beresandras commited on
Commit
36071c0
1 Parent(s): 9bdfb74

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -0
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import huggingface_hub as hf_hub
3
+ import gradio as gr
4
+
5
+
6
+ num_rows = 3
7
+ num_cols = 3
8
+ num_images = num_rows * num_cols
9
+ image_size = 64
10
+ plot_image_size = 64
11
+
12
+
13
+ def load_model():
14
+ model = hf_hub.from_pretrained_keras("beresandras/denoising-diffusion-model")
15
+ return model
16
+
17
+ def diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate):
18
+ start_angle = tf.acos(max_signal_rate)
19
+ end_angle = tf.acos(min_signal_rate)
20
+
21
+ diffusion_angles = start_angle + diffusion_times * (end_angle - start_angle)
22
+
23
+ signal_rates = tf.cos(diffusion_angles)
24
+ noise_rates = tf.sin(diffusion_angles)
25
+
26
+ return noise_rates, signal_rates
27
+
28
+ def generate_images(model, num_images, diffusion_steps, stochasticity, min_signal_rate, max_signal_rate):
29
+ step_size = 1.0 / diffusion_steps
30
+ initial_noise = tf.random.normal(shape=(num_images, image_size, image_size, 3))
31
+
32
+ noisy_images = initial_noise
33
+ for step in range(diffusion_steps):
34
+ diffusion_times = tf.ones((num_images, 1, 1, 1)) - step * step_size
35
+ next_diffusion_times = diffusion_times - step_size
36
+
37
+ noise_rates, signal_rates = diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate)
38
+ next_noise_rates, next_signal_rates = diffusion_schedule(next_diffusion_times, min_signal_rate, max_signal_rate)
39
+
40
+ sample_noises = tf.random.normal(shape=(num_images, image_size, image_size, 3))
41
+ sample_noise_rates = stochasticity * (1.0 - (signal_rates / next_signal_rates)**2)**0.5 * (next_noise_rates / noise_rates)
42
+
43
+ pred_noises = model([noisy_images, noise_rates])
44
+ pred_images = (noisy_images - noise_rates * pred_noises) / signal_rates
45
+ noisy_images = (
46
+ next_signal_rates * pred_images
47
+ + (next_noise_rates**2 - sample_noise_rates**2)**0.5 * pred_noises
48
+ + sample_noise_rates * sample_noises
49
+ )
50
+
51
+ generated_images = tf.clip_by_value(0.5 + 0.3 * pred_images, 0.0, 1.0)
52
+ generated_images = tf.image.resize(
53
+ generated_images, (plot_image_size, plot_image_size), method="nearest"
54
+ )
55
+ return generated_images.numpy()
56
+
57
+
58
+ model = load_model()
59
+ gr.Interface(
60
+ generate_images,
61
+ inputs=[
62
+ model,
63
+ num_images,
64
+ gr.inputs.Slider(1, 20, default=10, label="Diffusion steps"),
65
+ gr.inputs.Slider(0.0, 1.0, step=0.05, default=0.0, label="Stochasticity"),
66
+ gr.inputs.Slider(0.02, 0.10, step=0.01, default=0.02, label="Minimal signal rate"),
67
+ gr.inputs.Slider(0.80, 0.95, step=0.01, default=0.95, label="Maximal signal rate"),
68
+ ],
69
+ outputs="image",
70
+ ).launch()