Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -11,11 +11,6 @@ total_variation_weight = 1e-6
|
|
11 |
style_weight = 1e-6
|
12 |
content_weight = 2.5e-8
|
13 |
|
14 |
-
# Dimensions of the generated picture.
|
15 |
-
width, height = keras.preprocessing.image.load_img(base_image_path).size
|
16 |
-
img_nrows = 400
|
17 |
-
img_ncols = int(width * img_nrows / height)
|
18 |
-
|
19 |
# Build a VGG19 model loaded with pre-trained ImageNet weights
|
20 |
model = from_pretrained_keras("rushic24/keras-VGG19")
|
21 |
|
@@ -37,7 +32,6 @@ style_layer_names = [
|
|
37 |
# The layer to use for the content loss.
|
38 |
content_layer_name = "block5_conv2"
|
39 |
|
40 |
-
|
41 |
def preprocess_image(image_path):
|
42 |
# Util function to open, resize and format pictures into appropriate tensors
|
43 |
img = keras.preprocessing.image.load_img(
|
|
|
11 |
style_weight = 1e-6
|
12 |
content_weight = 2.5e-8
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
# Build a VGG19 model loaded with pre-trained ImageNet weights
|
15 |
model = from_pretrained_keras("rushic24/keras-VGG19")
|
16 |
|
|
|
32 |
# The layer to use for the content loss.
|
33 |
content_layer_name = "block5_conv2"
|
34 |
|
|
|
35 |
def preprocess_image(image_path):
|
36 |
# Util function to open, resize and format pictures into appropriate tensors
|
37 |
img = keras.preprocessing.image.load_img(
|