diff --git "a/conv_lstm.ipynb" "b/conv_lstm.ipynb"
--- "a/conv_lstm.ipynb"
+++ "b/conv_lstm.ipynb"
@@ -1,430 +1,1255 @@
{
- "cells": [
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5iJqHKEQx66F"
+ },
+ "source": [
+ "# Next-Frame Video Prediction with Convolutional LSTMs\n",
+ "\n",
+ "**Author:** [Amogh Joshi](https://github.com/amogh7joshi)
\n",
+ "**Date created:** 2021/06/02
\n",
+ "**Last modified:** 2021/06/05
\n",
+ "**Description:** How to build and train a convolutional LSTM model for next-frame video prediction."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "9vv8zp4vx66K"
+ },
+ "source": [
+ "## Introduction\n",
+ "\n",
+ "The\n",
+ "[Convolutional LSTM](https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf)\n",
+ "architectures bring together time series processing and computer vision by\n",
+ "introducing a convolutional recurrent cell in a LSTM layer. In this example, we will explore the\n",
+ "Convolutional LSTM model in an application to next-frame prediction, the process\n",
+ "of predicting what video frames come next given a series of past frames."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "daG-n305x66K"
+ },
+ "source": [
+ "## Setup"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%capture\n",
+ "!pip install imageio"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "id": "4Xx9qttUx66L"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "import tensorflow as tf\n",
+ "from tensorflow import keras\n",
+ "from tensorflow.keras import layers\n",
+ "\n",
+ "import io\n",
+ "import imageio\n",
+ "from IPython.display import Image, display\n",
+ "from ipywidgets import widgets, Layout, HBox"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "w-uOOdg1x66M"
+ },
+ "source": [
+ "## Dataset Construction\n",
+ "\n",
+ "For this example, we will be using the\n",
+ "[Moving MNIST](http://www.cs.toronto.edu/~nitish/unsupervised_video/)\n",
+ "dataset.\n",
+ "\n",
+ "We will download the dataset and then construct and\n",
+ "preprocess training and validation sets.\n",
+ "\n",
+ "For next-frame prediction, our model will be using a previous frame,\n",
+ "which we'll call `f_n`, to predict a new frame, called `f_(n + 1)`.\n",
+ "To allow the model to create these predictions, we'll need to process\n",
+ "the data such that we have \"shifted\" inputs and outputs, where the\n",
+ "input data is frame `x_n`, being used to predict frame `y_(n + 1)`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "id": "H6_vt6q4x66N"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {
- "id": "5iJqHKEQx66F"
- },
- "source": [
- "# Next-Frame Video Prediction with Convolutional LSTMs\n",
- "\n",
- "**Author:** [Amogh Joshi](https://github.com/amogh7joshi)
\n",
- "**Date created:** 2021/06/02
\n",
- "**Last modified:** 2021/06/05
\n",
- "**Description:** How to build and train a convolutional LSTM model for next-frame video prediction."
- ]
- },
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloading data from http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy\n",
+ "819208192/819200096 [==============================] - 8s 0us/step\n",
+ "819216384/819200096 [==============================] - 8s 0us/step\n",
+ "Training Dataset Shapes: (900, 19, 64, 64, 1), (900, 19, 64, 64, 1)\n",
+ "Validation Dataset Shapes: (100, 19, 64, 64, 1), (100, 19, 64, 64, 1)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Download and load the dataset.\n",
+ "fpath = keras.utils.get_file(\n",
+ " \"moving_mnist.npy\",\n",
+ " \"http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy\",\n",
+ ")\n",
+ "dataset = np.load(fpath)\n",
+ "\n",
+ "# Swap the axes representing the number of frames and number of data samples.\n",
+ "dataset = np.swapaxes(dataset, 0, 1)\n",
+ "# We'll pick out 1000 of the 10000 total examples and use those.\n",
+ "dataset = dataset[:1000, ...]\n",
+ "# Add a channel dimension since the images are grayscale.\n",
+ "dataset = np.expand_dims(dataset, axis=-1)\n",
+ "\n",
+ "# Split into train and validation sets using indexing to optimize memory.\n",
+ "indexes = np.arange(dataset.shape[0])\n",
+ "np.random.shuffle(indexes)\n",
+ "train_index = indexes[: int(0.9 * dataset.shape[0])]\n",
+ "val_index = indexes[int(0.9 * dataset.shape[0]) :]\n",
+ "train_dataset = dataset[train_index]\n",
+ "val_dataset = dataset[val_index]\n",
+ "\n",
+ "# Normalize the data to the 0-1 range.\n",
+ "train_dataset = train_dataset / 255\n",
+ "val_dataset = val_dataset / 255\n",
+ "\n",
+ "# We'll define a helper function to shift the frames, where\n",
+ "# `x` is frames 0 to n - 1, and `y` is frames 1 to n.\n",
+ "def create_shifted_frames(data):\n",
+ " x = data[:, 0 : data.shape[1] - 1, :, :]\n",
+ " y = data[:, 1 : data.shape[1], :, :]\n",
+ " return x, y\n",
+ "\n",
+ "\n",
+ "# Apply the processing function to the datasets.\n",
+ "x_train, y_train = create_shifted_frames(train_dataset)\n",
+ "x_val, y_val = create_shifted_frames(val_dataset)\n",
+ "\n",
+ "# Inspect the dataset.\n",
+ "print(\"Training Dataset Shapes: \" + str(x_train.shape) + \", \" + str(y_train.shape))\n",
+ "print(\"Validation Dataset Shapes: \" + str(x_val.shape) + \", \" + str(y_val.shape))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "wJhm7oM7x66O"
+ },
+ "source": [
+ "## Data Visualization\n",
+ "\n",
+ "Our data consists of sequences of frames, each of which\n",
+ "are used to predict the upcoming frame. Let's take a look\n",
+ "at some of these sequential frames."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "id": "jFE2fY1xx66O"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {
- "id": "9vv8zp4vx66K"
- },
- "source": [
- "## Introduction\n",
- "\n",
- "The\n",
- "[Convolutional LSTM](https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf)\n",
- "architectures bring together time series processing and computer vision by\n",
- "introducing a convolutional recurrent cell in a LSTM layer. In this example, we will explore the\n",
- "Convolutional LSTM model in an application to next-frame prediction, the process\n",
- "of predicting what video frames come next given a series of past frames."
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Displaying frames for example 818.\n"
+ ]
},
{
- "cell_type": "markdown",
- "metadata": {
- "id": "daG-n305x66K"
- },
- "source": [
- "## Setup"
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHRCAYAAABjIxMcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADOFUlEQVR4nOzdd3hc1Zn48e+ZLmnUe+/NKrZsy92WXLAxLc7SAyQkbLIhm2zChmSTZ0PC7o/dNAJLdgNLCBBCAqEkoYTg3nu3JblLsiyrlxn1NjPn94c8dyVs2WAszWh8Ps9zHzyjOzPnzsu9895ThZQSRVEURVEUX6TzdAEURVEURVHGi0p0FEVRFEXxWSrRURRFURTFZ6lER1EURVEUn6USHUVRFEVRfJZKdBRFURRF8Vkq0VEURVEUxWd5NNERQpwVQvQJIbpHbHGeLNNHCSHyhRBrhBCtQgg16dAYJkksvyCEOCCE6BRCnBdC/EwIYfB0ubzRJInnPUKIk0KIDiFEsxDiFSFEkKfL5W0mQyxHEkJsEEJIdW5e2mSIpxDiQSGE8yNlLPVUebyhRudWKaV1xFY/8o9e8D/7EPAm8JCHyzEZeHss/YFvARHAbGAp8KgnC+TlvD2eO4D5UspgIA0wAE94tkhey9tjCYAQ4j7A6OlyTAKTIZ67PlLGzZ4qiDckOhe5kM3/oxDiNHD6wnPPCCFqL9yNHxBCLByx/+NCiLeEEL8XQnQJIcqEEFlCiO9fuNOrFUIsH7F/sBDiRSFEgxCiTgjxhBBCf6mySClPSilfBCrG+7h9kZfF8jkp5TYp5aCUsg74AzB/nL8Cn+Jl8ayVUraOeMoJZIzTofscb4qle3/gR8B3x/GwfZa3xdObeGWic8Eqhu+6p1x4vA+YBoQBrwFvCSEsI/a/FXgVCAUOAWsYPr544N+B50fs+1vAwfBFsQhYDvz9uByFAt4by0WoBPZqrMJL4imEWCCE6AC6gNuB//oUx3U9WoWXxBL4T+A5oPHqD+e6twrviWeRGO7ycUoI8ZjwZC2TlNJjG3AW6AbsF7Z3LjwvgSVXeK0NmHrh348D60b87dYL76u/8DjwwnuGANHAAOA3Yv97gU1X+LyM4a/Lc9+XN2+TKZYX9vsScB6I8PR3543bJIxn/IXPyvL0d+dt22SIJTATOMxw82PKhfcxePq788ZtksQzDUhlOGkqAI4B3/fUd+YN7XirpJTrL/F87cgHQohHGe4nE8fwlx/EcF8Lt6YR/+4DWqWUzhGPAawXXm8EGoQQ7v11H/085apMilgKIVYBPwaWydFNH8pokyKeAFLKOiHEauCPwPQr7X8d8tpYCiF0wLPAN6WUjhH7K2Pz2ngCSCmrRjwsE0L8O/Adhq+7E84bEp2xaCOcLrQrfpfhzqMVUkqXEMIGXM0ZUctwZhohpXRck5IqV+I1sRRC3Ai8ANwspSy7is9UvCieH2EA0q/iddczb4hlEMM1Om9c+BF19/s4L4S4U0q57So+/3rlDfEcq1wey2C9uY/OSIEMtw22AAYhxA8ZPjk+MSllA7AW+IUQIkgIoRNCpAshSi61vxhmAUwXHluEEOarOgoFPBvLJQx3QL5dSrn36oqvfIQn43mfECLpwr+Tgf8ANlzNZyuA52LZwXCNwbQL200Xnp8B7Lmaz1cAz56bK4UQ0Rf+nQM8Brx7NZ99LUyWRGcNsBo4BdQA/Xy6pqbPM5y4HGO4zfJtIHaMfZMZrsJzd1rtA05+is++3nkylo8BwcDfxP/N7fDhp/hsxbPxnALsFEL0MDzU/CTw5U/x2dc7j8RSDmt0bwz/MAM0SSkHP8XnX+88eW4uBY5eODf/BvyZ4c7mHiEudBxSFEVRFEXxOZOlRkdRFEVRFOUTU4mOoiiKoig+SyU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz7rshIFCCDUky0OklNd8ciUVT8+51vFUsfQcdW76FnVu+o6xYqlqdBRFURRF8Vkq0VEURVEUxWepREdRFEVRFJ+lEh1FURRFUXyWSnQURVEURfFZlx115UnLli0jLi6OqKgoOjs76evro7u7m7q6OhwOBzqdjilTpuByuejq6mL16tUMDAx4utjXvdLSUhISEoiJiaGrq4u+vj66urpoaGhgcHAQIQS5ubkIIeju7mbNmjX09vZ6utjXvbCwMEpKSoiLi8NoNNLV1aVtTU1NAAQHB5OWlkZnZyc1NTXs3asWgPe0wMBAli1bRkxMDBaLhc7OTrq7u+nu7qahoUHbJyMjg66uLurq6tixY4eHS61ciorl+PG6REen02EymVi4cCH5+fmkpKTQ2tpKZ2cnNpuN48ePMzg4iE6no7S0FKfTSWtrKxUVFTQ1NdHV1eXpQ7guCSEwmUzMnTuXadOmkZGRQVtbG11dXbS3t3Py5En6+voQQrBo0SKEELS3t3P8+HHq6+vp7Oz09CFct4xGI1FRUdx0001kZmZiNptpb2+ntbWVtrY2KisrAYiOjmbGjBm0tLRw8OBBzp07R0tLC06n08NHcH0yGAyEh4ezcuVK0tPTsVqttLa20t7eTnt7O6dOnQIgPDyc2bNn09rayrFjx6isrKStrY2hoSEPH4HipmI5zqSUY26AnOgtNDRUzpkzR546dUo6nU7pcrmky+WSTqdTOp1O6XA4tM393ODgoNy1a5f8h3/4hwkv73htl4vL1W7jWd6goCA5e/Zsefjw4Y8dN4fDIffs2SMfeeQRj3/fky2e17Js2dnZ8qGHHhoVN3fsRsbN4XBozzc1NclNmzbJxMREj3+3kz2WVxvPjIwMee+998qhoaGL4vbR2Lmfb21tlVu2bJHZ2dke/x69ZVOx9J1trJh4XY2OyWQiIiICo9GI3W7X7iYvxW63k5SURHZ2NpmZmURGRk5gSZWRjEYjERERmEwmuru7OXny5Jj7dnR0EBMTQ35+PhkZGcTGxk5gSZWPCgwMJCQkBJ1Ox8mTJ8esXRsaGqK7u5t58+YRHBxMTk4OJpNpgkuruFmtVkJCQtDr9VRWVmKz2S65n8PhoLOzk9mzZxMYGEhOTg4Wi2WCS6tcjorl+PK6REdKqVWFt7W1sWvXrjH3HRgYQK/Xk52dTXh4OAEBARNVTOUjpJS4XC5gOAG9Utzy8vLIz88nLCyMwMDAiSqmMgZ37I4dO0Ztbe2Y+wwNDVFUVITVaiUyMhK9Xj+RxVRGGFGDwIkTJ6iqqrrkfi6Xi8HBQQoKCggJCSEqKgqDwesu/dc1Fcvx5XXfUHNzM2vWrKGrq4tjx47xyCOPXHI/vV7PF7/4RbKysia4hMqltLe3s3r1ah577DHOnTs3ZtyEEHz+858nMTFxgkuojGX//v3axfLZZ59l48aNl9wvLS2Nz3zmMzgcjoksnjKGI0eOaDeFv/3tb/nLX/5yyf0SEhK4/fbbGRwcnMjiKZ+AiuX48rpEB4az25qaGhoaGrQ7zY/S6/UsXryY3NxcHA4Hv/3tb9m5c+cEl1QZSUpJbW0t3d3dY8ZNp9OxaNEiCgsLcblc/O53v2PTpk0TXFLlo/r7+zl9+vRlYxcREcHKlSsJDAzk9OnTfPDBB2NWsSsTwx23rq6uMeMWGhrKTTfdRGhoKDU1Nbz77rs0NzdPcEmVK1GxHD9elegYDAatCaS8vJzz589fcj+TyURwcDC5ubmEhYXR3t7OunXrOH78+ASXWAG05gun00lFRQX9/f2X3M9oNGK1WsnJySEqKgq73c7GjRspLy+fyOIqIxiNRhwOB93d3ezZs2fM/jkBAQHExsaSl5eHw+HgzJkzfPjhh/T09ExwiRUYvlY6nU76+vrYu3cv7e3tl9wvICCAqKgo8vPztRvIv/3tb3R0dExwiZWxqFhOAG8adRUdHS3Dw8MlIC+sAHvJLT09Xd53332yra1Nnjp1Sr766qsyODjY4z2+r+XmLSM7Ps4WGRkpIyMjtbiNFbvExER59913y/r6enn27Fn5+uuvy6ioKI9/15MxnteiTEajUSYkJEiLxaLFbqx9ly1bJn/2s59JKaVcu3at/Na3vuXx79RXYvlJ42kwGGRCQoL09/e/YtxKSkrk448/LqWUcuPGjfJf//VfPf79edumYuk726QYdbVw4ULy8vKYOnUqr7zyCsePH9fmDxipsLCQb33rWwwNDbF161aee+45dWfpQXPnzqWgoICZM2fy2muvUVFRwbFjxy7aLycnh0cffRQhBLt37+YXv/gFdrt94gusAMMTAN56661Mnz6dwcFBXnvtNcrLyy95h/jAAw8wffp0Wlpa+M1vfsOBAwc8UGIFhu/sb7nlFqZOnYrBYOCVV17h2LFjl6wJuPvuu1m4cCFtbW288sorlx0koEw8FcuJ4VWJTkBAAGlpaXz2s5/l3LlzmM1m7HY7bW1tWket8PBwMjIymDFjBocOHaKsrExddD3M39+f5ORkVq1aRUNDA2azWZvsyt1xNSwsjNTUVGbOnMnhw4cpLy9n//79Hi759U2v1xMUFMTChQvx8/Pj3LlzdHd3U1NToyWgJpOJ0NBQpk6dSnx8PMePH+fAgQOXnfZBGV86nY7AwEDmzp1LbGwslZWVWnOx+wfSaDQSGhpKQUEBSUlJHDt2jAMHDlzyxlHxHBXLCeJtTVcPPfSQdDt06JD81re+JUNDQyUgdTqdfOihh+Tbb78tBwcH5cMPPyynTZvm8eqy8dg8XT3+SbbIyEh51113aXE7fvy4fOSRR2R0dLS2zwMPPCB/97vfSafTKb/1rW/JWbNmefw7nszxvBZlMhqNMjExUW7atEmL3bPPPivvvPNObZ+UlBT5yCOPyNraWrlv3z551113+VwzsadjebXNHe+8844Wt5dfflned9992j6xsbHykUcekadPn5YVFRXyrrvu0roFqG1846li6X2x9KoaHZvNxv79+/nJT35CUVERYWFhfPnLX6anp4eDBw9y5MgR7rnnHgoKCnC5XOzZs0fdWXqBjo4Ojh49yo9//GOmTp1KeHg4X/nKVxgaGmL//v3s2bOHO+64g5kzZwKwb9++y04oqEwMh8NBS0sLv/vd7ygvL2fatGksWLCA5ORkHA4HW7ZsISEhga985StERERQUVHB1q1bVTOxh7mXvXnjjTeoqamhqKiIoqIikpKS6O3tZefOnURFRfGVr3yFuLg4Dh8+zNatW9UyK15IxXJieFWiMzg4SF1dHevXr6ezs5MZM2Zwyy23sGDBAgwGA319feTk5BAYGEhDQwMNDQ1qbSsvMDg4SFNTExs2bMBmszFt2jTuuOMO5s2bh8FgwGazkZOTQ1hYGPX19TQ0NKiRAl5ASkl/fz8HDx7Ebrdjt9u55557mDJlCqWlpbS1tZGZmUlOTg6tra00NDTQ2Njo6WJf99xxO3r0KD09PXR2drJq1SpycnJYvHgxXV1dhIWFkZOTQ3t7u4qbF1OxnCCeaOr4uNutt94qa2tr5dDQkDx79qx8++23ZVdXlzxy5Ij86U9/6tNV6J6uHv80W0lJiTx37pwcHByUdXV18q233pJ2u12eOHFC/vznP9dGaF1P22SJ5R//+EfZ3NwspRwe2bF161YppZSvvvqq/OIXv+jx79EbNm88N3/961/LxsZGKaWU27Ztkxs2bJBSSvnWW2/Jhx9+2OPfmTdvKpa+s40ZE2/4YRxri4+Pl5/97GdlXV2d7Ovrk83NzdLpdMrXXntNpqenS4PB4PEvdqID5o0/jh/doqKi5KpVq+SZM2fkwMCAbG5ulg6HQ77//vsyIyNDGo1Gj3+/kz2e41XO+fPnyx/84AdSSinb29ul3W6XUkq5atUqGRsb6/Hv0Rs2bzw3Z82aJR955BEppZR2u122t7dLKaV84IEHZHx8vMe/M2/eVCx9ZxsrJl7VdPVRra2t7Nq1i7KyMgoKCoiLiwOGm0o6OzvHnD1S8Sy73c7OnTs5evQoJpNJW+7B4XDQ0dGh4ubFKioqCAgIoLy8nPT0dPz8/ADo6emht7fXw6VTxnLixAmMRiPl5eWkpKQQHBwMQHd3t+pTNcmoWF57Ok8X4HIGBgZoamrimWee4Z133tGej4uLY9GiRZjNZs8VThnT4OAgzc3NPPvss/zxj3/Uno+KiqK0tBR/f38Plk65HLvdzqFDh/h//+//jVrcc8aMGeTn53uwZMrldHZ2cuzYMf7f//t/nDlzRnu+qKiIadOmea5gyiemYnnteXWNzlhmzZpFbGwsra2tnDx5UnXOmiQKCgr493//dzo6OqioqKCurs7TRVI+pocffpi8vDzsdjtnzpxhYGDA00VSPoYvfvGL5OXl0draSlVVlaqVm8RULK+eV9fouKWkpBAbGwsMN2cJIbRe6UVFRURHR6PTTYpDua6kpKQQHx8PQFtbGy6Xi+zsbEpLS5k5cybR0dHaOlmK9/D39yc7Oxs/Pz9tRF1cXBzTpk3jhhtuIDU1VatOV7yH2WwmOzubgIAAhoaGaGpqIioqisLCQm644QbS0tIIDQ31dDGVj+FKsczNzSU7O5uZM2cSEBDg6eJ6P2/ovHq5TafTyc2bN8u2tjbpcrnkBx98IA8cOCDdPvjgA3n77bdLs9ns8bJey80bOzx+0u2DDz6QLS0tUkop16xZI3ft2qXFbfPmzfKOO+6QAQEBHv+uJ2M8x7Osc+bMkefOnZMDAwOyoaFBvvnmm1qHSJfLJR999FE5Z84cj3+nvhLLaxXP/Px8ee7cOdnX1ydbW1vlm2++KZuamrRz7rHHHpOLFi3y+PfnbdtkjOWzzz4rf/7zn8sNGzbIKVOmSL1e7/Hv0Ru2MWPiTT+Ml9r0er0sKyuTDodDDg0NyZKSEvnFL35Rbty4Ufb390u73S6PHTsmFyxYIGNiYjxe3vEOmKdPwE+y7dq1Sw4NDUmXyyVXrlwp7777brl+/XrZ09Mju7q65MmTJ+WyZcuui5EEkymWJSUlcnBwULpcLrllyxaZlpYmf/Ob38jDhw9LKaWsra2Vr7zyiszPz5cmk8nj3+1kj+W1iue0adPkwMCAdLlc8uDBgzItLU3+93//t3ZjWFdXJ99++22Zn58v/fz8PP49esvm7bE8dOiQzM7Olr/61a+0WDY3N8vGxkbZ0dEhH3roIZmXl+fx79EbtrFiMin66JhMJvR6PUNDQ9o6PNHR0aSlpREZGUlaWhqZmZnY7XbVX8eLGI1GDAYDUkpqa2txOBysXbuW5ORkYmJiSE9PJzMzk9bWVtVfx4sIITAajQD09fVRVVXFli1bcLlcJCUlERsbq51zZ8+eZXBw0MMlVmB43SSTyQQMD+Soqqpi27ZtAKSmphIVFUV6ejrZ2dmcP3+evr4+TxZXuYyRsdTpdPj5+eHn56c9FxkZCYCUkri4OO2xcmmTsmPLkSNHeOqppzh8+DDNzc3o9Xpmz55NcnKyp4umXMaJEyd48sknOXDgAI2NjQghmDlzJhkZGZ4umnIFr776Kr/73e84ceIEAwMDREZGMn/+fG34ueKd3nzzTV5++WVOnDhBX18foaGhzJ8/H6vV6umiKR9TZGQkX/jCF1i2bBl5eXnuWiNNXFwcUVFRHird5DApEx0YXiPkz3/+M/v378dgMHDnnXcyffp0TxdLuQIpJe+++y47d+5Ep9Px2c9+ltmzZ3u6WMrHcP78eV599VXsdjupqak88MADBAUFebpYyiW4a+VWrlzJihUrGBgY0O7+H3jgAcLDwz1dROVjioyM5P777yc6OvqivwkhWLBgAQsWLCAmJgaDYVI00kw4r/9WpJQcPHgQnU5HSkoK6enpmM1m9Ho9SUlJhISEABAWFkZwcDB+fn6qStZLHDlyhICAALKzs0lNTWVoaAghBMnJyYSFhQEQGhpKSEgIfn5+9Pf3X3S3oky8zs5Odu7cSUFBgRY/gMTERJKSkjAajZhMJiIiIrBarZhMJtV85QV6enrYuXMnU6ZMISgoiEWLFrF06VIyMzOJiIjAaDRiNBpV3CaBgYEBTp06RUJCAv7+/lpi6nK5GBgYwGKxaCONY2JiSEpKIiUlhc7OThwOhyeL7pUmRaLzyiuv0NraysMPP8zSpUtpb29Hr9dz3333ERMTo+1nNpsJCwujoaFBzb7rBV577TVaW1v57ne/S2lpKdnZ2Qgh+NznPqcNOx8Zt8bGRpxOp4dLrdTW1vJf//VfPPHEE0RGRnLrrbcCkJaWxq233qrdXLhcLoKDg7FarbS3t3uwxApAc3MzzzzzDN///vdJTU3lX/7lX5gxY4Z2U+EmpSQoKIjAwEDa2to8VFrlcjo7O1mzZg233XYbycnJCCGA4dnl29vbiYqK0vrrREREkJqayowZMzh9+rSaX+cSJkWis23bNpKTk9Hr9fzDP/wDTqcTIQRBQUEYDAYcDgdvv/0227Zto6mpSSU5XmLXrl1aJ7kvfvGL2p1GcHAwBoMBl8vFn//8ZzZs2EBTU5NKcrxEe3s7q1ev5tvf/jbTp0/nu9/9LjDcudxqtWIwGKiurmbjxo1UVlZit9s9W2CF0NBQkpKSmDp1qpbEzJ8/H4vFMmq/8+fPs27dOk6dOqXi5qXcc1bdddddF817ZDKZtCYql8vF4OAgJpOJwMBAcnJy1GoBY/D6RAeGq2TPnj3L1q1bKSgoIDg4GJPJxPnz56mvr6eqqoo1a9Zw8uRJVW3nRXp7e6mtrWXr1q1adbrZbKa+vp6GhgYqKytZu3YtFRUVKm5eQKfTkZSURHh4OOHh4VRWVmI2m8nKysJisTAwMMD58+cpLy/nzJkz7N69W6055yWys7OZNm0aM2bMICgoCJ1Od9FSK93d3dTX17Njxw46OjrUjYWXSktLIz8/n7CwMC2h6e/vx2KxaBN4Hj9+nKGhIcLDwyksLMRqtZKdnU1kZCQdHR1qTayPmBSJDgyP2Hn22Wf5zne+Q2JiIkFBQRw4cIA1a9bw3nvvqeYqL1VdXc3//M//8K1vfYu0tDTCwsI4ePAgmzdv5o9//KNqrvICQghtOOvChQspLCxk5syZ/OUvf+H48eN86UtfIjIykra2Nnbt2sVTTz1FVVWVaq7yEkajkcWLF7N8+XJKSkoALtnXzWazcebMGdavX09nZ+dEF1P5GIQQFBcXU1JSonUsdic3kZGRWv+5X/3qVwwMDLBw4UISExOJiYmhuLiYzMxMlehcgrhc508hhNf0DDUYDJjNZkJCQtDr9eh0Ovr6+ujr66Onp8fnfiyllOJav6cn4qnX67FYLFpzlTtu/f39dHd3+1zcxnKt43ktYimEwGAwaHOr3H777cyZM4fIyEjMZjM/+tGP2L9/P2fOnEGv1+N0Ounv76ezs5OhoaHr9sbCm87NyMhIHn74YVatWkVOTo7WVDU0NER7ezvt7e2YTCbS09NxOp2Ul5fzy1/+kvfee0/1z7nAW85Ns9lMZmYmjz/+OIsXLyY0NJTOzk7Kysr44Q9/SENDA729vfT399PR0YGUEj8/P9avX8+0adMQQrB3717ef/99fvzjH1/LQ5o0xorlpKnRcTgcOBwOlal6OXffqdTUVKKjo7HZbOzfv1/FzctYLBaCgoLIyspi/vz5ZGdnM2PGDGJjY7W1c0JCQjAYDKNWMVe8h9VqJS4ujgULFhAfH68lOS0tLTQ0NLB37156e3uJjY0lJSUFvV6P1WolKSlJ68iqeA+DwUBkZCRhYWHaPEenT5/m8OHDnDhxgra2totGyQ0ODmp9VnU6nTb6WBlt0iQ6ivfT6XSYzWYSEhK4+eabmT17NuXl5Rw5coTBwUE1dNyLhISEkJKSwp133qmN7Pio6OhoNRGZF4uIiCAjI4OFCxdqiYuUklOnTnHw4EFefPFFTCYTRUVF3HjjjQQEBGCxWEhOTsZsNiOEUOekFzEYDMTExGC1WrWZyQ8ePMj27dtpaGgY83UulwuXy6UWtr4Mlegon5peryc4OJisrCzuvPNOCgsLKS4uxmQyERwcTElJCTt37qS7u9vTRVUYrnW78847WbJkCUuXLh1zduOFCxcCsGnTJlpaWhgaGprIYipXsHTpUlasWIHJZEIIwcDAAOfOnePnP/8527dvp6urCwC73c4zzzzDgw8+SFRUFDfeeCPvvfceTqdT1dZ5EXeiM3KknM1mu2JfOPfkq2ri1bGpREe5anq9Hn9/f7Kzs0lLS2PhwoUUFxcTHx+vzZgbGBhIfHy8doeieJa/vz+zZs1i1qxZ5OXlaVXkLpeLvr4+ent70ev1hIWFERkZSWJiIpmZmVq/HMXz9Ho94eHhZGVlkZWVpSU5jY2NvPvuu5w6dQqbzabV1rS2trJp0yZWrVpFbGwsISEhlJSUIIRQiY6XMJlMhISEMH36dIKDg3E6ndjtdqqqqqiurr7sa1tbW7HZbMBwx3Sz2awmYP0Ir0t03B0k3Z0f1cXVexmNRqKjo1m6dCmzZ89m1apVF+3j7+9PUlKSmt/BCwghCA0N5c4772TevHmkpqYC/5fkNDY20tbWhsViISwsjJCQEBITEyksLOT48eOqRs5LGAwGkpKSyMnJITMzE4Curi6qqqp46aWXqK2tHfUDZ7fb2bRpEzabDSEEFouFm266CYC//OUvHjkGZTQ/Pz+io6OZP38+ERERDA4Ocv78eSoqKjhz5sxlX2u32+ns7ERKicViwWq1EhoaSnNzs5q24wKvSnQMBgMpKSmsXLmSmTNncvToUZ555hkVLC8khCAhIYEf/vCHLFy4UJuh+qNiYmJYtWoV69evZ3BwUA1J9iD3RGT33nvvqEUdjxw5wtGjR/ntb3+LwWCgsLCQ//iP/8BsNmO1WsnLy7to4jnFc4xGI6mpqYSFhWnNjuvWrWPTpk2cOXPmuhnJ6EsSExPJzs4mISEBg8FATU0Nv/zlLzl79uwnep/o6GimT5/Ovffey0svvaTV9FzvPJ7o6HQ6LBYLERERFBUVkZOTw+LFi0lKSsLpdJKenk51dbVak8XLFBUVMWPGDIqKioiIiNBqbPr6+hgYGKCnp4eoqCgsFgtxcXFkZmZit9tVouNBOTk5FBcXY7VatRpTu93O2rVr2bNnD6dOnUKv1yOEYOvWrcyaNUtLdOLi4ujo6KCjo8PTh3Hd0+v1hIaGjqoltdvttLa2XvamsKamRlsTSfEu4eHhxMfHo9frgeHr6NGjR7V+VpcTERGhzaCs0+lwOBzY7fbrdvqHS/FooiOEwM/Pj4iICPLz87n77rvJy8ujoKAAgLa2NnJzc6mrq1OJjhfR6XTMnz+fxYsXk5eXBwyP9nA6nbS0tNDR0UF7e7s2FX1kZCQ5OTk0NjZSUVHh4dJfn3Q6Hfn5+cyZM0ebiKy/v5/q6mo++OADdu7cqV0YpZR88MEHZGZmkpiYSEFBAZmZmdhsNpXoeAGDwUB4eLiW6DidTjo7O68Ym8rKShISEkhJSUEIoW2qH4fnRUZGEhcXp61p1d/fz8mTJz/WAtWxsbHa6EgpJT09PdTU1KhuHyN4LNExm81ERUWxatUqZs2axWc+8xlMJpOW0QIEBQWRnZ3N1q1bPVVM5SMsFgtpaWnccsstzJs3T3vebrezb98+fvvb33L+/HmMRiPPPPMM2dnZGI1G0tPTr9jWrIwPk8lEbm4uCxYsYM6cOQB0dHRw7NgxHnnkEU6ePDnq7q+hoYFf//rX3HXXXSQnJxMYGMi3v/1tVq9ezfe+9z1PHYbC8Nw5iYmJ3H///SQkJDA4OEh1dTVbt25l27Ztl31tY2MjTU1NwHCfkODgYMLDw7HZbKq5y8MyMzOZOnWq9lgIgdFopL+//4qvLSwsJDc3FxgepdXQ0MDZs2dVojOCxwbeR0REcNNNN7Fs2TJmzpyJ1Wq9KNEJDQ1l+vTpREREjDkEVplYgYGBlJSUEBsbq8Wko6ODEydO8Morr3Do0CHOnDnD6dOn2bZtG0ePHgWGT+SsrCyio6NHxVgZfwaDgejoaIKDg7X1j44fP87u3buprq6+aLVjl8vFwMCAlvy4a15Vh3LPCw0NJT4+nujoaCwWCz09PWzcuJH6+vor9mV0uVxIKbXVyxMTEykuLr5oTSxl4un1eq2mFYavs6WlpYSHh4/5GiEEZrNZ+90UQtDT04PdbqetrU0lryN4pEbHz8+PhIQEbrnlFubPn09ISAiAdhK6XC4MBgMhISFMmzaN2NhY7Hb7x6rGU8aPTqcjODiYxYsXExkZiU6nQ0pJfX09R44c4c033xx1cm3ZsgWDwcCMGTNIT08nJyeH9PR0taDgBNPr9URGRmorj8NworN//35aWlrGfJ3D4WBoaEglOF4kLCyM+Ph4QkJC0Ol0dHd3s379epqbm6/4WvfSOTD8Q+runL5///6P1RdEGT9DQ0PapKru2eVXrFhBdXU1NpsNh8Mx6sbDPTlraGjoqKk7+vr66O7uxm63qybJETyS6DzwwAOUlpayYsWKUVlsW1sbXV1dtLe3M2XKFKxWK2lpaSxatAghxMc6mZXxk5SUxPTp01m2bBlWq5WhoSFsNhtPPvkkO3bsuCh5+fOf/8zQ0BBf+tKX8Pf3Z+7cufz0pz/lvvvu49y5cx46iuvPWBORXWmto507d2I0GrWJAxXPS0xMJCcnR+vL0dPTw6ZNmz7W0P/09HRtSgEYrok9fPjwx2oeUcbXgQMH8Pf3Z8aMGZhMJsLDw/nCF75AV1cXu3fvpqysjNraWgYHBwkICCAmJoapU6fy5S9/mbS0NO2m0z2HjtVqpaenR3VIvmBCEx2j0Uh4eDjFxcVMmzZNS3J6enqora1lw4YNtLW1MTQ0RExMDDExMeh0OuLj4y9bhadMjJCQECIjI/H390ev19Pe3s6mTZs4fvw4jY2NF+3vXp8Mhu9C3BMMui/Syvgzm82EhYUxd+5cIiIicDqdtLW1cfLkSU6dOnXZ17a3t2O324Hhfj5+fn4EBATQ19enLqAeEh0dfdWjppKSkkhISADQmjjUXCve4dSpUwghmD59OjNnziQ6Ohqz2UxpaSmZmZnU1dVx+vRp+vr6CAoKIiUlhcTERHJzc0d16+ju7qa/v39UBYIywYmO2WwmJSWF/Px8MjIygOERA+6FH9955x2ampqwWCzcdtttBAYGalWskZGRGAwGdVJ6UHBwMKGhodq6Ol1dXezatYvz58/T2dl5yde4XC76+/tVHysPcY9qnDFjBqGhoQwODlJTU8Pp06evOEdHd3c33d3d2kRkgYGBREREUF9frxIdDwkPDx81Oken0xEUFMTAwMBlr41CCGJjY4mOjkYIQV9f38cakq5MjHPnztHT08OGDRtITEwkKioKIYQ2hcfAwAAnTpygt7eXkJAQ0tLSRl1TpZQMDQ3R2NiopvC4hAntjBwdHc1Xv/pVkpOTtYzz/PnzrFu3jocffpjNmzdz7NgxDh06xAsvvMCHH36IEIKFCxeycOFCcnJy1FICHhQSEkJERIT2eGhoiKampssO/W9qauLDDz+ku7tb1eR4QHx8PFOmTCEhIYGAgADa29v57//+byorKz/R+0RFRTFt2jQ+97nPaX3qFM8LDw/nG9/4Bunp6WPu4161fOT5Z7fbaWpq4ty5c2p0jpew2+28/vrrHDt2TKtJheFk1s/Pj6lTpzJ37lymTJly0Y2jzWZj7969PPbYYzz//PPYbDZ1MzLChCU6ERERpKWlUVRURGBgIE6nk66uLt555x3+9re/0dvbi9PpxOVy4XQ62b59O4cPH8blcuHv78+UKVO4//77CQwMnKgiKxfodDqsViuFhYUUFRUBwyfWuXPnOHDgwGU7Mvb399PU1ITD4dAmh7RaraqD6wSJiIggISFh1Pwchw8fHnUhHUt0dDSRkZHAcI1Af38/dXV16ofRg86ePUtZWZnWcTUgIIClS5eycOFCZsyYQXR0tLbIp8ViISoqiqlTp/Lwww8THx+v/X+g1+u1dZHUDYh3cLlcdHR0sGnTJtauXXtRoqLT6dDpdBfF68MPP+SVV17hueeeo6qqSi3VcgkT1nQVHh5OQkKCVuXmXoRu06ZN7N+//6Ie4idOnKCwsBApJUajkaSkJJYuXcovf/nLiSqycoF7tFVmZibZ2dnAcE1NdXX1FefGcc/S6XQ6MZvN+Pv7Ex4eTnNz82VH/CjXRlhYGLGxsdrF0d109dEh5ZcSHR2tTUTmcrno7e2ltrZWJToeVFNTQ1lZGTabjZCQECwWC1OnTmXOnDnodDrKy8upqamhv78fq9VKXFwcU6ZM4Y477iAyMlKbINDdZ85kMmlJk+JZUkr6+/vZt28fQgjmzJmDn58fBoNBa8lw3ywODg4yODiojbo7cOAAhw4dUh2QxzBhiU5MTAyJiYkEBAQAUF9fzwsvvMCBAweor6+fqGIoV8FsNpOXl0dqaqr2w/f++++zfv36T/Q+AQEB+Pn58dnPfpbg4GDef//98SiuMkJGRgbTpk3TEh33RGQ6ne6KQ/wLCgq0icjsdjuNjY2qqcPD9u7dS2VlJcHBwdx5553k5+cjhOC+++7j7rvvpre3l4qKCnp6eggNDSU9PZ2goCBtnhW3trY2Ojo6MBqNqkbHyxw5coRjx47xzjvvMHXqVJKTk8nKygKGbz6WLFnC3r172b9/P2+88QYNDQ2j5r1SLjZhiU5gYCBBQUHa46GhIW2E1Vja29s5cODAqBkjlYlnMplITU3VklQYnk7+SqN2YHj18pSUFO2ORAhBfX39FYc2K9eGe84Nt8DAQG655RY2bdpEbW3tJV+j0+m0ScjcVeXd3d3YbDY1SsfDpJR0d3ezceNGiouLtfPSHTOdTkdWVhYOhwOTyURQUNCoETg9PT3U19fz2muvceDAAbq7u9UPpJdxdyy22+2Ul5dTXV3N4cOHgeGbxdWrV9Pc3ExraytNTU0qyfkYJiTR0ev1hIeHax1ZHQ4Hvb29NDY2XrYja1dXF6dOnSI3N1e7YLvvTFRV68RxNx2OnEG1paXlY81r5OfnR1JSEkajESklDoeDpqYmNTJggvT392vV2TqdjoCAABYvXkxVVRU2m00brSOl1M4vPz8/YmNjR827Mzg4qE1Gps49zxocHKSiooLKykpyc3NHdUQ2GAxav6qPstlsNDU1ceTIETZu3MiZM2cYGBiYqGIrn4CUksHBQRoaGjxdFJ8w7omOwWAgNDSUZcuWUVpaCgw3W5WVlbF69erLXjTd8+sMDQ1hMpmwWq2EhYVhs9lUh6sJ5Ofnx+zZswkLC9OeMxgMH2uuhrCwMObMmaOt29LW1kZtba1KdCbIkSNHCAwMZM6cOZjNZkJCQrj//vvp7u4mPj6ew4cPc/78efr7+7WJyAoLC/n6179OZmamNhGZex4dNRGZ57lcLm2ETk1NDT/96U8xGAxXbIL63//9X3bu3MmuXbvU7OTKdWXcEx13s0dcXJz2Q7lt2za2bt36ie4M3SMIFi5ciNFoZP/+/eNVZOUj3KscjzR37lz6+vr461//Oubr3OuwuJtOHA4HnZ2dNDc3q1WwJ8jx48fp7+8nLy+PefPmkZSUhF6vZ/ny5RQWFtLU1MTp06fp7u4mJCSElJQUYmJiyMnJGVWD19nZSU9Pz8f6QVUmRmVlJZ2dnXR3d5OcnKytgA3DTZSFhYVUVlZy9uxZtm3bxq5du6ivr6erq0slqsp1ZdwTHaPRSFxcHCEhIdrY/2PHjnHs2LErvlav12OxWBBCYDAYCAwMJD4+ntDQ0PEutjKC0+mks7OTgYEBbcRGQUEBnZ2dbN++nf7+fm0WZHcTo8FgICEhgZiYGGA4WXI6nQwMDNDT03PZJkvl2mlubmZgYIBt27aRlpZGQkICOp2OzMxMMjIy6O/vp7Kykt7eXm2hx5F9sVwuF319fdTU1FBfX6+arbxIW1sbNpuNuro6srOziY+PJy0tDUC7qTx69CgVFRW8++672Gw2dd4p16VxT3T8/PzIz8/HarVqzx0+fJgjR45c8bXBwcHk5eVpM/FKKTlx4gR1dXXjVl7lYt3d3XzwwQfExsYSGRmJyWRi8eLFJCcnc/78ecrKyqivr6e2thZ/f38CAwOJjo7m0UcfZdq0aej1eq0PyMh5dNQaOxOjq6uLN998k+LiYjIyMrQfQfeq5Pn5+WO+tqOjg/Lycp544gmOHz8+5gzYime4XC66urrYv38/Bw4cGPW3kX0ZVYKqXM/GPdGxWCzk5+ePmujPYDCg1+uv+NqQkBDy8vK0eQM6OztpbGxUzR4TzD1XQ2RkJO3t7dx4443odDpiY2P56le/SktLCy0tLZw8eVJbJiI5OZns7OxRs+gODg5qo60+TvyVa8P9Y7hmzRoGBgb4+7//+4/1/f/5z3+mrKyMvXv3cubMmY81947iOR9NZlRyoyjDJqQzclRUlFYrA8PVquHh4fT09Iz5Ove01zExMej1evr7+7Uhrpd7nXLtDQ0NcfbsWQ4cOIDVamXZsmXo9XoCAgKYPn06g4ODdHR0aHN2BAcHa4sHuvX19WnJUH9/v7oIT7DBwUHKy8vR6XTMnj1bq1Vzj6zS6/UEBQXR29tLb28vNpuNzZs3c+jQIY4cOUJvb6/q16EoyqTkkSVOb7nlFvz9/XnuuefG3MfPz0+7CAshtHl36urqPtb09cq1t2vXLnp7e3nooYcICQnRkleTyURkZOSYw1phuFPsmjVreOqpp7SZkpWJVVFRwYkTJ1i9ejWFhYWkpKSQk5ODEIKIiAhWrFjB3r17OXjwIL/73e9obm5Ws+YqijLpjXui09PTw5YtW4iJidEmr5ozZw4BAQFUVlZSVVWlraJrsVjw8/MjNDSUu+++m3nz5mkjdoQQ2hBXo9GoZmf1gN7eXmpqanj22Wf53Oc+R0ZGxqjJ6C6lqqqK999/n61bt1JVVUVnZ6dKcjzIvcZcWVkZlZWV7NmzBxgeIffGG29gs9mw2+20tLQwNDSkkhxFUSa9cU90ent7OXToEDNnztRGTcXFxeFwOCgpKSEmJobGxkZqamoIDAzU9lmyZAmZmZlahzopJU6nU5u/RSU6E8/pdGKz2diyZQvp6en09PQQGBiIxWLR+ny4Z7/u7e2lubmZsrIy1q5dy8GDB7Hb7SpuXsDhcNDe3q7mMlIU5bogLnfHJoS4Zrdz99xzD6WlpXzlK18Z9bx7ErmKigqt705qaupFr29sbKS8vJxvfetb1NTU+Hw/HSnlNZ+s5FrGMyAggIiICIqLi8nMzNQSnBUrViCEYN++ffz617+murqa9vb2675m4FrH81rGUvlkvP3cVD4ZdW76jrFiOWGJTkpKCnPnzuVXv/oVVqtVm1XX5XIxNDSkTUZmMplGTT0PcOrUKbZt28bvf/97Dh48SG9vr883f3j7xVSv12M0GgkKCsLf31+LZ3h4ODA8LLm+vp6+vj5Vi4O6mPoSbz83lU9GnZu+Y6xYTlhn5ObmZqqqqqioqCA/P5/g4GBgeHSV2WzGbDZf9Jquri4aGhrYvXs3u3fv5tChQ2qtHS/hdDpxOp0XzYVz5swZD5VIURRFUS42YTU6MDysvKSkhB/+8Ifk5+dfcS6PvXv38uyzz7Jhwwba29vp6+u7lsXxauqu0beou0bfoc5N36LOTd/h8aYrGJ5TJzg4mJycHOLj48nOziYpKUlrqpo7dy5Op5OTJ0/y3nvvcerUKU6ePInNZsPhcFxX83ioi6lvURdT36HOTd+izk3f4RWJjpvFYiEkJISMjAwSExOxWCzodDqKi4txOp2cPn2av/71rzQ1NdHV1TUeRfB66mLqW9TF1Heoc9O3qHPTd3hVoqNcmbqY+hZ1MfUd6tz0Lerc9B1jxfLys70piqIoiqJMYirRURRFURTFZ6lER1EURVEUn6USHUVRFEVRfJZKdBRFURRF8Vkq0VEURVEUxWepREdRFEVRFJ+lEh1FURRFUXyWSnQURVEURfFZKtFRFEVRFMVnqURHURRFURSfpRIdRVEURVF8lkp0FEVRFEXxWSrRURRFURTFZ6lER1EURVEUn6USHUVRFEVRfJZKdBRFURRF8Vkq0VEURVEUxWepREdRFEVRFJ+lEh1FURRFUXyWSnQURVEURfFZQkrp6TIoiqIoiqKMC1WjoyiKoiiKz1KJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rM8mugIIc4KIfqEEN0jtjhPlulShBBpQoi/CiG6hBCtQoifebpM3mYyxFII8b8fKd+AEKLL0+XyRpMknkII8YQQok4I0SGE2CyEyPN0ubzNJImlWQjxtBCiXghhE0I8K4Qwerpc3mCSxC9fCLHmwu/jRSOchBBhQoi/CCF6hBA1QojPTWT5vKFG51YppXXEVj/yj0IIg6cKduHzTcA6YCMQAyQAv/dkmbyYV8dSSvnVkeUDXgfe8mSZvJxXxxO4E/gSsBAIA3YBr3q0RN7L22P5PWAmkA9kAdOBH3i0RN7F2+M3BLwJPDTG338FDALRwH3AcxN5U+INic5FhBBSCPGPQojTwOkLzz0jhKgVQnQKIQ4IIRaO2P9xIcRbQojfX6h1KRNCZAkhvi+EaL7wuuUj9g8WQrwohGi4cDf4hBBCP0ZxHgTqpZRPSSl7pJT9Usqj43n8vsTLYjmyXAHA7cAr43DYPsvL4pkKbJdSVkkpnQzfgEwZx8P3KV4Wy1uBX0op26WULcAvGU5ilTF4U/yklCellC8CFZcop/ta+5iUsltKuR14D3jg2n4jY/PKROeCVcBs/u/CtQ+YxvCd22vAW0IIy4j9b2X4bi4UOASsYfj44oF/B54fse9vAQeQARQBy4G/H6Mcc4CzQogPxXC13GYhRMGnPLbrzSq8I5Yj3Q60AFs/+eFc91bhHfH8I5B+4WJtBL4ArP5UR3b9WYV3xBJAfOTfCUKI4E9+SNeVVXhP/MaSBTiklKdGPHcEmLhmZimlxzbgLNAN2C9s71x4XgJLrvBaGzD1wr8fB9aN+NutF95Xf+Fx4IX3DGG46mwA8Bux/73ApjE+Zy3D1XIrARPwHaAKMHnyu/O2bTLE8iOfuQF43NPfm7dukyGeF87HZy683gFUA6me/u68bZsksXwC2AFEMtxFYM+F94r19Pfn6W0yxG/EPhmA/MhzC4HGjzz3ZWDzRH2Hnm7XA1glpVx/iedrRz4QQjzKcPtfHMPBCAIiRuzSNOLffUCrHK7Odj8GsF54vRFoEEK7gdB99PM+8l7bpZQfXijHkwy3HecynJUq/8fbY+n+/CSglOGTTRmbt8fzh0AxkAg0AvcDG4UQeVLK3ise3fXF22P5Hwz/wB5m+Af2BYZrEZrG2P964+3xu5zuC+UYKQiYsIEg3pDojEXruX2hnfG7wFKgQkrpEkLYGF3V+XHVMnwiRUgpHR9j/6PA/Kv4HOX/eEss3R4Adkgpq67iMxXviec04A0p5fkLj38rhPgvhqvx91/F51+PvCKWUso+4OsXNoQQXwEOSCldV/HZ1xOviN8VnAIMQohMKeXpC89N5RL9ecaLN/fRGSmQ4arpFoa/sB9ycYb4sUgpGxhujvqFECJICKETQqQLIUrGeMnvgTlCiGUXOmJ9C2gFjl/N5ysejaXb5xluf1Y+PU/Gcx9wpxAi+sK+DzB8F3rmaj5f8VwshRDxQog4MWwO8Bjwo6s7jOuWJ+MnLvQFMl14bBFCmC+8Vw/wZ+DfhRABQoj5wGeYwBGSkyXRWcNwJ8NTQA3Qz9VVobl9nuGAHGO4DfNtIPZSO0opTzJcJf6/F/b9DHCblHLwU3z+9cxjsQQQQsxleIoANaz82vBkPH/KcPPxYYb7LjwC3C6ltH+Kz7+eeTKW6cBOoIfhkZDfk1Ku/RSffT3yZPySGW76ctfS9AEnR/z9a4Af0MzwtB4PSyknrEZHrV6uKIqiKIrPmiw1OoqiKIqiKJ+YSnQURVEURfFZKtFRFEVRFMVnqURHURRFURSfddl5dMQlViFVJoaU8mrmPrgsFU/PudbxVLH0HHVu+hZ1bvqOsWKpanQURVEURfFZKtFRFEVRFMVnqURHURRFURSfpRIdRVEURVF8ljcv6qkoiqIoyjVmNBoxm82YzWb6+vro7e31dJHGlarRURRFUZTrhNFoZOrUqXzta1/jpZde4t5778Vg8O06D98+OkVRFEW5zun1eoKCgoiKiqK0tJTCwkJmzJhBbGwsVVVV5OTkcPz4cZxOp6eLOi4mLNGxWq2YzWaMRiMulwuXy4XT6WRoaAiXywWAn58fQgicTiednZ0++6X7ssDAQEwm08eOc0dHh/a84t2MRiNWqxWTyQSgxdYdX/c+JpMJp9NJX18ffX19niyyolzXhBDo9XpCQkJISEggLy+Pz3zmM2RlZZGWlgZAcnIy6enpnDx50md/cycs0bnzzjspLi4mPz+flpYWOjs7aWlp4dixY3R3dwOwZMkSzGYzra2tPP300zQ2Nk5U8ZRr5P7772fatGnk5ubS3NxMR0cHra2tlJeX09fXhxCCG264AZ1OR0tLCz/72c+w2WyeLrbyMWRmZvLggw9SWFgIQHt7O42NjTQ2NlJVVQVAamoq06ZNo7Gxkc2bN/P+++97ssiKcl3z9/cnMjKSBx54gPnz57NkyRL0ej1C/N+8euHh4WRmZqLX67UbFl8z7omO2WwmISGB0tJS5syZQ2hoKCkpKQwODtLX18fcuXNxOBwAxMXFodfr6evrQ6fTsXPnTv7yl7+MdxGVa8DPz4+4uDiWLl1KYWEhISEhJCcnMzQ0RF9fH/PmzcPhcCCEIC4uDiGEdre/detWPvzwQw8fgXI5CQkJTJ06lZUrVxIeHg7AwMCA1pGxq6sLGK7RCw8Pp7e3l5SUFHJzc/mf//kfn+/s6EtSUlKYM2cOSUlJuFwuenp6CAgIoK6ujtOnTwPD1+q4uDg6Ojo4evQoFRUVHi618lFCCFJTU7n11lu5+eabSUxMvGRfnPj4eObNm8fevXvp7e3FYDAwdepUBgYGsNls/PWvf530NT3jnugYjUZiY2PJzs4mIyOD3t5e/Pz8Lrmv0+lEr9djtVoxGAw4nU6V6EwSJpNJi3NaWhp9fX1jxtnhcGAymfDz80Ov19PZ2akSHS8XERFBSkoK+fn59Pb24nK5CAwMvGg/d3NlcnIykZGRxMbG8pvf/EYlOpOE2WwmJSWFFStWkJubq3UjCAoK4vTp00RFRQHDNXeZmZm0tLSg1+ux2Ww0NDQgpVr9wFuEhYWRnZ3NkiVLKCwsxGKxjKrJcQsPD2fKlCnMnTuX/v5+jEYjJSUl9Pb20tTURFlZGc3NzVrLy2Q07omOwWAgNjYWs9mM3W5n48aNY+7b2NhIUlISt912Gzk5ORw+fHi8i6dcI+5Ex2Qy0drayrZt28bct7GxkaysLJYvX86UKVNITEycwJIqVyMiIoLQ0FAAduzYQUdHxyX36+npobOzky9+8YtERkbi5+fn8yM6fElOTg5LlizhC1/4gvajKKVECMHcuXN54IEHAEb9YJaWllJRUcGdd96pElovIYTgK1/5CiUlJSxZsuSSCY5bSEgIISEh/Od//ueo1wMMDg4yc+ZMfvGLX/CnP/1p3Ms9Xsb9CtTT08OePXuw2+0YDAb+67/+a8x9Z8yYQUhIiPb4csFRvEtnZyd79uyhq6sLm802ZpyFEBQXFxMXFzfqOcW7lZeXk5ycjJSS3//+91RVVWEwGFi0aBEJCQnExsbywgsv4OfnR25urtbBXKdTM1hMBiaTieDgYKZPn05GRsaoc9L976amJmpqagDo6+tjcHCQxYsXExkZSWZmpoq1l/D399dGV02ZMkWLX2trK3V1deTl5dHW1kZtbS15eXmYzWYADh8+jMPhQEqJzWYjOzub1NRUsrKytJucyWrcE52hoSHOnTuH3W4Hhu8Gx+KuXoPhu/6WlpbxLp5yjQwMDHDu3Dk6Ozvp6uoaM87uRMc9cqehoUF1Rp4E3J2Oe3p6OHbsGGfPniUsLAwhBH5+foSFhXHq1CliY2OZPn06Qgi6u7upq6ub9O3714PAwEDS09MpKioiOTlZe35kU5S7KeP8+fP09/ej0+lYtGgR/v7+2v8LiudZrVYyMzPJzMwkJiYGGK6ZqaurY8+ePWRkZFBfX8/OnTu1IedWqxWbzUZzczPt7e309vYSFhZGWloa4eHhY3ZDmCwmrE65uroaq9V62X1uuukm5syZg5SSp5566rLNH4p3On369GWrr4UQ3HbbbRQWFuJ0Ovnxj3/Mzp07J7CEytXq6OigrKyM9PR0iouLWbVqFfPmzSMgIACHw8GCBQvIysrinnvuwd/fn7Vr1/Liiy9O6rb964EQgtzcXP75n/+ZZcuWjXmdDg0NJTk5mR/+8IdER0czY8YMNTWEF0pLS+PBBx8kPDwcvV4PwLlz53j33Xf5xS9+wc0338y2bdv47ne/y+nTp7nppptYuXIlxcXFvPTSS7z22mvMnz/fp5ohxzXRCQwMRK/XY7fbeemll8Zsqw8JCSEvL4/ExEQcDgc7duxg27ZtnDx5cjyLp1wjQUFBwHDz1XPPPaeNovuoiIgIcnJyiI+Pp7e3l/LycrZt28bZs2cnsLTKJ2E0GgkKCkKn02EwGDh16hRf/vKXiYiIIDY2VquBFUKQkJBAfHw84eHhHDx4kG3btrFz506fHbLqK1atWkVJSQlz5szR5riSUmK32+np6aGvr4+UlBQCAgJISEhg+vTpZGZmsnDhQkwmEzt37mT9+vUMDg56+lCuewkJCeTm5jJr1iwsFguDg4N0dXXx3HPPsWvXLoaGhqiqqqKpqYmhoSE++OADkpKSWLFiBf7+/ixcuJDQ0FCSkpLIyMigu7ubF198kYMHD3r60D6VcU10IiMjCQ0NRUpJY2OjNgT1o0JCQli4cCHBwcHY7XZ27NjB2bNnVZPGJBETE0NgYCBSSurr6y+6gxdCEBYWRkZGBgsXLsRqtdLc3MyOHTuoqanRmjUV7+Pn50dKSgrh4eGkpqZiNBqZPn36qL50MBzj9PR0beqAffv2UVZWRkNDg2cKrlyRTqfDYrEwd+5cZsyYMaqZo7e3lxMnTtDR0UFfXx+xsbH4+/sTGBhISkoKmZmZZGVl0dXVRXl5OZs2bRrzBkeZOBEREcTExBAXF4fBYMBut1NTU8O+ffuorq7G4XBw4MABzp49i5SSs2fP0traipQSg8FAQkICJpOJqKgojEYjra2trF+/nnPnznn60D4dKeWYGyA/zfbggw/KV199VUop5X/+53/KxYsXX3K/FStWSCmlbGxslC+++OKn+kxf2S4Xl6vdxqusX/3qV+Wbb74ppZTyBz/4gVywYIH2NyGENJlM8qGHHpJ/+MMfpJRSNjQ0yKeeesrj3/FkjudElTs7O1v+4he/kI2NjVJKKV0u1yU3t66uLnn69GkZGxvr8e98ssRyIuM5cgsKCpJTp06VZWVlcnBwUItlbW2tfPfdd+XixYvljBkz5KJFi2RNTY0cGBiQg4OD8g9/+IPct2+fHBwclO+884684447PB4Tb4qnJ49l5cqV8pe//KUWy71798pvfvObMicnR4aGhl7yNd/5znfk0NCQdLlcsqGhQZaVlUmn0ymPHj0qf/3rX0uz2ezxGH3aWI5rjc7u3bvR6/Xcf//93H333RQUFBASEsL27du1jsYlJSXMnz8fgHfeeYdNmzaNZ5GUcbB9+3ZMJhN33nknn//855k2bRqRkZHU1tYSGRnJwoULWbp0KQkJCUgpeeutt9iyZYuni618DO4p5N0dTd3/HRgY0EbYWa1WYmNjAaiqqmL16tU+1b7vq+Li4rjjjjuIiIgYFeOGhgY2bNjAyZMn6e7uxmQy8cYbb7BgwQJmz55NaWkpOp2O+vp6nnrqKU6dOuXhI1HcQkJCtK4EAP39/dhsNpYuXUpKSgrZ2dk899xznDx5UpvN/Pz58+zatYu5c+cSGhqKv78/7e3tfPDBB/zhD3/wiSbJcR0P2NDQwMmTJzl16hT+/v5kZmZSWlpKeno6YWFhABQVFWlTyh85coTjx4+PZ5GUcXD+/HlOnTrF6dOnCQoKIjs7m9LSUhYuXMiiRYtYunQp+fn52pDyuro6WltbPVxq5UrMZjNBQUHExMRgNBpH/a2np4fq6mrKyspGVWv39vbS2NioRlp5OT8/P2JiYpg5cyYBAQEA2g+awWAgICAAq9WKEIL29nZ27tzJmTNntJnN/fz86Ojo4MiRI2qpHi8ghMBoNJKQkKDNXN7f34/dbqe+vh69Xk9aWhorV65k8eLFFBYWEhMTg06n05q3nE4nZrMZf39/Tp8+zdGjRykvL/eJSSDHtUano6ODiooKHnvsMRYsWEBeXh7/9E//hMlkYuPGjbz11lvceeedzJs3D4C9e/dy9OjR8SySMg7sdjsHDhzgBz/4AYsXL9biDGgnycihp7GxsdrJqHivhIQEioqKWLVqFUajUZs4DoZHcbz++uscPnyYxYsXM3v2bGD4jjIrK+uixEjxLsnJyRQWFjJ//nz8/f0ZGBigo6ODyMhI7ebT39+fzZs3s2HDBt555x2SkpK49957MRgMDAwM0NnZ6RM/gr7AaDQSGhrK8uXLtYqDuro6ysrKWL9+PRUVFQQEBPB3f/d3fOc732Hr1q28/fbbvPjii3R1ddHQ0KCNoOvv7+f555/n0KFDnjyka2rch5d3dXWxefNmDh48yPTp0ykoKODGG28kPz+f3NxcEhMTaWpqYtu2bcyaNYvi4mLS09N55plnqK+vV8MXJ4mOjg62bNlCcXHxJScbG2nevHl0dHSwa9cu2traVIy91A033EBpaSlGo1Fbm6y5uRk/Pz+ioqJ4+OGH2bhx46h5V2JjY7Vh5mfOnKGtrc2DR6CMJSYmhujoaPz8/NDpdJw7d44PP/yQ7u5uoqKiyMnJ4Y477iAlJYWgoCBWr16tNWMq3sc9d05cXBwhISFIKXnnnXfYvn07AG1tbWzatIknnniCWbNmER4ezle/+lW6uroumiNHp9ORkJDgU+uXjXui43A4aG5uprm5Gb1ez86dO5k/fz75+fk4nU6Cg4Pp7Oykra2NadOmERoaSnp6On/605/o6uoac6p5xbvo9XqCg4OJiIjQTrSxJhBLSEggOTmZ+Ph4Ojo6fKIN2Jfo9Xr8/f2ZMmWKNkuuw+GgpaWFvXv3YjKZSEhIYObMmdhsNoKDg4Hh2js/Pz/i4+MpKipiYGBAJTpeKjAwUJv+A4ZvSE+dOkVlZSWhoaE0NTXxla98hYKCAmw2G/X19cTGxqpJAb2UxWIhLi6OgIAAjEYjLpeL8vJybSbrwcFBzp07x8aNG+np6WH+/PmUlpayaNEienp6MBgMo2a29rWm5wldhKa6uppvfOMb/PGPf2TevHmUlJQAw7Mnp6amMnv2bIKCgpBSUlxczNDQEAcOHJjIIipXKT4+nn/8x39kxYoV2jDVscTExJCTk8PcuXOprKxUiY6X8fPzIysri+LiYqZMmQIM19jt37+ff/u3f6Onp4ebbrqJmTNnMmvWLO117kV5g4OD+cd//EesVqtar85LhYaGXtRptbW1lV27dtHV1YXBYGDp0qXk5ubyj//4j6Smpqo16byY1WolJydHW84Bhpd0OHPmjPa4vr6e+vp6Nm3axEMPPcS0adP4whe+QE1NDZWVlVqi43A4OHnypE/1o5zQxUmGhoZoamri+eef5+WXX9aeDw4OZtasWVqnOCEESUlJ2kq5ineLi4tj6tSprFq1SutkDsOdy0+cOKE9drlcDA4OIqUkKCiIzMxM1ZfDC1ksFpKSkggKCtIunKtXr+bDDz+kurqaxsZGdu7cyY9+9CNVYzPJGAwGQkNDWbZsGXPmzAGG+3JUVFRod/swnLT+67/+K3/4wx/Q6XTMnz+fzMxM7X2MRiMBAQGEhoZqk0YqnhMSEsL06dNHNUMZDIYxmxo3bNjAP/3TP9HV1UVcXBzFxcUYDAb6+vq0dbB8aUbzCU10pJTaTI3uEwqGAxISEjJq5uSkpCQSEhLGXFpe8R6pqank5ORoq5c7nU66u7s5ffr0JSeaEkIQGBhIWloaISEho+5CFM9zn48mk0k7986fP099fT19fX0MDAzQ3t7OqVOnRtXGCSG0/dUCj97JZDIRHh5OUlIS0dHRAJw5c0brT+XuLyel5OjRoxw8eJCjR49itVrx9/fX3sc9Y3ZqauqkX/DRFxgMBoKDg0clNikpKVqMP6qpqYl9+/Zx6NAh2tvbCQ4ORgih/T7bbDb6+vomqvjjbsKvRjqdjqKiIqZNm3bZ/WbNmsWMGTOIjIxUHeC83KJFi1i8eLGWqPb391NTU8OOHTs4cuSItp9Op8NsNiOEICoqivnz55OVlUVkZKSniq5cgslkIjIyUqttk1LS0dFBZ2fnZV+n1+vR6XTqxsSL+fv7k5GRQVxcHMHBwUgp+eCDD7ROqyO1t7ezdetWfvazn100q31AQADx8fGsWLFiVE2P4jkjR8AJIbj11luZO3fuJfft6+ujoaGB//qv/2Lz5s2jnrfZbNoCvr5iQhOd2NhY/vmf/5lbb711zETHfZGMjY0lNzeXBQsWTPqVU32Vn58fOTk5zJs3TxvS2NnZyf79+/n+97/PwoULue222wDYs2cP5eXl2muNRiPBwcE88sgj3HzzzR4pv3Ixd03b7bffTlhYGH19fVRXV7N169ZRSWt2djbf/OY3CQ0NpaGhgY0bN9Lf36/93d/fn6CgIEJCQlTi40WsViu5ubmjmpsOHTr0idcVdHdQP378OM3Nzde6mMon1NzczJo1a2hvb8fhcCCE4KabbuLOO+/kM5/5DFlZWVq3An9/f6Kjo8nNzeXv/u7vKCgo0N4nIiKC7OxsCgoKfOoGdMI6I/v7+xMbG8uiRYtISEjQVshta2vT+m247yKFEJjNZkJCQkhJSVH9OLyU0WgkOjqaiIgIrWNjdXU15eXlHDlyhMjISG2SwB07dhAUFERYWBhRUVEYDAZtbZWR/XoUzwoODiY6Oprk5GTMZjPt7e0cPnyYxsbGUW327uGsRqOR+vp61q5dS2xsrFZTYLVaiYmJISMjg8OHD6t1kLyExWIhNTUVk8mkPedeuPNSQkNDycvLG1W7NzJxHRwcVLH1Ah0dHRw8eJBjx44hpSQpKYnw8HBycnJYtmwZycnJNDQ0UFdXR3BwMGFhYcTFxZGfnz+qL6zBYCAoKIjly5eze/dujh49SlNT06SfL2nCEp2oqChyc3NZvnz5qJPs+PHjtLW1MTAwwA033DCqvddqtZKWlqYSHS9lMpmIi4vDarVqMd26dSubN2+mtrZWWwRQSsnLL79MUFAQwcHB3HjjjQQGBgKXnmdH8ZyYmBiSk5O1i19jYyNvvPHGRQvsms1mbdLH8vJynnzySRISEpg3bx7Tp08nIiKCgoICbrjhBo4fP65+DL2E1WolPz9/VH+by3VazcnJ4YEHHsDf3x+Xy4XL5dKaqPV6PQEBAaqPnRdoaWlh3bp1JCcns2zZMpKSkhBCkJOTQ05ODn19fdTX11NVVUV4eDjR0dHEx8ePuv66k1h/f3/+7d/+jddee40333yTv/71r5N+uPmEJTorVqxgyZIlWo2N2zPPPMP+/ftxOp08/fTTzJgxg5SUFGA4OVq2bBl//OMfEUKoqca9jNFoJCYmZtSFzmazjbka+eHDh/nOd75DQEAABQUFJCQkTFBJlY8rLS2N1NRU7bHNZmPbtm0X9dG4FH9//1E3MUajEX9/f5XMejEhBHfeeSfh4eG8++67F/3d39+fmJgY9Hr9RRN7WiwWHn/8cX7/+9/z+9//nuPHj6vJPz1s7dq1GI1Gli1bRkhIiDYowGKxkJiYSHR0tFabPvK8dDqdlJWV0dXVhcPhYNGiRdx8883k5+fT0NBAVVXVpB5uPu59dPR6PaGhoWRnZ5OZmXnRRa+xsZGamhpqa2spKyvTFhqD4eBEREQwZ84ccnJyxruoyifg7mOTm5uLn58fTqeTjo4OampqaGhouORrent7qa2t5ezZs7S0tGijr0YOY1Y8Kzo6etQ8SE6nk56eniv+gLk7mLsnDwQIDw9nypQpajCBF3EPFOjr69OaI4qKipgxY4Y2CtLdf8dgMGA0GrUanJGj6gYHB+np6SEhIYH09HQyMjLUSDsv0NraSmVlJXv27Bm1sK4QApPJhNVqxWKxjBrhDMNz52zYsIEPP/yQdevW0dTUhMlkIikpiezsbEJCQib4SK6tcf8/02w2k5aWRmFhIdnZ2QAjl7MftRbSrl27Rq2v4V5c7r777mPJkiXjXVTlE3CPurjhhhsIDw+nv7+f8+fPc+jQIW3uHJfLpcXXPRpHCMGZM2eoq6sDhmdJdvfrUBdKz0tJSdFqVOH/Fgu8VK2MO/kRQqDT6cjOztb6ZLnf68Ybb1RJrBex2Wxs376d9vZ2hoaGAJg/fz4rVqxg2bJlZGRkEB4ejk6nIyAgYFSnZXecpZSj1kdyz5KtElrP6+3tpaKigt/85je0trYyNDSkXYdH/u4Co25eBgYG+J//+R+eeuopfvWrX1FRUUFbWxsmk4lZs2ZdcRJYbzfuTVcmk4nU1NRRdwp//OMfkVLyuc99jptuuomsrCwA7rrrLu3findLSkoiKyuL+Ph49Ho9Z86c4dlnnx1Vm/P000+zdOlSvvSlL/GZz3yGGTNmAPB3f/d3o35M09LSuPPOO3nllVd8apIqX5CUlMTXvvY1XnzxxVGxPXToEI8++ijf//73SUtL4/Of/7zW72okd01PX1/fx2r+UsZXU1MTb7/9NqGhoSxYsIDbbrsNIQQFBQX827/9Gx0dHTQ2NlJZWUlYWBhpaWmXfJ/e3l5aWlpITU2lqKiIqKgofvrTnzIwMDDBR6R8VFNTE+vWreO2224jMTGRrKwsMjIyMJlM6PV6li5dSltbGzU1Ndx8883ajUh3d7c2L9brr7/OPffcww033MD999/P0aNHLzkFwWQx7omOXq+/aPKxkX1tZs2apZ1MOTk5REREAMMTlLnn81C8j7tDm7sKtLu7myNHjoyqLj169KjW4W3evHnY7XaEEKSkpIyqCpVSMjQ0NOl79vuChoYG6uvrKSgoQKfTaT+Iu3btwmg0Yrfb6e7upr29nQMHDtDf36/V7Pn7+4+qlWtvb6e6upq+vj7VGdlLOBwOOjo6OHToEGFhYSxfvhyz2YzFYsFisRAWFkZYWBjh4eEEBASMaop0a2lpob+/Hz8/P4QQWCwWQkNDCQgIYGBgQKspUjzD4XDQ3d3NmTNnaG9vp6WlhZqaGq1mtrW1lY6ODlpbWwkICNDmMsvIyCAqKgqTyURGRoY2NURISAhBQUH4+flN2kkExz3RMRqNREREaJ0UpZR0dnYipcTpdLJ06VItAXJXrQ0NDXH06FGCgoKIiopSnRm9UExMDPHx8dpjd6Iz8kSoqKggLS0Np9PJihUrLhlH92R0VVVV6sfQC5SXlxMeHs6iRYvw8/MjPDycZcuWcfDgQcLDwzl27BjV1dX09PRw4sQJBgcHSU9PH9WBGYbjWlVVxerVq2lqapq0F0hftW/fPkJCQrDZbERGRmo3LO7rtfuG86NcLhdVVVXaXCxCCO26HRoaSm9vr0p0vER/f7+2vtX+/fu15998801guBKisbGRu+66izvuuIMVK1bQ29uLxWLhnnvu0SoZXC4Xfn5+hISETNrzeFwTncDAQFJSUrjnnnuIjY3V+nG4hx+3tbXx+c9/nvT0dMLCwtixYwf79+/nrbfeoqSkhNmzZyOlxN/fXxv7b7fbVc9+L5Cbm0teXp722N2XY+SkcQBlZWU88sgjPPTQQyQnJxMSEqINVdTpdLS3t9PQ0MC5c+cm/RBGX7BlyxbOnz+PwWDgnnvuIT4+Hp1Ox8MPP0xvb6+W0LpcLoKCgi45xbzL5eLQoUP89a9/5dVXX520F0df1tXVxYEDB3j88cf513/9VxISEj5WHzm9Xk9RURFCCG0m7IMHD7J9+3Zqa2tH1egq3s3pdLJhwwaKioowm81885vf1IaYu1e27+vr480332T37t2TemLIcU10goODtTt/i8VCR0cHu3btorGxkaamJnbt2oXZbCYmJgar1cqJEyc4c+YMx48fp7i4WPvhCwwMJC4ujoKCAvbs2XPRj6ky8Uwm06hOpoGBgcycOZN9+/bR0dGhPW+z2di5c6d2BxgSEsJtt92mNV319PTQ0dFBe3u7SmC9QF9fH42NjezYsYMbbriByMhITCYTwcHBBAYGah1V3Xd5ZrN51CRy3d3d2Gw2PvzwQ/bs2UNTU5OKqxeSUtLe3s6+fft4/fXXSUpKIiIigrCwMPR6vdbE3N/fT3t7O42NjURFRZGSkkJAQAAdHR00Nzdz8OBBysvLOXr0KAMDA6r5eZLp7e3l5MmTbN68menTp+Pv749er+fcuXNUV1dTWVnJunXrqK6untQ3ouOa6ERFRZGYmKhNLNbe3s77779PW1sb3d3dHDhwgAMHDlzytS6XS7t4hoSEkJ6ezrx58zhy5IhKdLyAy+Ua9T9+REQEt912G9XV1XR1dWnV2R0dHRw4cICDBw9qP5jz5s0blejY7fZJPUeDr7Hb7WzdupXa2lri4+O181en02EymUhPT7/oNVJKHA4HbW1tVFRU8Morr1BfX6/u8L1YZ2cnhw8f5syZM8TFxZGXl8eUKVOwWCzodDpuueUW2tvbKS8vZ+fOncyaNYtbb72V2NhYzp07x/79+/nxj39MU1OT6mg+iR0+fJgXX3yRiIgIbV60vXv38t5777Fx40YaGxsnfQI7rolOcnLyqAXfOjs72bRp06g7/ksRQpCZmUlSUpL2XHt7u3bXoHje7t27MZlMFBQUYDKZiImJ4Qtf+ALNzc3aEPPz58/jdDrx8/MjOjqamTNncu+99xIXF6dVk5tMJiwWC1arlZ6enkl/QvkCh8OB3W7nf//3fzl58iTf/OY3rzh02Ol08pOf/ISDBw9y+PBh6urqVJ+rSaKnp4eqqirOnTvH+vXrtRvMZ555BpfLhcPhYGBggL/97W/89Kc/RafT4XA4GBoaoqura1Lf6StQWVlJbW0t69at02rz+vv7tc0XrsnjmuhER0ePmv1WSqmta3Ul7lkcYbhTVWdnJy0tLaoa3EucOnUKi8XCzJkzKSwsJCQkBKvVSmlpKampqZw/f54TJ07gdDq1vloZGRkUFBRoTV5SSvr6+nA6nRdNYKV4lsvl4sSJE7hcLsxmM3FxcdoSHgBBQUHExcVRV1dHQ0MDp0+fZsuWLZw9e5bGxkbVIXUScdfGORyOUbXlH12tvq+v74o3qcrk4469L9e+juuvS2xsLImJidpjnU6Hn58f/f39l70LEEKQnJxMbGwsMNxxrr29nebmZnX34CVOnDhBZ2cnKSkpxMXFaUMRlyxZgsvloq+vj/LycoaGhggODiYzM3PU5GPuUXetra10dXVpEwr6wt2Dr6isrKSmpoadO3cyc+ZMEhIStKkgkpKSmDt3Lrt27WL37t389a9/pbm5WdXiKIridSb0NjomJoZvfOMbvPzyy6OWehjJvVCcu2lDCIHNZqOhoYHa2lqV6HiR1tZWXnvtNUpKSoiMjNTu9t2zqk6fPh0YjuFHa2xaW1s5efIk3/ve96isrMRms6kkxws5HA46OzvZtm0bOp1Oa8LS6/UYjUaGhoYYGhpiYGBA1bYqiuKVxjXRqa2tpbKykqlTp6LX6wkKCqK0tJSysjJMJhMtLS10dHTgcrkwGo1YrVbi4+OZPXs2oaGh2h2+TqfTVthViY73cDgctLe3s337dvR6PTfccMOouXLGWnV+8+bNnDp1iiNHjlBdXU1HR4dKcryYu8lZURRlMhrXROfMmTNER0ezYsUKAgICCAwMZN68eRw+fBg/Pz8qKio4e/YsQ0NDBAQEEBcXx4wZM3jwwQeJiIjQfjTdd48Wi0XNoOtFXC4Xvb29bNq0CYfDQXFxMSaTCZ1Op9XIuZNUh8OB0+lkYGCA9957j/3793PkyBG6u7tVPBVFUZRxIy73IyOE+FS/QAaDgfj4eP7+7/+ee+65RxuWOjAwwMDAAL29vZSVlTEwMEBwcDBZWVlYrVbMZvOopo59+/bxt7/9jf/5n//BZrNdF1XkUsprPh30p43nWAwGg7bSfFFR0ai+HPHx8cyfP5/du3ezb98+3n//fWpqahgYGMDhcFw3Sc61jud4xVK5ssl0bipXps5N3zFWLMe1RsfdtLFt2zZKSkq0iQPNZjMmkwk/Pz9yc3NxOp1YLBbCw8NHJTg9PT20tLTwzjvvsG/fPnp7e6+bH8bJxN1j373oY3V1NeXl5cDwHEg7d+6kpqaGuro6zp07R29v73WRrCqKoiieN+6dkXt7e9m3bx81NTWkpqZq6yO5lwwYOfx8pL6+PpqbmykvL+fdd9+lpqZGTSXvxVwuFwMDA5w9e9bTRVEURVEUzbg2XY14H0pKSli4cCE//OEPrzj5GMATTzzB3r172b9/P62trdfdsFVVPe5bVPW471Dnpm9R56bv8EjT1YgP59SpU9osi4mJiYSGhmor5AYFBZGRkUFNTQ3nzp3j8OHDrF27ltraWtrb29VIK0VRFEVRrsqE1Oi4uefIKSwsJCEhgdTUVGB4YsEFCxawb98+Dh06xLvvvktra+t1Pbuqumv0Lequ0Xeoc9O3qHPTd4wVywlNdNzcs+COnBTQPUeOe7HI673TsbqY+hZ1MfUd6tz0Lerc9B0ebbr6KPeIG9UkpSiKoijKeNJ5ugCKoiiKoijjRSU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz1KJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rNUoqMoiqIois9SiY6iKIqiKD5LJTqKoiiKovgslegoiqIoiuKzVKKjKIqiKIrPUomOoiiKoig+SyU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz1KJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rNUoqMoiqIois9SiY6iKIqiKD5LJTqKoiiKovgslegoiqIoiuKzVKKjKIqiKIrPUomOoiiKoig+SyU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz1KJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rNUoqMoiqIois9SiY6iKIqiKD5LJTqKoiiKovgslegoiqIoiuKzVKKjKIqiKIrPUomOoiiKoig+SyU6iqIoiqL4LJXoKIqiKIris1SioyiKoiiKz1KJjqIoiqIoPktIKT1dBkVRFEVRlHGhanQURVEURfFZKtFRFEVRFMVnqURHURRFURSfNaGJjhDirBCiTwjRPWKLm8gyXIkQIl8IsUYI0SqEuKgDkxDi60KI/UKIASHEbz1QRK8x2eMphDALIV4UQtQIIbqEEIeFECs9VVZPmuyxvPD33wshGoQQnUKIU0KIv/dEOb2BL8RzxH6ZQoh+IcTvJ7J83sIXYimE2Hwhhu7yn5zI8nmiRudWKaV1xFY/8o9CCIMHyjTSEPAm8NAYf68HngBemrASebfJHE8DUAuUAMHAD4A3hRApE1Y67zKZYwnwYyBFShkE3AY8IYSYMVGF80KTPZ5uvwL2jX9xvJovxPLrI8qfPUHlAryk6UoIIYUQ/yiEOA2cvvDcM0KI2gt3ZweEEAtH7P+4EOKtC3dwXUKIMiFElhDi+0KI5guvWz5i/+ALd+4NQog6IcQTQgj9pcoipTwppXwRqBjj73+WUr4DtF3L78CXTJZ4Sil7pJSPSynPSildUsq/AtXA9fzjOMpkieWFv1dIKQfcDy9s6dfoq/AJkymeF97vHsAObLhGX4HPmGyx9CSvSHQuWAXMBqZceLwPmAaEAa8BbwkhLCP2vxV4FQgFDgFrGD6eeODfgedH7PtbwAFkAEXAcuC6rdaeIKuYZPEUQkQDWXjpyepBq5gksRRCPCuE6AVOAA3A3672vXzYKiZBPIUQQRfe/5+v5vXXiVVMglhe8GMx3LS1QwhR+ine55OTUk7YBpwFuhnO0O3AOxeel8CSK7zWBky98O/HgXUj/nbrhffVX3gceOE9Q4BoYADwG7H/vcCmK3xexvDXM+bfnwB+O5Hfn7dtPhZPI7AeeN7T36uK5aeOpR5YwHBTpNHT362K59XFE3gG+JcR5fi9p79XFcurjuXsC+9vBr4AdAHpE/UdeqJdb5WUcv0lnq8d+UAI8SjD7X1xDH/5QUDEiF2aRvy7D2iVUjpHPAawXni9EWgQQrj3133085SrNunjKYTQMXyXMwh8/WrfxwdM+lgCXPis7UKI+4GHgV9+mvebxCZtPIUQ04BlDNckKJM4lgBSyj0jHr4ihLgXuAn476t5v0/K0x2YRtJ6al9oV/wusBSokFK6hBA2QIz14suoZTgzjZBSOq5JSZWPY1LEUwyfxS8yfAdzk5Ry6NO+pw+aFLG8BAOqj86lTIZ4lgIpwLkLP7RWQC+EmCKlnP4p39uXTIZYXork6sp1Vbypj85IgQy3DbYABiHEDxnOTD8xKWUDsBb4hRAiSAihE0KkCyFKLrW/GGYBTBceW4QQ5hF/N1z4u57hE88iPN/j3dt5bTyB54Bchkc19F3qPZRRvDKWQogoIcQ9QgirEEIvhFjBcFW76sR6eV4ZT+DXDCep0y5s/wt8AKy4mrJdJ7wylkKIECHECvdvpRDiPmARsPpqynY1vDXRWcPwl3AKqAH6+XTV2Z9nOADHGG6zfBuIHWPfZIar8NwdUvuAkWP+f3Dhue8B91/49w8+RdmuB14ZTyFEMvAPDF9IG8X/zfFw36com6/zylgyfIf4MHD+wvs8CXxLSvnepyjb9cAr4yml7JVSNro3hvuS9EspWz5F2XydV8aS4SawJxhOwFqBbzDcFHfqU5TtE1GLeiqKoiiK4rO8tUZHURRFURTlU1OJjqIoiqIoPkslOoqiKIqi+CyV6CiKoiiK4rNUoqMoiqIois+67Pwv4hLLrSsTQ0p5zSdTUvH0nGsdTxVLz1Hnpm9R56bvGCuWqkZHURRFURSfpRIdRVEURVF8lkp0FEVRFEXxWT61RpPJZMJsNmMymejr66O3t9fTRVIURVEUxYN8pkbHaDQyffp0vva1r/Hyyy9z++23YzD4VB6nKIqiKMonNKkzAb1eT3BwMFFRUZSWljJt2jSmTZtGbGwsx44dIycnh2PHjuFyuTxdVEVRFEVRPGBSJjpCCPR6PaGhoSQlJZGbm8tnP/tZMjMzSUlJASAlJYXU1FROnDihEh0fYDabsVgsWCwWuru76enp8XSRFEVRlElgUiY6AQEBRERE8IUvfIGFCxeyaNEi9Ho9QvzfEPqIiAgyMjLQ6Xymde66ZTQaKS4uZuHChSxYsIBXX32Vt99+G4fD4emiKYqiKF5u0iU6QggyMjK4+eabufnmm0lMTLxkX5zExERKSkpwOp10dnbS3d1NbW0tTqcTs9lMQUEBfX19tLW18cEHHyClmuPJm7hr7GJiYli2bBlFRUXk5+cTFRVFQUEB5eXlqllSURRFuaJJl+iEh4eTm5vL4sWLKSgowGw2A+B0OnG5XLhcLsxmM5GRkeh0Ovz8/LDb7djtdq0Zy2KxsGjRIrq6uqirq6OsrIyWlhY1SssL6HQ69Ho94eHhpKSkkJubyy233EJmZiaJiYkAJCUlkZaWRktLi7a/0+nUtoGBAe29/P39cblcDA4OYrfbPXhkyidhtVrx8/PDbDZr57XD4WBoaAin0wmAn58fer0eh8NBR0cHQ0NDHi618kkFBgZqcXZfwx0OB4ODg9pNjJ+fHzqdDqfTid1uVzW5yic2qRIdvV7Pww8/TElJCYsXL9aaqqSUtLS00NHRQXd3N0VFRYSGhhIaGkp6err2+pG1Nu7X9vf3M2fOHP793/+dNWvWTOwBKRcJCAggKiqKBx98kEWLFjF//nyEEKOaJSMjI5k6dSoLFiwgLS2NiIgImpqaaG9vp7W1lbKyMqSUWK1Wli9fTnt7O2fOnOHpp5/24JEpn8SNN95ISUkJ06ZNw2az0dHRQWNjI2fOnKG9vR2AefPmER4eTlNTEy+88AKnTp3ycKmVT2rVqlXMmTOHwsJC2tra6OzspKmpiZMnT9LR0QHAokWLCAwMpKWlhf/+7//m3LlzHi61MtlMmkQnICCA6OhoSktLyc3N1X74WlpaOHv2LH/+859xuVyEhISQl5eHn58fDoeDw4cPa3eAbi6XC7vdTn5+PvHx8WRnZxMcHOyJw1JGEEIwZcoUVq5cyS233EJ8fPwl+1ilpqai1+uJj48nMDAQs9lMWloag4ODDAwMsGTJElwuFyaTiZiYGAYHB5kxYwYhISG89tprnDx50gNHp3yUXq8nJyeHrKwscnJy2LBhA0eOHCExMZGFCxeyYsUKQkNDGRwcZGhoiP7+frq6uujv7wcgKioKs9lMf38/QUFB7N69m5dfftnDR6V8HEajkeTkZEpKSigpKSEkJGRUnEtKSrSa2ZiYGAwGA/39/VgsFnbu3Mnrr7/u4SNQriQ8PJyVK1cSHx+PyWSis7OTjo4OOjo6aGhoACAkJITs7GzsdjvV1dVs3bp1XMoyaRKdwMBAMjIyyMzMJCoqCoDBwUFqa2vZtWsXa9aswWQyER8fr1VtulwubDYbTU1N2O12BgcHgeGaHYfDQVxcHImJiYSHh2tNYIrnREVFMWXKFEpKSpgyZQpGoxEAh8OB0+lESonFYiEyMhI/Pz8SEhIYGBhgcHBwVPwSEhKA/4tzTEwMCQkJWCwWNm7cqBIdD3NP7BkVFcX06dOZNWsWM2bMoL6+nrNnzxITE0NaWhoZGRl0dXVhMpm018bGxmr/djgc2hQTRqMRk8mkEp1JwmAwEBMTQ3p6OmlpaXR3d182zgaDgaCgIPR6PVJKleh4OZPJRHR0NDfccANpaWlYLBba29u1raqqChiunS8qKtJq4s+fP09tbe01b4aeNIlORkYGDz74IKGhoeh0OqSU1NTU8Kc//Yknn3xS+2KCg4O1fxsMBmbNmsX//u//8uqrr2p9dAIDA/niF79IX1+fJw9JGcFgMPDwww9TWlrKokWLtOellLS2tmKz2ejr62PatGmEhIQQEhKCEIITJ05w5syZS77n0NAQjY2NWh+fqVOnEhQUNFGHpFyC0WgkMTGRzMxMHn74YfLz80lNTQWgrKwMm82G2WzGz8+Pnp4e1q1bN+ZAgdbWVoKDg7n33ntJS0ujrq5uIg9F+RQMBgOxsbFYLBa6urpYt27dmPs2NzcTHR3N7bffTmZmprpRmQRSU1OZPXs2DzzwwKhuB26X6kbS1tbGzTffzAMPPMDZs2evaXkmRaKTmJhIXl4excXFmM1mBgcH6ezs5Nlnn2XXrl2jOqc5nU7OnDlDamoqYWFh+Pv7U1paislk4nvf+5426uqmm24iOTmZjo4OXnzxRY4dO+bBI7y+Wa1WYmJiWLp0KVlZWdrzjY2NVFdX8+abb9LX14e/vz8ZGRlYrVb0ej0A69ev54033hjzfefOnatVgSue4+/vT3BwMDfccAPFxcVMnz6dtLQ0rFartk9YWBhRUVGsWbOGVatWYbfbefLJJ8fsfFpUVMT06dO1x5e6oCreqa+vjx07dvD5z3+elpYWfv7zn485grK4uBg/P78JLqHyaQQGBhIWFoYQgmPHjo05EMT9W15aWkpQUBA5OTnj0royKRKdyMhIYmNjiYuLQ6/X09HRwdmzZ9mxYwdVVVVIKTEajbhcLpxOJ3v37sVgMBAaGorBYCAxMZHCwkJtFJZ75JbJZKKxsZF169ZRX1/v6cO8brnbadPT0wkPDwdgYGBAi/GmTZsYHBwkLCyM2tpa4uPjCQkJweVyUV9fT3l5udZvY6TIyEhWrFiB0WhkcHCQuro6NbLOQ8LCwsjMzKSkpITi4mLy8/Mv2ic8PJz4+HhaW1vp6OjAbrezf//+MROdvLw8/P39geGkWJ3D3sc9gtLPzw8hBDU1NVqTcn19PXa7ndbWVvbt2zdmzd2MGTO0ONfX19PU1DSRh6BcBYfDod1glpeXU11dfdmanTlz5hAUFERYWJh2E3steX2iI4QgLi6O6OhoLas/deoUb7zxBidOnKC7uxshBJGRkfT09NDR0cE3vvENfvSjH1FYWHjR+2VnZzN37lxiYmI4evQou3btYt26dRd1WFYmTnZ2Ng888ADBwcEXNUs+88wz2g+dxWLhhRdeYNWqVZSUlNDd3U1ISAgpKSmcPHnyogulu1kjKiqKxsZGvv/973P8+HFPHOJ1TQhBcXExX/rSl1i+fLnW9+qj3P2yfv/739PW1nbJmI60aNEiVqxYAcBLL73E+vXrx6X8ytVx95964IEHtBvNL3/5ywwMDGhxPXv2LFLKy8Z52bJllJSUAPDss8+yZcuWCSm/cvUOHz6s9bl68cUXWbt27SX3S0tL47Of/ey4Txng9YkOQGho6KgqbvdEf+6qTr1ez8qVK8nPzyclJYXnnnsOKSW7d+9m7ty5o95r+fLl3H///djtdv70pz/x7rvvqiTHg5KTk8nPz6e4uBiTycTAwAB2u52nn36aPXv2jIqNw+Fgx44dTJ8+HZfLhb+/P8uXLycoKIjvfOc7o06W7OxsZs6cSWRkJJWVlRw+fJitW7dqQ5OViWEwGLjvvvtYtmwZs2bN0ib3lFJis9no7u5maGiItLQ0QkJCSE5OZtasWWzZsoU//elPl2zOCAgIoKioiLS0NAwGA9u3b2fr1q0cOXJkog9P+QidTofJZCIjI4OZM2cydepU7Ry12+3MnDmT+vp6bDYbNpuNV199FYvFcsn3CgoKorCwkOTkZKSUbNu2jS1btlBRUTHBR6Vcjd7eXo4fP37Z5XqioqL4zGc+Q1BQECdPnuRPf/oTra2t17wsXp3oCCEwGo0kJCQQEREBDM97Y7fbqa+v134EhRCYTCays7NZsmQJx44dw2KxUFtby+zZs9HpdBiNRmJiYsjOziY7O5v9+/drs+sqnuGuiYuJiSEmJgadTkdHRwdVVVXs3r2bc+fOjXmn517vLCEhgdzc3IuGoWdnZ1NcXIxer+fEiRPs2bNHG9KoTAyDwUBgYCDz58+nsLCQyMhIYPgc7u7upry8nK6uLlwuF0lJSZhMJoKDg5k1axZ//etftbv9jwoICKCkpISIiAi6u7vZvHkzlZWVKon1MJPJREhICJGRkcyfP5+5c+cydepUcnJytGt5cnIyRqORiIgIdDodDQ0NYzZFBQcHU1paSmhoKB0dHWzZsoWzZ89is9km+MiUj8sd56GhIbq7u9m+ffuY8QoODiY2Npbs7GwGBgaorKxk/fr147OOobva8FIbID25mc1mGRMTIzdv3iybm5uly+WSp06dko899tio/YQQMi4uTv74xz+Wbps3b5ZPPvmk7O/vl21tbbKsrEx+97vfldu2bZOtra3yvvvuk2lpaR49vsttl4vL1W6ePqaPbkIIedttt8kXX3xRulwu6XK55ObNm+XXv/516efnd9H+/v7+8j/+4z/k3r17tTjX1tbK1atXS5PJNGrf3/3ud3JoaEjW1tbKm2++2ePH6uuxvNQWEREhZ82aJRsaGuTQ0JAW4xMnTsg33nhDzp49W86cOVOuXLlStre3y6GhIS2uzz//vFy5cqUUQlz0voWFhdLlcsmWlhb53nvvTfpYTpZ4Xm7T6XQyMTFR3nvvvfL555+Xg4ODWrzdW1tbm/zhD38of/zjH8uXX35Zulwu+dRTT8nly5df8j0XLFggpZSyqalJvvbaa5Mmnp6OhSc3o9EoExISpMViueK+S5culT/5yU+klFKuXbtWfvvb3x63WHp1jY577py4uDiCg4NxuVz8+c9/Zs+ePaP2kxeGIK9duxaXy8Xs2bOJiIjgrrvuwmg0EhgYSEpKCl/5yleIiIigp6eHrVu30tLS4qEjU2A4+w8LC7tks6S8xJ384OAg7733HklJSRQXF1/yPQMCArjxxhtJTk7GZrPx/PPPU1lZOW7HoIwtOzubVatWaaPkpJScP3+ev/zlL7z++utajU1DQwO/+93vWLJkCQUFBQDccsstTJkyRZsIsKamBhjutLhgwQKEEKxevZoNGzZ48hCVC/z8/Pjyl7/MrFmzyMvLu2SHUj8/P5YtW8abb77J0aNH+fznP88dd9xBYWEhwcHBbN++Xat1XbBgAYsXLwbgvffeY+PGjRN6PMrYdDodgYGB3HjjjaSlpeF0Onn66adxOBwEBwdz++23M3v2bJxOJy+++CJHjhy5ZK3OQw89xMyZM2lubuZXv/oVBw8eHLcye3Wi4+fnR3x8PAEBARiNRhwOB2VlZdpFb6TBwUEqKyvR6/V0d3ezdOlSbQZlo9GI0WjEarVit9s5f/48TU1N2gSCysRzt+UnJSVpzZI9PT20trZqi69+lNPppLKykurqas6fP098fDwWi4WgoCASEhJoamrCz8+P0tJSYmJitCGsbW1tE314172AgAASExMpKirSRkT29fVx8OBBDh48SHl5udb/ZmhoiG3btpGVlUV+fj5CCMLDw9HpdCxevJjOzk4GBgZobGzU+nMBHDt2jKNHj3ryMBWGR8slJyczZ84ccnNziY+PB4bPV/e6VRaLBaPRSGpqKkajkc7OTo4dO0ZISAhJSUksXryY1tZWnE4nzc3NTJs2TZs6oKysTHUx8AJ6vR6r1UpkZCSJiYmUlpaSkZFBb28vr776qtZ0LISgoKCAsLAwqqqq6O/vp6qqiubmZgBtstCcnBzCwsI4evQo5eXl1NbWjl/hvbkKLi8vT/7oRz+SLS0t0uVyyYGBATllypSLmikutT3yyCOyrq5OulwuOdLGjRvlY489Jg0Gg8er+S63+Xr1uMVikXFxcXLbtm2ypaVFOp1OefLkSfkv//IvV3zt8uXL5dNPPy0HBgaklFLabDb53e9+V+bn58u0tDStCeT48eNSp9N5/FjHI56ePp7LbUIImZ+fL3/84x/Lrq4u6XQ6ZVdXlzx9+rScPXu2jIiIuOTrnn76aa2J69y5c/LYsWNSSilfe+01+eCDD0ohhHzrrbe0c/nWW2/1iVh6ezyvtK1cuVI+//zzcmBgYFRTlc1mk2fPnpW7d++WTU1N2vOvvPKK/OpXvyrvuusu+dRTT8m1a9dKKaV88cUX5b333isBuWbNGi3OixYtmlTx9HQ8xmPT6/XSarXKRYsWyZ/+9Kdy69at0ul0aufqqlWrZGxsrNZ0tW7dOi1+zz//vLz77ru190pKSpKPPPKIrKmpkQcOHJB33XWXDAkJGddYenWNTmhoKEVFRaN65RsMho81zj4gIIDQ0NCLxu5v2bKFl19+Wa2A62FBQUFkZWWRkJBAcHAwTqeTN95446JmyY/DarXyta99jenTp2srmu/evZsdO3ZcsglMGV9CCBISErSlOtyThq1du5bTp0/T2dn5sd7HfXe/cOFC8vLySE9PJy8vD7vdzurVq9VMyB6m0+lISkpi3rx53HTTTdqIuqGhIQ4ePMjmzZs5evQoUkoefPBBbeLWmJgYIiMjefvtt9m7dy+5ubkUFhZyww03MHXqVKZMmUJGRgYtLS1s2LBBqwlQJp5OpyMyMpLp06czbdo07r77bsLDwwkKCtJ+W00mE+np6ZSXl9PY2EhzczMvvfQShw4dYsaMGSxcuJCsrCyEEGzYsIHExET+6Z/+iZiYGE6cOMGGDRvo6uoa1+Pw6kTHaDRqc6vA8AU0JSWFjo6OSzZfuen1egwGwyXn6xg5kZHiOf7+/sTGxuLv74/BYGBoaIjy8nLOnz9/xddaLBYCAwMRQgxn6wYDycnJDA4OYrfbEUJw/Pjxq0qalE9PCEFwcDABAQHauWuz2Th79iw9PT1j3mR0dXXR0tJCTEwMMNxfa9u2bcycOZPMzExKS0uJjIyku7ubTZs2jcswVOXj0+l05Obmkp6eTnR0NEII7RzctGkTO3bs4MSJExiNRo4dO0ZycjLZ2dlERUWRkJDA0NAQ58+fR0rJ1q1bWbBgAVlZWfT29hIWFkZraysbN24cc1ZdZfwZjUYKCgqYO3euNtHnR0e4uqcTCA8P59y5cwwODnL06FHsdjs2m43777+ftLQ0lixZQkdHB4mJiaSkpNDQ0MD58+cnpGuBVyc6H6XT6Vi1ahVms/myiY6/v/+oBeJGSk9PZ/bs2fztb38bc8pxZfwFBQWRnZ2tJaMul4uDBw9y7ty5K742PDyctLS0i064zMxM7d+bNm3irbfeuraFVj62sLAwAgICAJBS0tfXR3t7+2Vr2CorK9m7dy+33norMLz2zaOPPsqTTz7J7bffzoIFCwA4evQoL7zwgqqt8zCj0chnP/tZ8vPztdocu93OiRMn+M///E96enq0GK1evZr+/n6++93vkpWVhU6nIzU1lerqaurr6/nnf/5nXnrpJW644QYWLlwIDM+o+8ILL3js+K53QggCAgJ46KGHKC4uJi0t7ZL7+fv7s2TJEnbs2EFNTQ2NjY1UVFRQUVHBhx9+yJQpU1i+fDlf/vKXyczM1K7bmzdvZufOnRNyLLor7+I5DQ0NrFmzhvb2dhwOBzqdjptvvpk77riDz3zmM2RkZBAaGgoMf9kxMTHk5+fz05/+lJUrV16yieu2227jscceY9q0aYSFhU30ISkXhIeHM2PGjFG1biaT6aLk5VKSkpIoKipCp9PR09NDdXU1P/jBD9i3b5+2T35+PnPmzBmXsitjM5vNREREcMsttzB16lSklNTW1nLw4EE2bdp02VWJ7XY7DQ0NuFwubWHPoaEh3njjDZ5++mntR9NqtbJs2TKtE7sy8cLDw5kyZQoLFizQJvRrb2/nz3/+M//xH/9BX1/fqER09+7dvPPOOwwNDWmDEB5//HHy8vJwOBw0NTXxwgsv8Oyzz2qvCQkJYdmyZYSEhHjgCJWFCxfyT//0TyxZsoSEhATt+a6uLi2ZsdvtGI1GkpKSmDFjBjNmzLjofZ5++ml+8pOfAMPLebg7mb/++uu8++67E3IsXl2jY7PZOHjwoLbqeGJiIhEREUyZMoVly5aRlJREfX09DQ0NBAcHExERQVxcHHPnztV6/kspEULgcrloamoiMDCQ7OxsVq5cyfbt2zlx4oRaO8UDTCYTgYGBWjIqhCAjI4Oenp7L1tYZDAb8/PywWq1aVXlnZydVVVWj+n4UFBRgs9m0PiGX+4FVrh2LxUJERARJSUmEhobicrkoKyujqqrqik0Q7hE67vdxz5Tc3d09akRGYGAgK1asoKOjQ4u/MrH8/f2JiorS1rFyOp2cPHmSsrIyKioqLqot7+zspLm5GSklOp0Oi8VCSkoK/v7+SCkZGhrSmjLcQkJCWLFiBS0tLTidznHvx6EME0JgtVrJyclh7ty52vpTLpeL1tZWTp8+TX19PR0dHSxatIigoCDMZjPR0dHExsZe9H5nzpwhMDCQffv2kZubq00nMqLz9rjz6kSnqamJdevWkZaWxrJly0hMTEQIQV5eHnl5efT19VFXV8fZs2cJDw8nJibmoi/a3WFqcHCQXbt2UVBQQGZmJk888QQvvPAC7777Ln/7299UNfgE++j/5Hq9nttuuw29Xj9moiOEwN/ff1QtUG9vr/ZDN7Lj+cqVK5kyZQrbt2/n+PHjaoj5BAkKCiI9PZ2YmBisVisDAwO8++67n3h5hsDAQBITE1m+fPlFnY4jIyP59re/TXNzM/39/WqIuQcEBgYSHx+v9bHr6enh/fffZ9++fZddXPVK19mRNboJCQk8+uijVFVV4XA41NIPE0Sn05GcnExxcTGlpaXazejg4CD79u3jnXfe4cCBA5jNZiIjI0lKSsJisRAdHU1CQoLWd9Kts7OTiooKnnzySR5//HFyc3MBmDZtGna7ne3bt4/7MXl1ogPDJ8aHH36I2Wxm8eLFozonWywWkpKSiImJwWAwaO3EbiN/+Lq6uvj+97/PqlWruPnmm1mwYAF33HEH06ZNo6GhgerqajW1+ASqq6vjww8/JCcnB6PRiF6v1yaXg+G5M9ra2rDZbAQEBBAcHExUVBTf+MY3mDVrlnbyGY1GwsPDeeSRR0hJSaGvr4/t27eTn59PXFwcr7zyCr/5zW/YsmXLhLUHX8/CwsKYMmWKdi66XC52797N2bNnr/ja2NhYbXQGDF9Yy8vLWblyJbNmzUIIwZEjR+jt7WXu3Lk88sgjrFixgp/97Gfs379fJbMTyN/fX1vSA4av0y0tLfT29o75mv7+ftavX8/06dNHvdbts5/9LDfeeCMABw4cwOVyUVxczA9+8AMOHz7ML3/5S3bv3k1HR8e1PyBFYzabeeCBB5g2bZp2U9nW1saZM2d49NFHtTgLIXj77bdpb2/nwQcf1BZuzcrK4vz581dcyuHrX/86RUVFdHV1cfLkSfr7+8ftmLw+0QFoaWnhzJkz7Nmzh4ULF2qdHN1rXF2q43FdXR1NTU1aXw6n08n58+fZu3cvFouF7OxsrWo8Oztb+1FVJkZbWxsHDx6krKyM7OxsEhMTCQ0NJTc3lxUrVmi98hsbGwkODiYyMpK4uDiKi4u1Wjt3lbfT6SQtLQ2r1Up3dzcffvghLpeLqVOnkpaWpnViPXXqFB0dHaoZaxwFBgaSnJw8KtHp7e39WJNzhoWFaXeEDoeD3t5empubtQkhAQ4dOkR9fb02fD0vL4+VK1dis9kYGhpSzVgTwD1EPDs7G4PBoC3Ee6XmSYfDQX19vXZHbzQaMZvNmEwmBgcHiYmJ0boc7Nu3j+7ubmJiYoiKiqKgoICVK1dqN6WqGWt8uJueCwoKiIqKAmBgYIBjx45pNyyDg4NajU1FRcX/b+++o6M6zwT+f+80jTQjjXpvSKgAAmSa6DJgDMTYMUmcxEncNr/dnDjFySbr9R6vN5v6S5xtP3uzWSckG9ubeN2ya8fYxoDBmA4CgRASCNR77yNNe39/iLlBBgG21Riezzn3GGauxu/o4c489y3PS2hoKPfffz92u53k5GQKCwt5++23RyU6NpuN/Px8vZe3tbWVuLg48vLyuOuuu3j99dcndAXWDZHoDA4OcurUKX7zm9+Ql5eHxWLBaDSO6rHx/9k/JHL48GF27drFv/zLv4yqw7Nnzx7OnDnDmjVrmDVrFlarlaVLl1JRUXHVuSFifPnrLWRlZbFhwwZ9WHLu3LnMnTsXp9NJXV0dtbW1REVFkZiYSFxc3GWv09/fT09Pj15Rt6GhgaeffpqhoSF8Ph8bN27kE5/4BNnZ2ezdu5czZ85IQjuB/Mnqpb2r/h67a0lISNA3gBwcHKSrq4vm5maMRqM+IXXbtm0cOXJET2CTk5N55JFHqK6uZnBwkNOnT0/UWxMXhYWFkZuby5o1azCbzbS3t1NTU8ORI0euehfvr4vkdDrRNI3g4GDCwsIIDQ2lo6OD0NBQHA4HAP/7v/9LbW0tKSkprF27lpSUFB555BFKS0txuVyUl5dP1tu9qURGRpKZmcmCBQv0OXZdXV28/fbbvPzyy6OSHIDi4mKGhobwer1YLBaSkpJ4+OGHKS8vH7WCNi4ujvvuu4/Y2Fi6uro4cOAAt912G9nZ2fzgBz/A7Xazb9++CRvGuiESHRhZgfXOO++wefNmUlJSmDlzJjNnztSTnvXr19PS0sLZs2d57rnnqKmpweVy8eSTT172WgMDA/z+97/ngQceYPny5dx///0cOHCAY8eOTcE7u3n5fD62bduG3W5n5cqVhIeHjxqWnDFjBklJSVcclnS73ZSUlPD8889TWlrKtm3bRvXsvfDCCxQVFREXF0dGRgahoaHcfvvttLe3S6IziSwWCw8++CDvvPMOu3fvvuI5/rlX/hhrmqbX1Kmrq7vsy9O/HPl73/sea9asITs7m4ULF9LT0yOJzgQzGAzk5OSQmZlJQkICBoOBo0eP8sc//vFDbaljNptJTk5m3bp1wMj1+kGVlZV8+9vf5sknn2TZsmV6aZD+/n5JdCaIf5TDv+3SwMAAzz33HHv37qWmpuYjz2U1m83Ex8djNBqpqKjg29/+Nn//93/P0qVLWbBgAd/5zndYuHAh/f39lJWVjXutuxsm0fF4PPT19XHu3Dk6OjpoaWmhtrYWk8mEwWCgo6OD7u5u6urqOHXqFL29vZjNZt5//33y8vIIDg5m1qxZOJ1OQkJCyMzMJCwsDIPBQHh4OKGhoQQHB+N0Oqf6rd5U2tvbOXfuHAcOHGDdunUEBwcDjNqj7INqamq4cOEC+/fvp6ioiLa2tssuQP+/hePHjxMZGUlUVJReP0lMnL6+Pqqrq7nlllv0cgEFBQX6Hmbt7e04nU6Gh4f1oQu73U5BQQHp6emXVTK/0gerx+OhqamJ0tJSfV5Pbm6urJ6cBJqmkZCQQEREhJ6YNjc3U1JScs26ZEajkcjISIKCgoCRFZRKqSvuawcjc7SampooKSkhOjpar4wtFbEnTnBwMOHh4XoPrNfrpaGh4apD/m63m5qaGhITE8fsudU0Tf/3Mjw8TFNTE++++y4ej4eUlBQiIyNJTU0lJyeHysrKmzfR8RsaGqKhoYGGhoZRPTAvvvjiZed6vV6eeeYZHnroIdauXcvGjRtxuVzY7XbuvfdeoqKigJGehZCQEMLCwiTRmWSDg4OcPHmS5557jltuuYWYmJjLhiUNBoM+JOnz+Thw4AD/93//x86dOxkYGCA2Nlavz6Fpmr4U0ul0smvXLubOnUt6ejobNmzgF7/4xRS+28DX3NysJ63++ReFhYUMDw/T29vL0aNHaW5u1ocqIiMjSUlJ4Vvf+hY5OTl6rE0mExaLheDgYH2OndFoxGAw6L1+p06dwuFwcNddd7Fo0aIJncwoRvhX5Pg/O2Ek5mfOnBkzYfEzmUx67+qlP+sf4vB6vfh8Pj3G/jgfP34ch8PBxo0bWbp0qVTEnkDBwcFERkbqK6e8Xi+dnZ1XvbacTidHjhyhsLBQn2T+wRuWK3n11VdpamrSt5eIjIykoKCAPXv2jPtcuxsu0fkwXC4XO3bsoLCwkLvuuovvfOc7eh0Hu92O0Wikr6+PV155haKiIrmApkh9fT1tbW2cOXOG1NRUZs6cqU90NJlM3H777TQ2NlJeXs7vfvc7ampqaG9vZ3BwEJ/PR3d3N48++ihf+tKXyM7O5oEHHsDr9RIZGckXvvAFZsyYof+//L07skJnYly4cIHm5mbi4uJYs2YNt956K5qmsXr1ahYuXEh3dze1tbU0NjYSERFBUlIS8fHxhIeHj+q96+3tpb29HbPZzB/+8AcqKyt5/PHHWbNmjf5FuXnzZubMmaP/jMViISEhgY6Ojg81jCKun8FgYOHChaSkpOiPGY3GK/a8fpB/PmRoaCher5euri4aGhpobm4GYOvWrfrKnttvv12fmPzpT3+anJycUa+TkJBAW1ub7Fk4TjRNIzw8nIKCArZs2YLZbKazs5OKigrefvvtq650c7vd+hBzbGwsdrudiIgIHA7HNVfI1dfX89xzz5GWlkZ6ejoPPvggzzzzzLj3zgZ0ogMjPQZnzpxh79693HLLLfodYm1tLefPn6eyspJdu3ZRV1d3zTsSMTE8Hg8ej4fKykp6enpoa2ujpqYGo9GI0WikqamJzs5OGhoaKC0tpb+/f9QdxvDwMAcPHmT9+vXMmzePDRs2oJQiJCSEtLQ0QkJCGBoa4ty5c7S3t8uX4ATyr3w6cuQIycnJLF26FKvVSnBwsD751G63k5iYiM1m04eN/Xw+H62trRw5coQDBw7gdDo5e/YsVqsVpZTe6wcwZ84cfV+sqqoqzp07p09CFxND0zSsVuuoOXOJiYnk5+ezb9++MT9DjUaj3kNnNBr1qQhdXV36Sq3y8nK9p2jx4sWkpqYCkJubq8f8/PnzXLhwgaGhIal9No40TSM2NpaEhAQSExPRNI2amhqOHj1KX1/fNRNKj8eDUgqj0YjD4WDmzJnU1dVRVFQEjEwl2LFjB4sXL8ZutzNv3jwAUlJSmDNnjv5vyuFwYLfbCQoKGtfhq4BPdGCk/LjH4yE2NlYfGjl8+DAvvfQSBw8e1O8oxNS6dFjSf4HASBfn1bjdboqLi2lpacFqtfKpT31Kf87n8+H1emlvb+ftt9/mwoULsjR1gvl8Pg4fPkxOTg5dXV3ExcXpwxD+pcn+BOWDPzc4OEhZWRmvv/46O3bsoK+vj76+PkwmEy6Xi8WLF1NQUACgD2UODw9z+PBh9u/fLxPNJ4HX6x2VZOTm5rJp0yaOHj2qJyCXPu9fYeWvkeUfFunr66Ozs1NPdC5cuEBERARut5vly5fr/2Z8Ph9KKYaHhzlw4ACHDh2SOI8zg8FASkqKPv8KoKysjB07dlxXB4B/qMpoNBIVFcX8+fPp6OjQP8ebmpp45plnSE5OJioqSq+XNGPGDDZv3kx4eLg+VBYWFobNZpNE58MqLy+nsrKSt956C4PBgKZpDA0N6ZMiRWB44YUXqK2t5eGHHyYqKgqv18uePXt45ZVXOHHiBDU1NdcsYiXGR09PD7t27WJ4eJif/OQnhIeHX3Pc/rXXXuOdd95h165dtLa2jkpIm5ub+da3vsU999zDvHnziImJ4dixYxw/fpytW7fS0NAgNXQmgcfjYfv27RiNRlJSUrBYLOTn55OamsrZs2epqKigvr6empoavQcnMTGRLVu2UFhYqE9EhpEhqJCQEEJCQvRCg7W1tXzzm9/ki1/8IrNmzSIqKorDhw9z7NgxnnvuOerq6uRGZQIYjUbmzJkzqoSHf8HHtRKdoKAg5s6dq5cGAKiurqaiokL/e1dXF2+++Sbf+ta3WLZsGY8//jgwkmD5e/mqqqp45513OHfu3LgnsjdFouMfGrla1U5x46uqqsLj8WAymbDb7SilKC8v5+jRo/IBOcmUUrS0tHD06FF+85vfkJCQoM+PMhgMGI1GMjMz6enpob29neLiYvbt28eJEydoaGi4rF6H0+nk0KFD+mT00NBQqqqqqK6u5vz58/T398t8jUng8/k4ceIE0dHRxMTEUFBQgMViISIigs2bN9PY2EhLSwtlZWVYrVbsdjsZGRksXLhwVNVrpZR+03HpSp3+/n4OHTqEpmkkJiZit9v1KQbnz5+nr69PphhMAIPBQHp6ut6bAyM9d9dTXNVisegFW5VSDA4OXlaA17845MCBAxgMBubNm6cnuJWVlRw/fpyKigqOHj1Kb2/vuA9L3hSJjrg51NXVUVdXJ1s9TBPt7e36JoD+CuT+7SEsFgubN2+murqa0tJSfvnLX9Le3j5mj9vw8DAnT5780HtmifHl8/koKirSY5ifn4/JZCIoKIgtW7bgdrsZHBzkxIkT+krWnJycUb15/mGolpYWXC7XqP2tBgcHKS4upri4eAre3c3LYDCQkZFBZGSk/pjZbMZqtdLf33/Vn7VYLGRnZ2M2m/F6vfT29o6508C2bdtob28nKiqK2NhYOjs7OXToEE899RSVlZV0dnaO+3sD/lxJ+EoHoOSYmuNqcfmox1S/p5v5uJljqWmaMplMKigoSNlsNmWz2ZTdbldRUVEqPDxc2e12ZTAYlKZpU97WqYjljRZPQIWGhqrc3Fx1/vx5NTAwoHw+n354vV41PDyshoeHldvtHvWcz+dTFRUV6uWXX1aZmZnKbrdPedxv9lgCymazqddee01VVVXpcdq1a5f627/9W2U2m8f8OavVqhYsWKCGhoaUz+dTTqdTnTp1Sq1Zs0YZDIbLzjebzSokJERFRUWpmJgYFR0drcLCwpTJZBqXfwdjxUR6dIQQE0oppQ8fXzon7lp3imL6cjqdtLa28s4777Bs2TLmzZun99r4i31+0MDAAHv27KGkpIQzZ87Q3Nwsq6emCa/XS3l5ub4DudFoJCMjg9WrV7N7925aWlro6emhu7sbk8mE2WwmNDSUBQsWsGjRolHDj/5aZv56Zpdyu916r99kkkRHCCHEh+LxeOjt7eW1114jKCiI1NTUy/YgNJlMaJqG1+vF5XLR2trKiy++yLFjx664tYeYOl6vl+PHj5Oamkpubi5hYWGkpqYSHh7O6tWrOXv2LLW1tXg8Hn0SeUpKCnfccQerVq0alej4hzItFsu02UBZu1o2fbErSUwBpdS1S0t+SBLPqTPe8ZRYTh25Nv/Mf2cfGRnJ0qVLSUlJ0Xe9XrBgAcnJyRw4cIA333yToqIiamtrcbvd02pCsVybIywWC7feeisbNmzga1/7GhaLRZ9cPDw8TF9fH8ePH8dut+NwOMjNzSUoKAiTyaQnOgMDAxw7doyf/vSnHDp06JoFA8fbWLGURGeakg/TwCIfpoFDrs3R/BOTU1JSCA8PJyQkBIDk5GQcDgc1NTWcPXuWxsbGaTlcKdfmn2VmZpKfn88vf/lLHA6HPgTpX4HV1NSkT1KOjo4e9bNtbW1UV1fz29/+lt27d1NTUzPp5VvGiqUMXQkhhPjI/POvzp49O9VNER9TQ0MDXq+X5uZmzGazXhvHP+fm0u10/Py9PlVVVRQVFfHyyy/T19c3bYatQHp0pi25awwsctcYOOTaDCxybY4WFBTEnXfeyZe+9CXuuOOOMXck92tubuaHP/whhw8fpra2lo6OjimbYC49OkIIIYS4KrfbzYkTJwAoLi5mxowZREZGYrPZAEhNTcXhcFBZWUlpaSlnz57l/fffp6mpaUKK/Y0H6dGZpuSuMbDIXWPgkGszsMi1eWVBQUGEhoayePFiUlJS9A1XFy1aRHx8PIcOHeLNN9/k1KlTtLe3T4sERyYj32DkwzSwyIdp4JBrM7DItXl1/pIB/rIB/v0i/Rsm3wgr6GToSgghhBBXNJ0SmY/KcO1ThBBCCCFuTJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWJpSaqrbIIQQQggxIaRHRwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJrUREfTtGpN05yapvVfciROZhuuRdO0PE3Ttmua1q5p2hVnamua9nlN08o0TRvQNO2CpmmrJrud00EgxPMDbe/XNM2radrTU9HWqRQgsUzXNO1NTdO6NE1r1jTt3zVNM01FW6dagMRzlqZp72qa1qNp2nlN07ZMRTun2g0Sywc0TSvSNK1X07R6TdOevPTa0zQtUtO0/734nVmjadoXJrN9U9Gjc6dSyn7J0Xjpk9Pgg8kNvAR8+UpPapq2HvgZ8BAQCqwGKietddPPDR3PS9sOxANO4OVJbN90ckPHEvgPoBVIAPKBQuDhSWnZ9HTDxvNi214D3gAigb8C/lvTtOxJbeH0Md1jGQJ8C4gGCoB1wHcvef4XgAuIA74I/FLTtDmT1bhpMXSlaZrSNO1rmqZVABUXH/v/NE2ru5ghFl3aa6Jp2j9qmvaypmn/rWlan6ZpJZqmZWua9neaprVe/LnbLznfoWnabzRNa9I0rUHTtB9pmma8UluUUmeVUr8BSsdo7veBHyilDimlfEqpBqVUw/j9Nm58N1g8L/VpRr4o3/9Yv4AAcoPFcgbwklJqSCnVDLwNTNqH6Y3gBopnLpAI/KtSyquUehfYD9w3jr+OG9o0i+UvlVLvK6VcF78Pfw+suPg6NkY+W59QSvUrpfYBrzOJsZwWic5FdzOSCc6++PejjNyVRQJ/AF7WNM16yfl3As8DEcAJYDsj7ycJ+AHwzCXn/g7wADOBW4Dbgf/nwzbwYpAXATHaSFdqvTbSPR78YV/rJnA30zyeV/AA8JyS4lIfdDc3Riz/Dfi8pmkhmqYlAZsYSXbEaHdzY8TzgzQgb5xeK1DczfSM5Wr+nMBmAx6l1LlLnj/JZN6EKKUm7QCqgX6g++LxfxcfV8Daa/xsFzD/4p//EdhxyXN3Xnxd48W/h158zXBGusqGgeBLzr8X2H2N/9/MkV/PqMcSL77uMUa6x6MZucv48WT+HqfLcaPH8wPPpwFeYMZU/14llh8tlsAsoIiRD2fFyAe1NtW/W4nnR/qsNTMyJeDRi3++nZGhj+1T/buVWF6zvX8B1APRF/++Cmj+wDl/CeyZrN/hVIzr3a2U2nmFx+su/Yumad9lZOzWn1yEMZJY+LVc8mcn0K6U8l7ydwD7xZ83A02apvnPN3zw/3ed/K/7tFKq6WI7/wX4e+Dxj/B6geBGjuel7gP2KaWqPubr3Mhu2FhqmmZgpPfmV8Dyi6//W0bm0z36YV8vQNyw8VRKuTVNuxt4GvhbRm4uX2Lky/dmdEPE8mLM/l/gNqVU+8WH+y+241JhQN/VXms8TfUEpkvpwwUXxxUfZWRCU6lSyqdpWhcjXZcfVh0jF0e0UsrzsRqoVJemafWXtvUDfxZ/Nu3j+QH3Az8dx9cLJDdCLCOBVODflVLDwLCmaf8F/IibN9EZy40QT5RSpxiZUO5v6wHg2Y/7ugFm2sRS07SNwK+BO5RSJZc8dQ4waZqWpZSquPjYfK5v3uS4mE5zdC4Vykj3cxsjv6B/4PKM8Lpc7Hl5B/hnTdPCNE0zaJqWqWla4ZXO10ZYAcvFv1s1TQu65JT/Ar6haVqspmkRwLcZWRkgxjad44mmacsZGaO+WVdbfRjTMpYX7x6rgK9qmmbSNC2ckTlXpz5K224i0zKeF/8+7+JjIRd7KhIYGY4UVzaVsVzLyATkTyuljnzgtQaAPwI/0DTNpmnaCuCTjMwVmhTTNdHZzkg39DmgBhji4w1N3M/IxXSGkTHLVxi5aK4kjZEuPH+26QTOXvL8DxmZ8HUOKGNkQtePP0bbbgbTOZ4w8oX4R6XUpHWl3sCmcyw/BWxk5IP+PCPLl7/9Mdp2M5jO8bwPaGJkJeQ6YP3F3jpxZVMZyycAB/Cm9udaP29d8vzDQDAjsXwB+KpSatJ6dGT3ciGEEEIErOnaoyOEEEII8bFJoiOEEEKIgCWJjhBCCCECliQ6QgghhAhYV62jo42xe7eYeEqpj1L74KoknlNnvOMpsZw6cm0GFrk2A8dYsZQeHSGEEEIELEl0hBBCCBGwJNERQgghRMCSREcIIYQQAUsSHSGEEEIELEl0hBBCCBGwJNERQgghRMCSREcIIYQQAUsSHSGEEEIELEl0hBBCCBGwJNERQgghRMCSREcIIYQQAeuqm3qK0dasWcPMmTNJTk6mt7eXwcFB+vr6qK+vZ2hoCIC8vDxMJhN9fX288cYb9PT0THGrxcqVK8nKyiI9PZ2+vj6cTic9PT00NDTgdDoBmDVrFlarlb6+Pt5++23a29unuNVCCCHGgyQ618FgMBAUFMSSJUtYvHgxM2fOpKuri/7+fjo7Ozl//jyDg4NomsbSpUsxm810dXVx/vx5qqqqaG1tneq3cFPSNA2r1crChQtZsWIF2dnZdHd309fXR2dnJ1VVVfT19QGwePFibDYbnZ2d1NbWcu7cOZqbm6f4Hdy8wsLCsNlsBAcH4/V68Xq9eDweXC4XHo8HAJvNhtFoxOPx0NnZicvlmuJWCxj5vIyJiSEoKAiDwaDHz+v1MjQ0hFIKo9GI3W7H6/XicrnkxmKKaZqmx8xsNuN2uy+LmcFgIDQ0FK/Xi9vtpq2tbaqbfd0k0bkOISEh5OXlsWXLFgoKCi57Ximl/1nTNP2xefPm8dprr/H9739/0toq/sxqtTJ//nzuuusu1q5de9nzV4obQH5+Ptu3b+fRRx+dlHaKy91+++0UFhaSn59Pd3c33d3dtLS0UFFRQWdnJwArVqwgKiqKlpYWfvWrX3Hu3LkpbrWAkQT0kUceIScnh5iYGJqbm+no6KCzs5OTJ0+ilCIsLIz169fT2dlJRUUF//qv/zrVzb6pBQUF8fWvf52cnBwSExNpamqiq6uLzs5OiouL8fl8hISEsGHDBnp6eqitreVnP/sZPp9vqpt+XSTRuQ4mk4mYmBgsFgt9fX2UlJSMeW53dzexsbEsWrSIjIwMEhMTJ7Gl4lJGo5Ho6GgsFguDg4MUFxePeW5PTw/h4eEsW7aM9PR0UlJSJq+hQmcymcjIyKCwsJA77rgDh8OB2+3G7XYzPDxMf3+/3nMTFRWFxWJheHiYqKgoDh06xDPPPDPF7+DmFhMTQ2ZmJnfeeSdRUVEEBQWRmZmJy+XC5XKxfv164M+fqR6PhyVLlhAXF8fvfvc7ysvLp/gd3HwiIyNJTU3lzjvvJDY2FqvVSkZGBm63G5fLxW233ab3wsXGxuLxePTPyxdeeOGqn6vThSQ618Hn8zE0NITP56Onp4d9+/Zd8Tx/D0FOTg6LFi3C4XBgt9sns6niEkopvdt1YGCAffv2oZRC07Qr/jctLY1ly5YRFhYmcZsi/g/T9PR00tLS6O3tJSgoiKCgIOx2O1FRUfq5Ho8Ho9FIcnIyBoMBTdMk0ZliNpuNhIQEsrKy8Pl8DA8PExISQkhICACxsbHAyLXpdruJiYkhPj4ei8XCW2+9JYnOFPDHLDMzE7PZzNDQkB4vGEle4c8xi46OJjExEYPBwL59+yTRCRS9vb3s2LGD7373uzidTv72b/92zHPvu+8+4uPjJ7F1YiwDAwPs3LmTr3zlKzgcDh577LFRw1WX+uxnP4vD4ZjkFooPMhgMxMXFERwczODgILt27Rqze7y9vZ3w8HDuvfdeZsyYQUNDwyS3VnxQWFgYMTExaJrG2bNnqaiouOJ5Ho+H5uZmNm/eTFZWFnPnziUsLGySWytgJNGJi4tD0zTOnz9PWVnZFc/zer00NTVx2223MXfuXObOnUt4ePjkNvYjkkTnQ6itrcVqtV71nDVr1rBkyRKUUmzdupVdu3ZNUuvEWOrr6zGZTGMmOQCrVq1ixYoVADz33HMStykyPDzMvn37uPvuu+nu7uanP/2pPvn4gxYuXMjChQsnuYXiaqqqqoCRL8V33nmHF1544Yrn2e12Vq1axfDw8GQ2T1xBXV0dPp8Pj8fDvn37xuwVtVqt3HrrrfoK4xuJJDrXYDKZ0DQNt9tNaWkpZrP5iueZzWbCwsLIzMwkOjqajo4O9u/fz+nTpye5xQJGx628vJyurq4xz3M4HGRkZBAfH09HRwcHDx7k5MmTk9xiASPDxC0tLXR1ddHV1UVxcfGYic4tt9xCaGgoMJLM1tXVTWZTxRX09fXR0tJCX18flZWVYw5rxMbGcuedd2KxWHC5XNTU1NDf3z+5jRXASM93c3Mzvb291NTUjBkzh8PBJz/5SYKCgnC73VRXV+urVqc7SXSuITw8HIPBQGtrK//2b/825nnR0dGsWrWKtLQ0hoeHOXDgALt27aK+vn7yGit0YWFhWCwWmpubrzpvIzw8nLVr1zJjxgyUUrz77rvs3LmT8+fPT2JrxQc1NDRw7ty5a/bC3X777cBIL9zOnTsnq3niKvw3hR0dHWOeExYWxuc+9zliY2NpamriiSee4OzZs5PYSnEpr9dLWVkZLS0tY54TEhLCPffcQ1xcHF1dXXzve9/jxIkTk9jKj0EpNeYBqJv9uOuuu9Q//uM/ql27dqmHHnpI5efnX/G8wsJCVVJSohobG9Urr7yi5syZo4KCgj7y//dqcfmox1T/Lifz2LBhg/r7v/97tXPnTvXVr35VLVq06IrnLViwQJWUlKiGhgb19ttvq7y8PBUcHDzu7ZFYXvuw2+0qKipKASotLU3l5eVd8TybzaYKCwvVnj17VHt7u9qzZ49av369ioiImJR2yrV5+aFpmoqOjlbBwcHKZDKp/Px8FRMTc8Vzc3Nz1X333acGBwdVSUmJevbZZ1VcXJyyWCxT0vabOZZRUVHKZrMpo9Go5s+frxISEq543syZM9VnPvMZ1dfXp86cOaNefPFFlZCQoKxW65S/h+uJpfToXAeHw8HatWtpbGzEarXS0dFBa2urPr4cGxvLjBkzyMvL49ixY5w+fZrS0tIpbrWw2WysXbuWrq4uLBYLLS0ttLW16WPMMTExpKWlkZeXx4kTJzh9+rQMNU4h/2oOi8VCY2MjjY2NVzzPbrezZs0aoqKi6O3tZffu3VRWVo45PCkmntFoJCMjA4vFAkBFRcWYQ1GzZs1iyZIlaJrG6dOnOXjw4FV7EsTEMBgMzJgxA6vVisFg4Ny5c/T29l7x3KysLJYvX47BYODs2bPs37+flpaWG6aOTsBkphN1REdHqzvvvFP5VVZWqm9/+9sqKSlJP+fee+9VW7duVUop9eijj6rly5dPWGZ6s9xpfNwjMjJSrVmzRnm9XqWUUo2Njeo73/mOysjI0M/ZsmWLevrpp5VSSn3ve99ThYWFE9YeieW1jy1btqhf/epXyuPxqGeeeUZt2rRJaZp22Xnz5s1TPp9PtbW1qddff33S2ynX5uVHSEiI+vGPf6yOHDmiurq61H333admzpx5xXOfe+455Xa7VV1dnbrjjjumvO03aywtFov6/ve/r95//301MDCgHnroITV79uwrnvvUU08pj8ej6urq1L333jvlbf+wsZQenWvo7u7m1KlTPPHEE+Tn55OYmMg3v/lNrFYrhw4dYvfu3Xz2s59l+fLlABw+fPiqBQXF5Ojt7aW8vJx/+Id/YO7cuSQlJfH1r3+dsLAw9u3bx44dO9iyZYtewOz48eM3znhzgDp+/Dgej4cHH3yQT37yk8yfP5/w8HAOHjxIdXU1MFINeeXKlWiaxrZt22R13DThcrn44x//SEpKCgsWLOCJJ55g27Zt7N69mzfeeAOfz4fNZuOOO+4gPT2drq4u/v3f/13mwk0hj8fD//7v/xIdHc3y5ct5/PHH2blzJ9u3b+dPf/oTHo8Hq9XK5s2byc7Opr+/n//4j/+4IUcrJNG5SNM0zGYziYmJhIWF4fV6OXPmjL6Pzt69e+no6GD+/PnccsstFBQU6HtaZWZmEhoaSnV1tb7iQEwtj8dDd3c37733Hm1tbcyZM4dFixaxePFiDAYDbW1tzJw5k4iICD1uY3XbisnR0dHBhQsXKC4uJjo6mpiYGNauXUtfXx8ul4vGxkby8vJYvHgxAOXl5XJTMU14vV6qq6spKyvjzJkzxMTEkJeXh9frpbS0lJaWFqxWK2vWrCE+Ph6n08nhw4evOmFZTCyfz0ddXR1lZWWcPn2amJgYcnNzGR4eprS0VN/rr7CwkKSkJIaHhzly5MiNuXdjIHTBjcdhMplUfHy8evTRR9Uf/vAHtXXrVmWxWC7rOl+0aJGqra1VQ0NDqqWlRb300kuqo6NDXbhwQf3TP/2TSkxMnNAuuJuhS3UijtzcXFVTU6OcTqfq6OhQL730kmpublZ1dXXqn//5n0cNaU3EIbG8viM4OFh9+tOfVj/96U/Vtm3blM/nU3/4wx/Ugw8+qDRNUy+//LLyu/POO6ekjXJtjn3MmzdP3X///eoPf/iDqqioUF1dXerRRx9VeXl5KiMjQ7ndbqWUUmfOnFEGg2HK2zsR8Zzq9/Nhj9zcXPXFL35RPf/886q0tFQNDAyov/u7v1OLFi1S8fHxamBgQCmlVG1t7cdaYDOVsQyogH3Yw2AwKJvNphYsWKC+/e1vq2effVbV1taqjo4OdfLkSXXrrbfqq0D8R3h4uFq/fr06deqUcrvdqrOzU3k8HrVz506VnJyszGbzhAbsZroAx/Ow2+3qtttuUwcPHlQej0d1dnYqt9utDh8+rJKTkyd8xYfE8voOTdNUeHi4SkpKUitXrlQNDQ2qoaFBlZSUqJ/97GeqvLxcdXV1qd///vdjroCc6EOuzbGP4OBgFRUVpdLT09XTTz+t30y88sor6j//8z+V1+tVBw4cUE8++eQV518FQjyn+v182MNqtarIyEiVnp6ufvKTn+gxe/3119XTTz+t3G63Onr0qHrqqaeUyWSa8vZ+lFjelENXmqZhtVqJi4sjMTGRwsJCCgoKyMnJITk5GYD+/n5SUlIuG0Pu7+/n+PHjHDt2DIvFQk5ODsCl/8jFNOR0Ojlx4gTHjh0jLCyM2bNn689J3KYPpZS+W7nb7Wbnzp2sWrWKzMxMVq1aRXR0NH19fezcuVOGPaYhp9OJ0+mko6ODo0ePkpyczF133UV+fj49PT1omkZpaSkHDx6c6qaKi4aGhhgaGqKzs5OioiKysrK4++67mTdvHgkJCRgMBsrLy9m3b9+Ns8rqgwIpM73ew2g0qrS0NPXlL39Z/fa3v1Uej0f5fL5RR1NTk3riiSdUdnb2FV9jzZo16oc//KHyKyoqUp/73OdUeHj4hGamN9OdxkQcK1euVH/3d3+nx62srEx97nOfG7Pmx3gdEssPfxiNRpWcnKxeeeUVdamTJ09OaW+AXJvXd4SHh6slS5aooaGhUfG7//77p7xtExnPqX4/H+cICwtTeXl5qre3d1TMvvGNb0x52z5OLA3chBwOB3/913/NX/3VX3H33XdjMFz+awgLC2Pz5s3k5uaO2jF5LLNnz+bJJ5/k1ltvJS0tbSKaLT4i/47YDz30EPfeey+33Xab/lxGRgY///nPue2228jIyJjCVooP8nq9NDc381//9V/8/Oc/13veQkND2bBhg76rspieent7qaio4LHHHuPw4cP643PnztX3lRPTS39/PzU1NTz++OPs2bNHf3zWrFkUFhZe8bvyRnDTDV2lpKSQk5PDokWLmDFjhr77qtvtxuVyMTw8jN1ux2w2k5KSQlpaGpWVlZd1k8+cOZPMzEwAWltbMRgMpKamsn79esLCwti9ezdNTU1j7tMjJpamaZhMJsLDw0lLS2PGjBncdtttzJgxg7i4OADa2tpQSpGSksJtt92GzWbD7XbT0tKCy+Wa4ncgYGT1XFtbG01NTfpjoaGhbNq0ie7ublwuFz09PVPYQjEWn8/H0NAQdXV1o4oHzps3j56eHs6ePUtvb69ca9OIz+djeHiY+vr6UatQZ8+ezbp16ygvL6e7u/uG24z1pkt0CgoKuOOOO1iyZAlGoxEApRS9vb309vbS0tJCVlYWUVFRxMfHM2fOHJqbmy+rmLthwwZWr14NwKlTpwgKCmLlypU8/PDDLFq0iOHhYd5++235EJ4iJpMJu91OXl4eW7ZsYfHixRQUFKBpmn6Ov3zA2rVr+Yu/+AuWLFlCf38/O3bskPkf04imaaPuJKOjo/nmN79JY2MjTqeTU6dOjTr3hp1HEID8sfNfd0opbr/9dnJycti7dy9nzpyhvb19ilspPuiDMSssLGTWrFns3r1b3xPL38N6QwjUscYPHkajUc2cOVP9x3/8h2pra9Pn4gwODqo9e/aov/mbv1F33HGHuvPOO9Xu3bvV0NCQ8vl8atu2bepv/uZvLnu9d999V3k8HqWUUnfccYfauHGjeuutt1Rvb69yOp2qrq5O3XXXXSotLW1cxxpv1rHjDxPnhIQE9dnPflY9+eSTqqamRnV2dqrBwUHl8/lGjTvfe++9qrCwUL311luqs7NTDQ8Pq8bGRvX5z39+3JebSyw/+vGDH/xAlZaWKqWUOnHihHr//feVUkq1tbWp9957T23atEndd9996jvf+Y569tln1ezZs5XRaJyw9si1ef1HXFycOnjwoGpvb1eDg4Pq7bffVg0NDcrtdqva2lr1+OOPqxUrVkxpGyWWow+Hw6H27t2rmpub1fDwsHrnnXdUTU2N8ng8qra2Vv34xz9WhYWF02bV3PXE8qbp0TGbzSxcuJD09HR9uMrpdNLS0sIbb7zBoUOHqKurw2QyUVxcTEREBPPmzSMpKYmMjAwiIiLo6+vTh6KMRqPeI9Te3k5zczNvvPEGSUlJpKWlkZSURHZ2Nq2trdTU1EzV277pWK1Wli9fzqpVq8jPzyclJWXMcwcGBqirq+ONN94gOjqarKwsEhISmDlzJo2NjVRWVk5iy8VYoqOjSUpKAqCoqIj6+nqSk5OJi4sjNzeXzZs3ExYWRnh4OJmZmWRkZNDR0SH7J00DRqORtLQ07HY7/f39bNu2Da/Xq1+bq1atwmg0cu7cOXp6emQYaxowGAykpaXhcDgYGhrirbfeor+/H4PBQEpKCsuXL8fn891Qw1g3TaJjtVrZtGkTmZmZeoLS2dlJWVkZTz/9NC6XS++K27VrFx6Ph3nz5pGZmcnQ0BAzZsygoqJizKrHNTU1/OIXv2DRokWYzWZycnKYN28ezc3NHDp0aNLe583MaDQSERHBF77wBRYvXqyXCvBTSo0aunI4HAwODvKLX/yC3NxcrFYrDoeDvLw8Wlpa2Lt372S/BXEFdrsdh8MBwPbt2zly5AizZs1i5cqVJCYm8vDDDwPo1+/cuXPp7OyURGcaMBqNREZGEhQURENDA7/85S/1m8X4+Hg2bNhAZmYmu3bt4syZM5LoTAMGg4GIiAisVivd3d0888wzdHZ2YjAYSEhI4NZbbyU7O5sdO3ZQVlZGW1vbVDf5mm6KRCcuLo6cnBzWrFlDdHQ0Pp+Pzs5Ofve73/HGG2+MSnIA3n33XTo7O3nkkUcIDg4mJyeHn/3sZzz22GMUFRVd9f/1+uuvMzQ0RG5uLlu2bGF4eJj//u//nui3KIBNmzaxdu1a1q9fT3BwsP54T08PfX19dHR0kJGRQVhYGAD5+fm0t7fz1ltvsX37dlwuF3l5edxxxx1omsavf/3rqXorYgwRERFERETQ3Nw85p1kamrqVXvyxNT6/e9/z5EjR4iLiyMzM5OwsDA2btxIe3u77EA/Tb366qscPXqU+Ph4Zs6cSUhICOvXr6enp0cSnekiNDSU2NhYHA4HFosFl8vFiRMnOH36NJWVlZdNqhocHKS3t1fvATCZTERHR2M2m/Vzjh07ht1uZ8GCBWRlZeF0OtE0jby8PL0nwW63ExYWhs1mY3Bw8MaavHUDMRgMhIeH6/sg2Ww2NE3D4/HQ2NjIyZMnaWpqYmBgAJvNhs1mw2g0EhMTQ2ZmJvPmzSMvL4/09HRgdNycTqdMbp1GZs+ejdlsZs6cOdjt9lHPaZqGUooZM2ZQW1uL3W5ncHBQ4jfN9Pb20tDQwNGjR4mIiCA2NpZly5axbdu2y841GAxkZGToe5/t37+frq4u+SydZP39/TQ1NXH06FEcDgdpaWksX778hun1vikSHbvdTkxMDFarFaPRSF9fHzt27KC0tPSq2aj/A/JKtQNef/11+vv7WbBgAQUFBSQmJqJpGp/61Kf0u0mfz4fRaCQ8PJzh4WFZaj5BjEYjqampLFiwgCVLlujDU4ODg5w4cYIXX3yR8vJyLBYLeXl5JCQkYLfbiY+PZ/bs2YSEhLBlyxa9jo7P59O7b10ul3xRTjGPx4PH48FkMrFixQrmz59PYWHhmOfPmTOHnp4eoqOjaWpquiHmEAQqpRRutxuz2azfNCqlGB4eZu/evSxYsICMjAzWrVvHU089pf+cpmkYjUZ9NevcuXNZsGABtbW19PX14Xa7p/BdBTZ/zHw+nx4Ho9GIx+Nh//79zJkzh9zcXNauXcuzzz471c29LjdNohMXF6d/AXq9XlpbW3E6nWP+TH9/P2+99RbLli3ThzoudfDgQUJCQgB48MEH9S/D4OBgfQ7Qq6++yjvvvENzczNer3e835a4yG638+Uvf5m8vDy9162lpYWSkhK++tWv0tvbq38wPv/889TV1fHlL3+Z1atXs2zZMnw+36i4vf766+zatYumpiaJ2zTw/PPPU1tbyz/8wz8wb968a97Nx8fHM2vWLNatW8frr79+Q3StB6quri7++q//mvvvv5/c3FweeughvF4vERERfPGLXxxVXDUiIoKYmBi6u7vJzs4mNzeXT3/60yxdulTvUV+9ejWaplFcXDx1byrADQwM8N3vfpfPf/7zLF26lAceeACXy4XNZuOBBx4gNTVVPzc8PJyYmJhpf40FfKITHBxMeno6eXl5GAwGBgYGaGtr48yZM3R3d4/5c263m+bmZoaGhnA4HAQFBREcHExQUBDDw8O4XC4aGxt58803yc/PJzIyEqvVSm1tLQ0NDZSWlvLee+9RVlYmX5YTyG63k5CQwPz584mKikIpxeDgIIcPH2bfvn20tbWN+v0XFxcTGhrKQw89RFBQEEFBQQDU19fT1NTEqVOn2Ldvn8RtGvGvXFRKYbFYrnjO+fPn8Xq9+mIDm81GSkqKHl8xNVwuF0eOHGHjxo0sWLCATZs24fP5CAkJITk5meDgYJxOJ+Xl5fT39+uLAVauXEl2djYLFiwgLi5On3MXGxsrFbEnmMfj4ejRo6xevZqgoCA2bNiA1+slKCiIlJQUbDYbLpeL0tJSmpqaGBoamuomX1NAJzqaphEWFkZOTg4FBQUYDAa6u7upqanh1KlTV53h7/V6aW9vx+VyYTAYCA4OxuFwEBoaqneFNzY2snXrVh5++GG9yODJkyfZt28fv//972lpaZHhqgkWGRlJWloac+bMITQ0FJ/PR1dXFzt37uSNN964LFk5ffo0VqtVf9w/r8O/0eDWrVtpa2uT1R/TyMDAwBVXO/p8PrxeL263myNHjuB2u4mPj8dms2G1WklPT8dqteoxFpPP7XZz8uRJmpubMZlMbN68eVTPutvtpq2tje3bt9Pd3U18fDyf+tSnuOuuu644oTwhIYHo6GiJ6QTyer2cPn2axsZGAH1xhv85j8dDZ2cnO3bsuOpK5GsxmUwYDAYMBgPDw8MTGs+ATnRMJhOzZs0iMzOThIQENE1jz549/OlPf/pQCYjFYiElJYVPfOITBAcH88ILLwDQ0dHBm2++yZ49ezAajRgMBlwuFy6Xi6GhIZnbMQkiIyNJT0/HbrdjMpno6upi69atvP/++9TV1V3z5wcGBqiuruYnP/kJRUVFMvl4GlqzZg2f+MQnLnv82LFjFBUV8atf/YrGxkYiIiKoqqrioYceIiEhgY0bN+qrKmtra6eg5cLvhRdeoKamhm984xtERUXh9XrZvXs3L774IidOnKC+vp6vfOUrrF69mrVr147ZE7d69Wp8Ph979+6ltbVV5upMoNdee4329nYeeeQRoqKiMJlM7Ny5k9dee41Dhw5RU1Nz1ekfY/HP1dqyZQuzZ88mLy+Pxx57jKqqqgnrRQ/oRMdgMJCcnEx4eLg+obixsZEzZ85cM3s0mUwkJCRgtVr11+rv7x+Vvfr3BZHJjlPHZrPhcDj0Ow6Px0NLSwsDAwNjXjRDQ0OUl5czY8YM/Wf6+/sZGBiYtHaLazMajURHR5Obm0tOTg6apjE0NKSXBCgpKeH8+fNUVVUxMDDA0NAQu3bt4pOf/CRJSUmEhYWxdu1aDAaDJDpTrKqqCrfbjVIKm82GUopz585x/Phxent7Wbp0KYsWLWL27Nn6MJXX68XpdDIwMIDJZCIqKoqYmBhSU1PJzs6mp6dHEp0JVFtbqy+osdlsGAwGysvLKSkpoaam5kP35BgMBmJiYoiLi2Pu3Lls3LiRtLQ0EhMTycrKYnBwUO9FGm8Bn+ikpKQQGhqqP9ba2nrFJeUfZLFYSEtL0y86pRQtLS00NzdPaJvF9dM0jdDQUKKiovQ9jlwuFx0dHVdNPgcHBzl58iTR0dGEhoaiadqoQoJiejCZTKSkpIzaQLevr4+Kigr+5V/+hfr6+lGbRfb29rJv3z66u7vRNA2r1cptt92Gx+PhpZdemqq3IYCGhgYaGhpG7WIOI9dwcnIyd999N0uWLNEnJ/uTnKamJtrb27HZbERFReFwOEhKSiIvL4+SkpJR8Rfjq7m5mebmZo4dO/axXse/ciskJISsrCzmzp3LZz7zGRYuXKgv9MnNzaWjo0MSnY/CZDJRUFAwqkKu0WjEZLr22w4JCWHFihUEBQXpY5L19fWS6EwTmqYRGRnJihUr2LJlCwaDgdbWVsrLy9m2bdtVEx3/UIbT6SQ8PBy73U5kZCQOh0M2YZ1GTCaTXkPFf8OxY8cO3n33XSoqKmSyeABISkpiwYIFfPGLX9RXsQKcPHmSEydO8Oyzz2Iymbjlllv48Y9/TFBQEKGhocyZM0fvbRfTW3R0NGlpaWzZsoVPfepTJCcnExQUpK9yBZgxYwbV1dUT1obLC8QEEH8meWkdnKysLJYtW3bF2jh+JpOJoKAgfbKU1+vVK+vKF+H0YDQaSUhIIDExUZ+cWFZWxv79+xkeHr7qPBullP682WwmMjKSvLw8cnNzJ6v54jr4C0FeutKqt7eXzs7OqyY5VVVVVFdXSy/dDWDOnDksWbKEkJAQvVZLW1sbb775Jn/84x+pqKjg3LlzlJSUsGvXLnp6eggLC2PevHn6tAQxfWmaxpIlS/jEJz7B2rVrSUxMxGazYTKZRl2f/uFph8Nx1e/mjyqgEx1/4aNLJx7n5uZy6623EhwcrCcyfv7EyOFwEBERoQfC5/MxMDBAb2/vR55hLsaX0WgkJSWFmJgYvfvTn+hca1jSPxnOH+/w8HBmzZqlFwwU04PZbNYLfcLIXKqenp6rloWAPyc6gD4sKUnP9GM0GvVq5kajEaUUTqeTqqoq3nzzTbZv305LSwuNjY2Ul5fz9ttv093djd1uZ/bs2WRlZREXFzfVb0OMwWAwYLPZWLFiBRs3bqSgoECfRuJfMem/4fQnOtHR0aN6esatLeP+itOIy+Vi27ZtlJeX68uFCwoKuP/++7n33ntZunSpXvwoODiYyMhIZs2axWOPPcYPfvADfYjLP95vs9lGda+KqWMymcjLyyM6Olp/7OzZsxw6dOiaiU5ISAh5eXmjthA4f/48Fy5cmLD2ig/HbreTkpLCF77wBTIyMnC5XFy4cIH33nvvmmXnm5ub9Q09rVYrYWFhREVFTcgHqPhogoKC9Ho5BQUFwEhvXXFxMV/72tc4c+bMqF7ZhoYGfv3rX9PU1ITBYCA0NJTvfve7PPDAA1P1FsQ1JCUl8cQTT3DPPfewePFi/XGXy0VLSwulpaVUVlbq586dO5d169Zhs9nGvS0BPUfH4/Fw+PBhoqKisFgs3HrrrZhMJiIiIrjnnntobW3ViwfabDZCQ0PJyMjQu0X9vF6vvveVfFhODyaTiaysrFFd10qp66rFYLVayc3NxWaz6ZMe29rartlTICZPREQEiYmJxMXFYbVa6e/vZ8eOHddVrdo/NKmUwuFwkJqayrJly3jvvffo7e2dpHcgrsZkMhEfH4/D4dDnX5WUlHDw4EGqq6svW7aslBq1HYumaQQFBY1ZQFJMrYiICGbMmEFhYSExMTH692ZtbS3V1dW8//77DA8PM3PmTNLT0zGZTHqRz0v3lBwvAZ3o+AsfhYeHY7VaWblyJUajEavVyvr163G5XAwMDFBSUqJv5Dhz5sxRr+HxeBgcHKSuru6GqAB5s/APXV26oi44OJjQ0NBrrsSwWq2kpaVhNBpxu9309PTQ2dkp86+mkYiICJKTk3E4HBiNRgYGBti9ezetra3X/FmTyaT3xvr3NJszZw6HDx+WRGea8G+q65+vAVBeXs6JEyfo6OgY8+fcbjcul0smIk9z/p3pb7nlFj2+Ho+H8vJyjh49yv/8z/9gNptZtmwZmzZtIjIykpCQEH2ls8FgGNd6ZgGd6PgVFxfT1dXFl7/85VErOCwWCxaLhZUrVwJccRy/oqKCI0eO8Pjjj19z2bKYWmvXrkXTNH7+85+PeZEEBwfr8dc0DbfbTUdHB/X19df1JSomR1JSkl47B0ZKAuzevfu6lhNnZGSMmm/V29vLyZMnP1JxMzEx/D06lyYsXV1dV01yYGSPQbPZrH9mi+lp48aNrFu3Tu+dcTqd1NTU8KMf/Yhjx44xPDyMpmn09/cTHh7O17/+deLi4ti4cSMvvfQSSqnrKvh6vW6KRGdoaIjW1lZefvll1q1bx9y5c0dNQr7SLO/u7m62bdtGUVERZ8+epbOzU4pTTSNut5vjx48TFRVFXFycXgXbYDCwf/9+mpqa6O7upqOjA7PZTFBQEA6HQ9/I09+VajAYMBqNmM1mTCaTxHiaiI+PJzMzc9TNx/VOKE5LS9O3DxgYGKCrq0u2Y5lGrFYrMTExrFy5kujoaDweD+3t7Zw5c4azZ89e9Wfb29vp6uoC0PcftNvtDA4OSkXzacBsNus9qP5VrP7q87/97W+pqanRt3tQStHa2sr27du57777iI2NJTQ0lC1bthAaGqrvQDAebopEx79aY/v27URFRendZJeuugoKCtL33HA6nVRXV/P6669TVFSkb+4ppg+3201xcTHZ2dnMmDGDqKgokpOTCQkJYdWqVZw7d46GhgYMBgMhISHY7XaSk5PZtGkTCxcuHPWlaTAYCAoKwmw2S6IzTURGRhIfH6//3b8acnh4+KoJi6ZpxMbGEhsbi6ZpOJ1Oenp66OjokERnmggODiY6Opr8/HzCw8MZHh6murqaCxcuXPMufmBggMHBQZRS+kTz6OhoGhoaJNGZBsxmM4mJiaSnp5OUlASMdBpUVFTwpz/9ifb29lHzKHt7ezl+/DgDAwP6vKvly5fT0tIiic5H4XK52LVrF4cOHSIiIoJly5aRnp5OVFQUAMuWLSM2Npb9+/fz6quvcvLkSZqamvRJjWJ6GRoa4tVXX6W/v5/a2lq++c1vYjQaiYqK4vvf/z5DQ0P09fVx/PhxHA4H4eHh5OTkYDQaRyU5/hUAXq/3ugpJiqkRERHBN77xDZ599llOnTp1xXP81VcvXTDQ3d1NS0sLNTU1k9VUcQ1JSUnMmjWL5ORkfXuOp59+mqqqqg/1OnFxceTn53Pvvffy61//mvb29glqsbheFouFGTNmEBERoQ9LvvXWW+zevZsLFy5M2XfpTfXJ7vP5GBwc1FdjlZaW6sHYu3cvwcHBNDU1UVVVdc2iZGLq+Xw+zp49i9Vq5YEHHiA0NFQfgvL32OXn5+tDVx+czd/Q0EBZWRlbt26lqqpK5nBMI5WVlRQXF3PLLbdgNpux2WysX7+empoarFYrtbW1dHV16RNTw8LCSE5OZuPGjSQnJ+vJrMlkwmKxYLVaJ3yHZHF9YmJiRsXI6XRy4sSJ61oMkJCQQGxsrP53p9NJXV2d9MROE0ajkYiIiMuKfHZ3d1/12isrK8PhcJCVlTUh7bqpEh348x4qE1luWkyepqYmTCYTtbW1pKWlERERAYwMR1mtVr379FIej4euri7Kyso4fPgw77zzDn19fZLYTiN1dXWcOnWKtrY2IiMjCQ4OZs6cORQUFGAwGAgLC6O2tpbBwUHsdjtJSUlkZ2dz9913ExMTg6Zp+gerwWDAYrHgcrkk0ZkGoqOjSUhI0P/udrupr6+/rhuN+Ph4YmJigD8Xcm1oaJBEZxrwTwFITEwkKChIL9jb0dGhz6saS01NDampqWRlZWEwGPRjvIYjb7pERwQW/x3dD3/4Q77yla+wbt26a9Y6qqur40c/+hEHDx6ksbFRlhxPQ0VFRVRWVhIZGclnPvMZ5s+fj6ZpfP7zn+eee+5hcHCQsrIy+vr6iIiIIDMzk9DQUAwGw6ihSX/ZALPZLNWRp4nMzEw9njAyr8pisTA8PHzNm41Lt2rp6uqiubmZ2tpaSXSmAbvdTnp6Ovfeey9xcXEMDw9TVVXF3r17L9vM9YOam5v1+TshISF6kc/xGlmRREfc8FwuF0ePHsXpdPLaa6+Rm5tLTEyMXvnYXxzw3LlzHDx4kPLycvbv309ra6sMV01TSikGBgbYuXMnCxYsYObMmdhsNn37DpvNRlZWFm63G4vFgt1uH5XgDgwMUF9fz7PPPktRURH9/f0yWXUauTTpdDgcfPKTn2Tnzp1jTkb29xb459j5lyZ3dnbqc+zE1IqNjSU1NZXY2FisVivNzc388Y9/pKWl5Zo9qZfOhY2MjCQ7O5u1a9eybdu2cdmhXhIdccPzer3U19fT3t5OUVER+fn5ozb86+vrIywsjBMnTrBt2zYqKiro7Oyc2kaLa3K73ZSXl3PhwgXq6+vJzs7WvyCNRiORkZFX/LmOjg6am5spLi7m/fffp6KiQupfTSNOp5O+vj58Pp++H9Ktt95KRUUFPT09DA0N4Xa7UUphMBj0xDYxMXFU3R2Xy8XQ0JAsLZ8mwsPDiY+P128wBwYGOHDgwHVVnLdarfq8Hv92TMnJyeO2QEQSHREwhoaGGBoaYseOHVesv3K9W0SI6cHn89HT08NLL71EXV0d//RP/3TZrsdXsnXrVvbt28f+/ftl7tU0dPLkSUJDQ1m2bBlBQUFERETwhS98gZ6eHpKSkiguLqauro7h4WFsNhsJCQnMnz+fr33ta2RmZmIwGFBKYbFYCA4OxmazMTAwIMnOFEtLSyMzM1P/e19fH++///519ZpnZGTota9gZLVkSUmJvkflxyWJjghIlyY0ktzc2C5cuEB3dzfd3d2kp6cTGxtLUlISmqYRGhpKfn4+Fy5coLKykj179nD48GFaWlpkuGqaKi0tZXBwkOzsbFavXk1qaipGo5FNmzaxaNEiWltbOXfuHIODgzgcDtLT04mPj2fmzJl6VXMYWc0zMDAgZSGmCf9kYj9N0y4r5zGW7Oxs0tLSgJEEqb29nebm5nGrfSX/QoQQ01pXVxc9PT00NzeTnZ1NYmKivsVDeHg4Pp+P06dPU1ZWxmuvvUZ3d/e43QmK8dfW1obb7Wb//v3k5uaSlJSE0WgkMzOTjIwMhoaGyMjIwOl0EhYWRmpq6qgEx+v1MjQ0xIULF2hoaJAbmWkiLCxs1HCy2WwmISGBurq6qyYs/vpnDocDGNnupbe3l87OTll1JYS4efh8Pvr7+zl+/DjHjx8f9dylS8nFjaGvr49XXnmFFStWkJmZqZeF0DSN4OBg8vLyxvzZnp4eTp8+zU9+8hPOnj1LX1/fZDVbfAixsbF85Stf4T//8z/H3NrDX/PMv0OBpml0d3fT2tpKfX39uLVFEh0hxA1Nkpwbj9frpbe3lzfeeIP+/n7+8i//8pplIQBefPFFTp06xdGjR7lw4QKDg4OT0FpxPc6cOUNcXBzz5s3DbDYTHh7O5s2bqa6uJiYmhqqqKtra2vB4PFitViIjI8nKymLz5s0kJibqc6/8BV6Dg4MZGhoal+tbEh0hhBCTzu12c/r0aYxGIwsWLCA0NBSr1aqvrDKbzTgcDvr7+xkYGKC9vZ09e/Zw8uRJSkpKcDqdMgdrGqmqqiIqKor6+nri4uKw2WxkZGRQUFBASEgIcXFxXLhwAbfbjd1uJyUlhdmzZ7Nu3TrCwsL01/HH1F9baTwSHe1qL6JpmtwqTRGl1LhXN5N4Tp3xjqfEcurItTm+jEYjoaGhzJ8/n/T0dL0gYGxsLLfffjuHDx+mqKiI559/nra2tnEvFSDX5viJjY3lL//yL/nSl75ETk6O/rjP58PpdFJSUsLQ0BDh4eFkZWVhs9kue40jR46wfft2nnrqKbq6uj5UMjtWLCXRmabkwzSwyIdp4JBrc/yZTCa9R8f/5WexWIiMjKS3t5fe3l6ampomZBsPuTbHj9VqJScnhx/96EcUFhbqNXVgJNnx108ym82j5ubAyCq66upqfvrTn1JSUsK5c+c+dMXrsWIpQ1dCCCGmlH//OXFjc7lcVFVVce7cOVJSUpg7d66+vNxgMOgrqz6otrZW39/u2LFj475/mSQ6QgghhPjYfD4fvb29vPzyyzQ3N/PjH//4umrp/OY3v+HQoUMcPnx4QupfydDVNCXd44FFuscDh1ybgUWuzfEXGhpKZGQks2fPJjs7m/j4eJKTk4GR3esXLlxIaWkpZWVl7Nq1i+LiYjo7O+nt7f1Ylcxl6EoIIYQQE66vr09fKdfY2EhcXBxJSUkAREVF0dXVxZkzZzh79izvvfce3d3d41YF+UqkR2eakrvGwCJ3jYFDrs3AItdm4BgrloYrPSiEEEIIEQgk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbAk0RFCCCFEwJJERwghhBABSxIdIYQQQgQsSXSEEEIIEbA0pdRUt0EIIYQQYkJIj44QQgghApYkOkIIIYQIWJLoCCGEECJgSaIjhBBCiIAliY4QQgghApYkOkIIIYQIWP8/T7k0ltqqQmQAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "