import tensorflow as tf import huggingface_hub as hf_hub import gradio as gr num_rows = 2 num_cols = 4 num_images = num_rows * num_cols image_size = 64 plot_image_size = 128 model = hf_hub.from_pretrained_keras("keras-io/denoising-diffusion-implicit-models") def diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate): start_angle = tf.acos(max_signal_rate) end_angle = tf.acos(min_signal_rate) diffusion_angles = start_angle + diffusion_times * (end_angle - start_angle) signal_rates = tf.cos(diffusion_angles) noise_rates = tf.sin(diffusion_angles) return noise_rates, signal_rates def generate_images(diffusion_steps, stochasticity, min_signal_rate, max_signal_rate): step_size = 1.0 / diffusion_steps initial_noise = tf.random.normal(shape=(num_images, image_size, image_size, 3)) # reverse diffusion noisy_images = initial_noise for step in range(diffusion_steps): diffusion_times = tf.ones((num_images, 1, 1, 1)) - step * step_size next_diffusion_times = diffusion_times - step_size noise_rates, signal_rates = diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate) next_noise_rates, next_signal_rates = diffusion_schedule(next_diffusion_times, min_signal_rate, max_signal_rate) sample_noises = tf.random.normal(shape=(num_images, image_size, image_size, 3)) sample_noise_rates = stochasticity * (1.0 - (signal_rates / next_signal_rates)**2)**0.5 * (next_noise_rates / noise_rates) pred_noises, pred_images = model([noisy_images, noise_rates, signal_rates]) noisy_images = ( next_signal_rates * pred_images + (next_noise_rates**2 - sample_noise_rates**2)**0.5 * pred_noises + sample_noise_rates * sample_noises ) # denormalize data_mean = tf.constant([[[[0.4705, 0.3943, 0.3033]]]]) data_std_dev = tf.constant([[[[0.2892, 0.2364, 0.2680]]]]) generated_images = data_mean + pred_images * data_std_dev generated_images = tf.clip_by_value(generated_images, 0.0, 1.0) # make grid generated_images = tf.image.resize(generated_images, (plot_image_size, plot_image_size), method="nearest") generated_images = tf.reshape(generated_images, (num_rows, num_cols, plot_image_size, plot_image_size, 3)) generated_images = tf.transpose(generated_images, (0, 2, 1, 3, 4)) generated_images = tf.reshape(generated_images, (num_rows * plot_image_size, num_cols * plot_image_size, 3)) return generated_images.numpy() inputs = [ gr.inputs.Slider(1, 20, step=1, default=10, label="Diffusion steps"), gr.inputs.Slider(0.0, 1.0, step=0.05, default=0.0, label="Stochasticity (η in the paper)"), gr.inputs.Slider(0.02, 0.10, step=0.01, default=0.02, label="Minimal signal rate"), gr.inputs.Slider(0.80, 0.95, step=0.01, default=0.95, label="Maximal signal rate"), ] output = gr.outputs.Image(label="Generated images") examples = [[3, 0.0, 0.02, 0.95], [10, 0.0, 0.02, 0.95], [20, 1.0, 0.02, 0.95]] title = "Denoising Diffusion Implicit Models 🌹💨" description = "Generating images with a denoising diffusion implicit model, trained on the Oxford Flowers dataset." article = "
Keras code example and demo by András Béres
" gr.Interface( generate_images, inputs=inputs, outputs=output, examples=examples, title=title, description=description, article=article, ).launch()