+ChjswwLAUiTCoCAhKaYF0qjhggz04ZSDyqe1EjaNKYUC0qvCETTAumImFgoRBUr0EoCARWywJwBFOmJD18INkDaBKaLpAhMmHCily9MJkgHJC2QIcOUNXsF9H2JWMCDGB0UJCUC2TBlpA8E7kCqAU1nyTCNgBYYBOkQgXs5eIGJY3UUCAJEhFHT5ICAEjErPyADQkAEMGuaIOXQJXjiFEh5rEniW8AKmVQiKB1xRgsDpBu2zGI8klSCjCEdkGLgMpNMjupRL7CfCSPpgqQGJAiZaabHdwE3QIGCADQUQdMYSCDlAA6m4QQEUhNYoZMS9wmwhE5heGAcFmnoRIIAE1Sx0xoZCKDDiCimqOKKLLbo4oswxuhRQAA7", + "encoding": "base64", + "path": [ + "value" + ] + } + ], + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ImageModel", + "state": { + "layout": "IPY_MODEL_1524ea5364f2465393602221858a8344" + } + }, + "d9628e5ed42449a18fbe450b4de56e53": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + }, + "eefac49d463e46d899902775c8c92aef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": {} + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}